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Abstract. We prove sharp a priori estimates for the distribution function of the dyadic maximal

function Mφ, when φ belongs to the Lorentz space Lp,q, 1 < p < ∞, 1 ≤ q < ∞. The approach

rests on a precise evaluation of the Bellman function corresponding to the problem. As an

application, we establish refined weak-type estimates for the dyadic maximal operator: for p, q

as above and r ∈ [1, p], we determine the best constant Cp,q,r such that for any φ ∈ Lp,q ,

||Mφ||r,∞ ≤ Cp,q,r||φ||p,q .

1. Introduction. The dyadic maximal operator on R
n is given by the formula

Mφ(x) = sup

{

1

|Q|

∫

Q

|φ(u)|du : x ∈ Q, Q ⊂ R
n is a dyadic cube

}

,

where φ is a locally integrable function on R
n and the dyadic cubes are those formed by

the grids 2−NZ
n, N = 0, 1, 2, . . .. It is well known that the maximal operator satisfies

the weak-type (1, 1) inequality

|{x ∈ R
n : Mφ(x) ≥ λ}| ≤

1

λ

∫

{Mφ≥λ}

|φ(u)|du (1)

for any φ ∈ L1(Rn) and any λ > 0. By integration, this leads to the Lp bound

||Mφ||Lp(Rn) ≤
p

p− 1
||φ||Lp(Rn), 1 < p ≤ ∞, (2)

in which the constant p/(p − 1) is the best possible. There is a powerful method which

reduces the problem of proving a given inequality for the maximal operator to that of
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2 A. OSȨKOWSKI

deriving of the corresponding special object, the so-called Bellman function. Not only

does this technique allow to determine the best constants involved in the estimate under

investigation, but it also provides some additional insight into the structure and the

behavior of the maximal operator. For example, in order to study (2), Nazarow and Treil

[NT] introduced the function

Bp(f, F, L)

= sup

{

1

|Q|

∫

Q

(Mφ)p :
1

|Q|

∫

Q

φ = f,
1

|Q|

∫

Q

φp = F, sup
R:Q⊆R

1

|R|

∫

R

φ = L

}

,

where Q is a fixed dyadic cube (in fact, one may take Q = [0, 1]n), f, F, L satisfy

0 ≤ f ≤ L, fp ≤ F and the supremum is taken over all nonnegative functions φ ∈ Lp(Q)

and all dyadic cubes R containing Q. Furthermore, Nazarov and Treil established the

so-called “main inequality”, which codifies the martingale-like dynamics of the function.

Unfortunately, they did not find the function explicitly, settling instead for what they

called a supersolution. It was Melas [M1] who discovered the explicit formula for Bp,

actually in a slightly more general setting of trees (see below):

Bp(f, F, L) =







Fwp

(

pLp−1f−(p−1)Lp

F

)p

if L < p
p−1f,

Lp +
(

p
p−1

)p

(F − fp) if L ≥ p
p−1f,

(3)

where wp : [0, 1] → [1, p/(p − 1)] is the inverse function of z 7→ −(p − 1)zp + pzp−1.

Since Bp(f, F, L) ≤ (p/(p − 1))pF and the equality can be attained, (2) holds true and

the constant p/(p − 1) cannot be decreased. However, it is clear that Melas’ result is a

significant improvement of (2): the formula (3) brings much more information about the

action of M on Lp.

A few remarks concerning the proof of the equality (3) are in order. Melas’ approach

is combinatorial in nature; the key step is to narrow down the class of functions among

which the optimizers of the underlying extremal problem are found. Roughly speaking,

in this line of reasoning one finds the Bellman function as the appropriate integral of the

optimizer. This approach does not use the martingale dynamics of the problem and is

specific to the discrete maximal operator. In particular, it does not directly apply to other

dyadic operators, nor does it seem to work for other maximal functions. This technique

should be contrasted with a relatively general PDE- and geometry-based method first

used by Slavin, Stokolos and Vasyunin [SSV]. There, the “main inequality” of Nazarov

and Treil was turned into a Monge-Ampère PDE on a plane domain, whose solution

turned out to be Melas’ function. The optimizers were then built along the straight-line

characteristics of the PDE. Monge-Ampère equations are now found in many Bellman

applications. Typically, they arise in settings with integral norms, such as Lp; and those

where the main inequality can be interpreted as a convexity/concavity statement. How-

ever, one can also get a differential equation in other cases, as long as the main inequality

is infinitesimally non-trivial. This approach has its roots in the work of Burkholder [B].

There are several other problems of this type which were successfully treated by the

above methods (see e.g. [M2], [M3], [MN], [MN2] and [N]). We shall only mention here two

of them, which are closely related to the results obtained in this paper. First, Melas and
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Nikolidakis [MN] studied various extensions of the weak-type estimate (1) for 1 ≤ p <∞,

and, in particular, derived the explicit formula for the corresponding Bellman function

B(f, F, L) = sup

{

1

|Q|
||Mφ||pLp,∞(Q)

}

.

Here the supremum is taken over the same parameters as previously and, as usual,

||Mφ||Lp,∞(Q) = sup{λ|{x ∈ Q : Mφ(x) ≥ λ}|1/p : λ > 0} denotes the weak p-th

norm of Mφ restricted to Q. The second result is that of Nikolidakis [N], who established

the sharp estimate

||Mφ||Lp,∞(Rn) ≤
p

p− 1
||φ||Lp,∞(Rn), 1 < p <∞.

This was accomplished by deriving the formula for

Bp(f, F ) = sup

{

1

|Q|
||Mφ||Lp,∞(Q) :

1

|Q|

∫

Q

φ = f,
1

|Q|
||φ||Lp,∞(Q) = F

}

,

with f, F satisfying f ≤ p
p−1F and the supremum taken over all φ ≥ 0.

The objective of this paper is to generalize and unify the above two statements by

comparing the Lr,∞-norm of Mφ to the Lorentz Lp,q-norm of φ, where 1 < p < ∞,

1 ≤ q ≤ ∞ and 1 ≤ r ≤ p. Actually, we shall work in a more general setting and

investigate the maximal operator acting on a nonatomic probability space (X,µ) equipped

with a tree structure T (see Definition 2.1 below).

2. Preliminaries. Let (X,µ) be a nonatomic probability space. Two measurable subsets

A, B of X will be called almost disjoint if µ(A ∩B) = 0. We start with the following

Definition 2.1. A set T of measurable subsets of X will be called a tree if the following

conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there is a subset C(I) ⊂ T containing at least two elements such

that

(a) the elements of C(I) are pairwise almost disjoint,

(b) I =
⋃

C(I).

(iii) T =
⋃

m≥0 T(m), where T0 = {X} and T(m+1) =
⋃

I∈T(m)
C(I).

(iv) limm→∞ supI∈T(m)
µ(I) = 0.

The elements of a tree T have similar behavior to that of the dyadic cubes; for example,

if the intersection of two elements of T has positive measure, then one is contained in

the other. For more details and for the proof of the following statement, see [M1].

Lemma 2.2. Let (X,µ) be a nonatomic probability space equipped with a tree T . For

every I ∈ T and every α ∈ [0, 1] there exists a subfamily F (I) ⊂ T consisting of pairwise

almost disjoint subsets of I such that

µ
(

⋃

F (I)
)

=
∑

J∈F (I)

µ(J) = αµ(I).

In other words, the elements of a tree can form a set of an arbitrary measure. In

fact, as we shall prove now, they can also be used to build functions of an arbitrary
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distribution. Let φ be a nonnegative and measurable function on X . Recall that φ∗, the

decreasing rearrangement of φ, is given by the formula

φ∗(t) = inf{s > 0 : µ(φ > s) ≤ t}
(

here and below, we use the notation µ(φ > s) = µ({x ∈ X : φ(x) > s})
)

.

Lemma 2.3. Let (X,µ) be a nonatomic probability space equipped with a tree T . For any

nondecreasing, right-continuous function g : (0, 1] → [0,∞) there is a function φ : X →

[0,∞), measurable with respect to the σ-algebra generated by T , satisfying φ∗ = g on

(0, 1].

Proof. We construct inductively an appropriate sequence (φn)n≥0 of step functions on

X . We start with φ0 = g(1)1X . For n ≥ 0, define

φn+1 =

2n+1
∑

k=1

g(k2−n−1)1Ak,n+1
,

where {Ak,n+1}
2n+1

k=1 is a family of pairwise almost disjoint elements of T such that

Ak,n = A2k−1,n+1 ∪ A2k,n+1 and µ(A2k−1,n+1) = µ(A2k,n+1) = µ(Ak,n)/2 for each k.

The existence of such a family is guaranteed by the previous lemma. Directly from the

construction, we see that

φ∗n =
2n

∑

k=1

g(k2−n)1[(k−1)2−n,k2−n).

Furthermore, the sequence (φn)n≥0 is nondecreasing and hence the pointwise limit φ =

limn→∞ φn exists. It remains to note that φ is σ(T )-measurable and

φ∗ = lim
n→∞

φ∗n = g on (0, 1],

which completes the proof.

We conclude this section with the definition of the maximal operator associated to

the tree T .

Definition 2.4. Let (X,µ) be a probability space equipped with a tree structure T . We

define the maximal operator MT acting on integrable functions φ : X → [0,∞) by the

formula

MT φ(x) = sup

{

1

µ(I)

∫

I

φdµ : x ∈ I ∈ T

}

.

3. A Bellman function. Throughout the paper, p, q are fixed numbers satisfying 1 <

p <∞ and 1 ≤ q <∞. The key role of the paper is played by the function

Bp,q(λ, f, F ) = sup

{

µ(MT φ ≥ λ) :

∫

X

φdµ = f, ||φ||p,q = F

}

, (4)

where the supremum is taken over nonnegative and integrable functions φ on X and

||φ||p,q denotes the Lorentz norm of φ, given by

||φ||p,q = p1/q

(
∫ ∞

0

µ(φ ≥ s)q/psq−1ds

)1/q

.
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Our main goal will be to find the explicit formula for Bp,q. Before we provide the precise

statement, let us determine the domain of this function: for which f and F the supremum

above is taken over an nonempty set? To answer this question, introduce the constant

Cp,q, given by

Cp,q =











(

q
p

)1/q

if q ≤ p,
(

p(q−1)
q(p−1)

)1−1/q

if q > p.

Theorem 3.1. Suppose that f, F > 0. There is a function φ : X → [0,∞) satisfying
∫

X
φdµ = f and ||φ||p,q = F if and only if

f ≤ Cp,qF. (5)

Proof. By homogeneity, it suffices to prove the equivalence for f = 1. We consider the

cases q ≤ p and q > p separately.

The case q ≤ p. Suppose that φ satisfies
∫

X
φ = 1 and ||φ||p,q = F . We have

µ(φ ≥ s) ≤ µ(φ ≥ s)q/psq−1 for s ≥ 1

and

µ(φ ≥ s) ≤ µ(φ ≥ s)q/psq−1 + 1 − sq−1 for 0 < s < 1

(to see the latter bound, simply check it for µ(φ > s) ∈ {0, 1} and observe that the

function t 7→ tq/psq−1 + 1 − sq−1 − t is concave on [0, 1]). Consequently,

1 =

∫

X

φdµ =

∫ ∞

0

µ(φ ≥ s)ds ≤
1

p
||φ||qLp,q(X) + 1 −

1

q
,

which is equivalent to (5). To see the reverse implication, consider the family {φα}α∈(0,1]

of functions on X , with the distribution determined by

φ∗α(s) =

{

cαα
−1/p if s < α,

cαs
−1/p if s ∈ [α, 1],

where cα = (p − 1)/(p − α1−1/p). Such functions exist due to Lemma 2.3. It is easy to

verify that
∫

X
φα = 1 and

||φα||
q
p,q =

(

p− 1

p− α1−1/p

)q (

p

q
− logα

)

for every α ∈ (0, 1]. It remains to note that the expression on the right is equal to p/q

when α = 1, and tends to infinity as α ↓ 0.

The case q > p. Suppose first that φ satisfies
∫

X φ = 1 and ||φ||p,q = F . Let s0 =
q(p−1)
p(q−1) . By Young’s inequality, we have, for s ≥ s0,

µ(φ ≥ s) ≤
p

q

(

s

s0

)q−1

µ(φ ≥ s)q/p +

(

1 −
p

q

)

(s0
s

)(q−1)p/(q−p)

. (6)

On the other hand, if 0 < s < s0, then

µ(φ ≥ s) ≤
p

q

(

s

s0

)q−1

µ(φ ≥ s)q/p + 1 −
p

q

(

s

s0

)q−1

. (7)
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Indeed, µ(φ ≥ s) ∈ [0, 1], both sides above are equal for µ(φ ≥ s) = 1, and the function

x 7→ x− p
q

(

s
s0

)q−1
xq/p is increasing on [0, 1]. Combining (6) and (7) yields

1 =

∫ ∞

0

µ(φ ≥ s)ds

≤
p

qsq−1
0

∫ ∞

0

µ(φ ≥ s)q/psq−1ds+

(

q − p

q

)2
s0
p− 1

+ s0 −
ps0
q2
,

which is (5), after a little computation. To get the reverse implication, consider the family

{φα}α>−p−1 of functions on X such that

φ∗α(t) = (α+ 1)tα, t ∈ [0, 1], α > −p−1.

The existence of such objects follows from Lemma 2.3. We easily check that for any

α > p−1 the function φα has integral 1 and

||φα||
q
p,q =

∫ 1

0

tq/p−1(φ∗α(t))qdt =
p

q(pα+ 1)
(α + 1)q.

A straightforward analysis shows that the minimum of the right-hand side is precisely

C−q
p,q and the supremum is equal to ∞. The proof is complete.

We turn to the explicit formula for Bp,q(λ, f, F ). Here is the main result of this paper.

Theorem 3.2. For any λ > 0 and f ≤ Cp,qF we have

Bp,q(λ, f, F ) =















1 if λ ≤ f,

fλ−1 if λ > f, F ≥ C−1
p,qλ

1−1/pf1/p,

Gp,q,λ/f (F
q/f q) if λ > f, F < C−1

p,qλ
1−1/pf1/p.

(8)

Here, for λ > 1, the function Gp,q,λ : [C−q
p,q , C

−q
p,qλ

q−q/p] → R is the inverse to Dp,q,λ,

given as follows: if q ≤ p, then

Dp,q,λ(t) = C−q
p,q

[(

1 − λt

1 − t

)q

(1 − tq/p) + tq/pλq
]

, t ∈ [0, λ−1],

while for q > p,

Dp,q,λ(t) = C−q
p,q

[

(1 − λt)
q

(

1 − tq(p−1)/(p(q−1))
)q−1 + tq/pλq

]

, t ∈ [λp(q−1)/(p−q), λ−1].

This result will be proved in the subsequent sections.

4. Derivation of Bp,q(λ, f, F ) for small λ. This section contains some initial analysis

of Bp,q as well as the proof of (8) on the sets {λ ≤ f} and {λ > f, F ≥ C−1
p,qλ

1−1/pf1/p}.

We start with the observation that Bp,q satisfies the homogeneity property

Bp,q(cλ, cf, cF ) = Bp,q(λ, f, F ) for all c > 0,

which is clear from the very definition. Therefore, it suffices to focus of finding the formula

for

Bp,q(λ, F ) := Bp,q(λ, 1, F ).
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Next, any nonnegative function φ on X with integral 1 satisfies Mφ(x) ≥ 1 for all x ∈ X .

This yields Bp,q(λ, F ) = 1 if λ ≤ 1, and gives (8) for λ ≤ f .

Thus, from now on, we assume that λ > 1. The key fact in our further considerations

is the alternative definition of Bp,q, which does not involve the maximal operator. To

formulate this definition, we require some additional notation. For a fixed F ≥ C−1
p,q , con-

sider the class K(F ) which consists of those nonincreasing and right-continuous functions

ψ : (0, 1] → [0,∞), which satisfy
∫ 1

0 ψ = 1 and ||ψ||p,q ≤ F . The class is nonempty, which

follows directly from Theorem 3.1. For any ψ ∈ K(F ), let

t = t(ψ) := sup

{

r ∈ [0, 1] :

∫ r

0

ψ(u)du ≥ λr

}

and define

s0 = s0(ψ) =

{

limr↑t ψ(r) if t(ψ) > 0,

+∞ if t(ψ) = 0.

Clearly, we have
∫ t(ψ)

0 ψ = λt(ψ) and hence t(ψ) ≤ λ−1.

Theorem 4.1. For any λ > 1 and F ≥ C−1
p,q we have

Bp,q(λ, F ) = sup {t(ψ) : ψ ∈ K(F )} . (9)

Proof. The inequality “≤” is straightforward: for any φ as in the definition of Bp,q(λ, F )

we have φ∗ ∈ K(F ) and µ(MT φ ≥ λ) ≤ t(φ∗). Indeed, the latter estimate is due to

Doob’s weak-type bound:

λµ(MT φ ≥ λ) ≤

∫

{MT φ≥λ}

φ ≤

∫ µ(MT φ≥λ)

0

φ∗,

combined with the definition of t(φ∗). To prove the reverse estimate, pick ψ̄ ∈ K(F )

with t(ψ̄) > 0 and let ε > 0. It is easy to modify ψ̄ on the interval [0, t(ψ̄)] so that its

Lp,q-norm increases to F ; more precisely, the new, modified function ψ satisfies
∫ 1

0 ψ = 1,

||ψ||p,q = F and t(ψ) > t(ψ̄)−ε. Using Lemma 2.2, we construct a family {Aj}j∈J ⊂ T of

pairwise almost disjoint sets such that µ(
⋃

j∈J Aj) = t(ψ). We have
∫ t(ψ)

0 ψ = λt(ψ), so

using a straightforward induction argument, we find a family {Bj}j∈J of pairwise almost

disjoint Borel subsets of [0, t(ψ)] such that |Bj | = µ(Aj) and
∫

Bj
ψ = λ|Bj | for each

j ∈ J . By Lemma 2.3 (applied on each Aj , j ∈ J , and on X \
⋃

j∈J Aj) there is a function

φ : X → [0,∞) with φ∗ = ψ such that for each j ∈ J , φ|Aj
has the same distribution as

ψ|Bj
, and φ|X\

S

j∈J
Aj

has the same distribution as ψ|[0,1]\
S

j∈J
Bj

. Thus φ satisfies the

conditions listed in the definition of Bp,q(λ, F ) and for each x ∈ Aj ,

MT φ(x) ≥
1

µ(Aj)

∫

Aj

φ =
1

|Bj |

∫

Bj

ψ = λ.

Therefore µ(MT φ ≥ λ) ≥ µ(
⋃

j∈J Aj) = t(ψ) > t(ψ̄) − ε. This finishes the proof, since

ψ̄ ∈ K(F ) and ε > 0 were arbitrary.

We are ready to prove the validity of (8) on the second part of the domain of Bp,q.

This follows from the statement below.

Theorem 4.2. If λ > 1 and F ≥ C−1
p,qλ

1−1/p, then Bp,q(λ, F ) = λ−1.
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Proof. We have t(ψ) ≤ λ−1 for any ψ ∈ K(F ) (see the sentence right below the definitions

of t(ψ) and s0(ψ)) and thus Bp,q(λ, F ) ≤ λ−1, by virtue of (9). To get the inequality in the

reverse direction, let φ : X → [0,∞) be a function of integral 1, satisfying ||φ||p,q = C−1
p,q .

The existence of such an object is guaranteed by Lemma 2.3 and Theorem 3.1. Let

ψ : (0, 1] → [0,∞) be given by

ψ(r) =

{

λφ∗(λr) if 0 < r ≤ λ−1,

0 if λ−1 < r ≤ 1.

We see that
∫ 1

0
ψ = 1 and |ψ ≥ s| = λ−1|φ∗ ≥ sλ−1| for any s ≥ 0, so

||ψ||p,q = p1/q

(
∫ ∞

0

|ψ ≥ s|q/psq−1ds

)1/q

= p1/q

(
∫ ∞

0

λq−q/p|φ∗ ≥ λ|q/psq−1ds

)1/q

= λ1−1/p||φ||p,q ≤ F

and hence ψ belongs to the class K(F ). It remains to note that
∫ λ−1

0

ψ(u)du =

∫ 1

0

φ∗(u)du = 1,

which implies t(ψ) ≥ λ−1. The use of Theorem 4.1 completes the proof.

Therefore, all that is left is to determine the function Bp,q on the set {(λ, F ) : C−1
p,q ≤

F < Cp,qλ
1−1/p}. This task is much more elaborate, the details will be presented in the

next two sections.

5. The case q ≤ p. The idea is to exhibit extremals of (9), i.e., to narrow the class of

functions over which we take the supremum. Let ψ be an arbitrary function from K(F )

and put t = t(ψ), s0 = s0(ψ). Let

ρ =
1 − λt

1 − t

be the average of ψ over the interval [t, 1]; clearly, we have 0 < ρ ≤ s0 ≤ λ. Introduce

ϕ = ϕλ,t : [0, 1] → R by the formula

ϕλ,t(r) =

{

λ if 0 ≤ r ≤ t,

ρ if t < r ≤ 1.
(10)

It is easy to see that
∫ t

0
ψ =

∫ t

0
ϕλ,t,

∫ 1

t
ψ =

∫ 1

t
ϕλ,t and hence

∫ s0

0

|ψ ≥ s|ds =

∫ 1

t

ψ(u)du+ s0t =

∫ 1

t

ϕλ,t(u)du+ s0t =

∫ s0

0

|ϕλ,t ≥ s|ds (11)

and, similarly,
∫ ∞

s0

|ψ ≥ s|ds =

∫ ∞

s0

|ϕλ,t ≥ s|ds. (12)

We have the following fact.

Lemma 5.1. We have t(ψ) = t(ϕλ,t(ψ)) and ϕλ,t(ψ) ∈ K(||ψ||p,q).
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Proof. The first equality follows directly from the definition of the parameter t. To prove

the inclusion, let

α =
1 − t

ρq−1(1 − tq/p)

and write down the estimates

|ψ ≥ s| ≤ t1−q/pλ1−q|ψ ≥ s|q/psq−1 if s ≥ λ,

|ψ ≥ s| ≤ t1−q/pλ1−q|ψ ≥ s|q/psq−1 + t− tλ1−qsq−1 if s0 < s < λ,

|ψ ≥ s| ≤ α|ψ ≥ s|q/psq−1 + t− αtq/psq−1 if ρ < s ≤ s0,

|ψ ≥ s| ≤ α|ψ ≥ s|q/psq−1 + 1 − αsq−1 if 0 ≤ s ≤ ρ.

We shall only prove the first bound, the remaining ones can be established in a similar

manner. Since s ≥ λ, we have sq−1λ1−q ≥ 1 and it suffices to prove that |ψ ≥ s| ≤

t1−q/p|ψ ≥ s|q/p, or |ψ ≥ s| ≤ t; however, this follows from the definition of t(ψ), since
∫ |ψ≥s|

0

ψ ≤

∫ |ψ≥λ|

0

ψ ≥ λ|ψ ≥ λ|.

Furthermore, if in the system of the four estimates above we replace ψ by ϕλ,t, the

bounds turn into equalities. Consequently, using (11), (12) and integrating the above

four inequalities, we see that
∫ s0

0

|ψ ≥ s|q/psq−1ds ≥

∫ s0

0

|ϕλ,t ≥ s|q/psq−1ds

and
∫ ∞

s0

|ψ ≥ s|q/psq−1ds ≥

∫ ∞

s0

|ϕλ,t ≥ s|q/psq−1ds.

Therefore ||ϕλ,t||p,q ≤ ||ψ||p,q and the claim follows.

The above lemma implies that in the formula on the right-hand side of (9) we may

restrict ourselves to the functions of the form (10). We derive that

||ϕλ,t||
q
p,q = Dp,q,λ(t) =

p

q

[(

1 − λt

1 − t

)q

(1 − tq/p) + tq/pλq
]

(13)

is the function we have already introduced in the statement of Theorem 3.2. We shall

require the following property of this object.

Lemma 5.2. For a fixed λ > 1, the function Dp,q,λ is strictly increasing on [0, λ−1].

Proof. First we shall show that the function is nondecreasing. If we calculate the deriva-

tive, we see that it suffices to prove that

q

(

1 − λt

1 − t

)q−1

·
(1 − λ)(1 − tq/p)

(1 − t)2
−
q

p

(

1 − λt

1 − t

)q

t(q−p)/p +
q

p
t(q−p)/pλq ≥ 0

for t ∈ (0, λ−1). Divide throughout by qp−1t(q−p)/p((1 − λt)/(1 − t))q to obtain the

equivalent estimate
(

λ− λt

1 − λt

)q

≥ 1 + p
(λ− 1)(1 − tq/p)

(1 − t)(1 − λt)t(q−p)/p
. (14)
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However, by the mean-value theorem we have
(

λ− λt

1 − λt

)q

=

(

1 +
λ− 1

1 − λt

)q

≥ 1 + q
λ− 1

1 − λt
(15)

and we will be done if we show that

q ≥
p(1 − tq/p)

(1 − t)t(q−p)/p
.

Using the substitution x = q/p ∈ (0, 1], the latter estimate transforms into

xtx−1 + (1 − x)tx ≥ 1. (16)

As a function of t ∈ (0, 1), the left-hand side is strictly decreasing (the derivative is

x(x− 1)(1− t)tx−2 < 0) and tends to 1 as t ↑ 1. This proves (16) and hence the function

Dp,q,λ is nondecreasing. To get the strict monotonicity, simply note that (15) is strict for

q 6= 1, and (16) is strict for x 6= 1 (i.e., for p 6= q).

Thus, the function Dp,q,λ : [0, λ−1] → [C−q
p,q , C

−q
p,qλ

q−q/p] is invertible and the inverse

Gp,q,λ : [pq ,
p
qλ

q−q/p] → [0, λ−1] is also strictly increasing. We are ready to complete the

proof of Theorem 3.2 in the case q ≤ p.

Theorem 5.3. Suppose that q ≤ p and C−1
p,q ≤ F < C−1

p,qλ
1−1/p. Then

Bp,q(λ, F ) = Gp,q,λ(F
q).

Proof. It suffices to gather all the facts proved in this section. We have

Bp,q(λ, F ) = sup
{

t(ψ) : ψ ∈ K(F )
}

= sup
{

t ∈ [0, λ−1] : ||ϕλ,t||p,q ≤ F
}

= sup
{

t ∈ [0, λ−1] : Dp,q,λ(λ, t) ≤ F q
}

= sup
{

t ∈ [0, λ−1] : t ≤ Gp,q,λ(F
q)

}

= Gp,q,λ(F
q).

This finishes the proof.

As an application, we shall establish the following sharp weak-type estimate for the

maximal operator.

Theorem 5.4. Assume that 1 < p < ∞ and let q, r be two numbers from the interval

[1, p]. Then for any φ : X → [0,∞) we have

||MT φ||r,∞ ≤ Cp,q||φ||p,q (17)

and the constant is the best possible.

Proof. In the proof of (17) we may assume that
∫

X φ = 1, due to the homogeneity. Then

the bound amounts to saying that λBp,q(λ, F )1/r ≤ Cp,qF for any λ > 0 and F ≥ C−1
p,q .

The left-hand side, as a function of λ, is nondecreasing on [0, (Cp,qF )p/(p−1)]; thus it

suffices to prove the estimate for λ ≥ (Cp,qF )p/(p−1). For these λ’s, the inequality reads

Gp,q,λ(F
q) ≤

(

Cp,qF

λ

)r

. (18)

If (Cp,qF/λ)
r ≥ λ−1, the bound holds true, since supGp,q,λ = λ−1. If we have the

reverse estimate (Cp,qF/λ)
r < λ−1, then (18) can be rewritten in the form F q ≤
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Dp,q,λ ((Cp,qF/λ)
r
), or

xq/r ≤

(

λ−1 − x

1 − x

)q

(1 − xq/p) + xq/p,

where x = (Cp,qF/λ)
r. Since x < λ−1 ≤ 1 and r ≤ p, we have xq/r ≤ xq/p and the desired

estimate is valid. To see that Cp,q in (17) is the best possible, note that by Theorem 3.1,

there is a function φ on X satisfying ||φ||p,q = C−1
p,q and

∫

X
φ = 1. The latter equality

implies µ(MT φ ≥ 1) = 1 and thus

||MT φ||r,∞ ≥ 1 = Cp,q||φ||p,q,

and we are done.

6. The case q > p. The underlying concept is similar to that from the previous section:

we narrow the class of functions ψ over which the supremum in (9) has to be taken.

However, here the calculations are much more involved and, for the sake of convenience,

we have decided to split the optimization procedure into several intermediate steps.

Step 1. Let λ > 1, ψ ∈ K(F ) be given and put t = t(ψ), s0 = s0(ψ). Introduce a

nonincreasing, right-continuous ϕ : (0, 1] → R with the distribution given by

|ϕ ≥ s| =















1 if s ≤ s1,

max{βs−p(q−1)/(q−p), t} if s1 < s ≤ s0,

min{αs−p(q−1)/(q−p), t} if s > s0,

(19)

where α, β and s1 are uniquely determined by the equations
∫ t

0

ϕ = λt,

∫ 1

t

ϕ = 1 − λt and lim
s→s1

|ϕ ≥ s| = 1. (20)

See Figure 1 below which illustrates four possible types of the graph of ϕ.

Fig. 1. Four possible types of graphs of the function ϕ. For example, the first picture corresponds
to the case in which βs−p(q−1)/(q−p) ≥ t for all s ∈ [s1, s0] and αs−p(q−1)/(q−p) ≤ t for all s > s0.

Here is the analogue of Lemma 5.1.
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Lemma 6.1. We have t(ψ) ≤ t(ϕ) and ϕ ∈ K(||ψ||p,q).

Proof. The inequality follows from the first equation in (20). To prove the inclusion, we

proceed as in the proof of Lemma 5.1 and write down a system of appropriate inequalities.

If s ≤ s1, then

|ψ ≥ s| ≤
p

q
β1−q/p|ψ ≥ s|q/psq−1 + 1 −

p

q
β1−q/psq−1. (21)

Indeed, both sides are equal when |ψ ≥ s| = 1, and the function t 7→ t− p
qβ

1−q/ptq/psq−1

is nondecreasing on [0, 1] for s ≤ s1 (here we use the equality β = s
p(q−1)/(q−p)
1 , which is

due to the last condition in (20)). Next, for s ∈ [s1, s0] such that βs−p(q−1)/(q−p) ≥ t we

have

|ψ ≥ s| ≤
p

q
β1−q/p|ψ ≥ s|q/psq−1 +

(

1 −
p

q

)

βs−p(q−1)/(q−p), (22)

which follows directly from Young’s inequality. For remaining points s from the interval

[s1, s0],

|ψ ≥ s| ≤
p

q
β1−q/p|ψ ≥ s|q/psq−1 + t−

p

q
β1−q/ptq/psq−1, (23)

which can be proved by a reasoning similar to that above. It is easy to check that if we

replace ψ by ϕ, (21)-(23) become equalities. Since
∫ 1

t ψ =
∫ 1

t ϕ, we have
∫ s0
0 |ψ ≥ s|ds =

∫ s0
0 |ϕ ≥ s|ds and hence we obtain

∫ s0

0

|ψ ≥ s|q/psq−1ds ≥

∫ s0

0

|ϕ ≥ s|q/psq−1ds. (24)

The inequality
∫ ∞

s0

|ψ ≥ s|q/psq−1ds ≥

∫ ∞

s0

|ϕ ≥ s|q/psq−1ds (25)

is proved analogously: for s > s0 with αs−p(q−1)/(q−p) ≤ t, we have

|ψ ≥ s| ≤
p

q
α1−q/p|ψ ≥ s|q/psq−1 + t−

p

q
α1−q/ptq/psq−1,

while for remaining s > s0,

|ψ ≥ s| ≤
p

q
α1−q/p|ψ ≥ s|q/psq−1 +

(

1 −
p

q

)

αs−p(q−1)/(q−p).

Again, both estimates become equalities when ψ = ϕ, and hence (25) follows. Adding it

to (24) yields ||ψ||p,q ≥ ||ϕ||p,q and completes the proof of the lemma.

Thus, in the calculation of the supremum in (9), we may restrict ourselves to the

functions ϕ of the form (19): that is,

Bp,q(λ, F ) = sup{t(ϕ) : ϕ as in (19) with ||ϕ||p,q ≤ F}.

Step 2. In fact, we may exclude the last two possibilities from Figure 1. We shall

present the detailed explanation in the case when the graph of ϕ is as the third one on



WEAK TYPE INEQUALITIES 13

Figure 1; the fourth type of graph is dealt with similarly. So, suppose that

|ϕ ≥ s| =























1 if s ≤ s1,

βs−p(q−1)/(q−p) if s1 ≤ s ≤ s0,

t if s0 < s ≤ s2,

αs−p(q−1)/(q−p) if s ≥ s2,

for appropriate α, β, s1 and s2. Introduce another nonincreasing and right-continuous

function ϕ, which has the distribution

|ϕ ≥ s| =















1 if s ≤ s1,

max{βs−p(q−1)/(q−p), t} if s1 ≤ s ≤ s2,

αs−p(q−1)/(q−p) if s ≥ s2,

where β and s1 are such that
∫ t

0

ϕ = λt, and

∫ 1

t

ϕ = 1 − λt.

Then the graph of ϕ is as on the first or the second picture on Figure 1. Furthermore, ϕ

and ϕ coincide on [0, t], so t(ϕ) and t(ϕ) are equal, and
∫ ∞

s2

|ϕ ≥ s|q/psq−1ds =

∫ ∞

s2

|ϕ ≥ s|q/psq−1ds.

Finally, we have
∫ s2

0

|ϕ ≥ s|q/psq−1ds ≥

∫ s2

0

|ϕ ≥ s|q/psq−1ds, (26)

so ||ϕ||p,q ≥ ||ϕ||p,q. To see this, repeat (21), (22) and (23), with s0, s1 and β replaced

by s2, s1 and β, respectively. Then the estimates hold true for ψ := ϕ, while for ψ := ϕ

we obtain three equalities. This yields (26).

Step 3. Let us study the first possibility illustrated on Figure 1. That is, let ϕ be a

nonincreasing and right-continuous function on (0, 1], with the distribution

|ϕ ≥ s| =















1 if 0 ≤ s ≤ s1,

βs−(q−1)p/(q−p) if s1 ≤ s ≤ s0,

αs−(q−1)p/(q−p) if s > s0,

(27)

such that
∫ 1

0
ϕ = 1 and t(ϕ) ∈

[

|ϕ > s0|, |ϕ ≥ s0|
]

. We shall prove that among the class

of such functions, the function ϕ determined by

|ϕ ≥ s| =

{

1 if 0 ≤ s ≤ s1,

(s/s1)
−(q−1)p/(q−p) if s > s1,

has the smallest Lorentz norm and the largest parameter t.

Lemma 6.2. We have t(ϕ) ≤ t(ϕ) and ϕ ∈ K(||ϕ||p,q).

Proof. First, note that
∫ 1

0 ϕ = 1 implies s1 = q(p−1)
p(q−1) and hence

||ϕ||p,q = C−1
p,q and t(ϕ) = λ−p(q−1)/(q−p).
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Now, turn to the analysis of ϕ. Let t0 = |ϕ > s0|, t = t(ϕ) and note that

α = t0s
p(q−1)/(q−p)
0 and β = s

p(q−1)/(q−p)
1 . (28)

By the definition of t(ϕ),

λt =

∫ t

0

ϕ = s0 + α

∫ ∞

s0

s−p(q−1)/(q−p)ds = s0t+
q − p

q(p− 1)
s0t0, (29)

where in the latter passage we have exploited (28). Since
∫ 1

0 ϕ = 1, we obtain

1 − λt =

∫ 1

t

ϕ = s1 + β

∫ s0

s1

s−p(q−1)/(q−p)ds− s0t,

which, by virtue of (28), can be transformed into the identity

t0 =
q(p− 1)

q − p

1

s0
−
p(q − 1)

q − p
r + rp(q−1)/(q−p), (30)

where r = s1/s0 ∈ [0, 1]. The inequality t(ϕ) ≤ t(ϕ) is equivalent to

q(p− 1)

q − p

1

s0
−
p(q − 1)

q − p
r + rp(q−1)/(q−p) ≤ λ−p(q−1)/(q−p). (31)

If we fix s0, the left-hand side is a nonincreasing function of r. Furthermore, we have

α ≤ β, so

1 =

∫ ∞

0

|ϕ ≥ s|ds ≤ s1 +

∫ ∞

s1

βs−p(q−1)/(q−p)ds,

which is equivalent to

s1 ≥
q(p− 1)

p(q − 1)
(32)

and implies that r is not smaller than q(p− 1)/(p(q− 1)s0). Therefore, the left-hand side

of (31) is not larger than [q(p− 1)/(p(q − 1)s0)]
p(q−1)/(q−p) and thus it suffices to show

that

λ ≤
p(q − 1)s0
q(p− 1)

.

This follows immediately from (29), combined with the estimate t0 ≤ t. Thus we have

shown that t(ϕ) ≤ t(ϕ) and now we turn to the estimate ||ϕ||p,q ≥ ||ϕ||p,q. Since

||ϕ||qp,q =
p(q − p)

q(p− 1)
sq0

[

t
q/p
0 − rq(q−1)/(q−p) +

q − 1

q − p
rq

]

, (33)

we must prove that

p(q − p)

q(p− 1)
sq0

[

t
q/p
0 − rq(q−1)/(q−p) +

q − 1

q − p
rq

]

≥

(

q(p− 1)

p(q − 1)

)q−1

.

Dividing throughout by rq and calculating a little bit, we arrive at the following equivalent

form
t
q/p
0

rq
− rq(p−1)/(q−p) ≥

q − 1

q − p

[(

q(p− 1)

p(q − 1)

)q

s−q1 − 1

]

. (34)

Fix s1. The left-hand side can be rewritten in the form

F (R) = R1−q/p

(

q(p− 1)

(q − p)s1
−
p(q − 1)

q − p
+R

)q/p

−R,
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where R = rq(p−1)/(q−p). We have that

F ′(R) =
q

p
(t0/R)q/p−1 −

q − p

p
(t0/R)q/p − 1,

which is nonpositive, by Young’s inequality. Thus it suffices to prove (34) for the largest

possible r, i.e. r = 1. For this value of r, the inequality becomes

(

q(p− 1)

q − p

)q/p

(s−1
1 − 1)q/p − 1 ≥

q − 1

q − p

[(

q(p− 1)

p(q − 1)

)q

s−q1 − 1

]

,

or

G(x) :=

(

1 −
p(q − 1)

q − p
x

)q/p

− 1 −
q − 1

q − p
[(1 − x)q − 1] ≥ 0, (35)

with x = (p(q− 1)s1 − q(p− 1))/(p(q− 1)s1); note that x ≥ 0 by (32). The estimate (35)

is straightforward: we have G(0) = 0 and

G′(x) =
q(q − 1)

q − p

[

(1 − x)q−1 −

(

1 −
p(q − 1)

q − p
x

)q/p−1
]

≥ 0

for x ∈ [0, q−p
p(q−1) ]. Indeed, the latter estimate is equivalent to

(1 − x)p(q−1)/(q−p) ≥ 1 −
p(q − 1)

q − p
x,

which holds true by the mean-value property. This completes the proof of the lemma.

Step 4. Now we consider the functions with a graph appearing as the second one

on Figure 1. So, fix λ > 1 and suppose that ϕ is a nonincreasing and right-continuous

function on (0, 1], with the distribution

|ϕ ≥ s| =























1 if 0 ≤ s ≤ s1,

βs−p(q−1)/(q−p) if s1 ≤ s ≤ s3,

t if s3 ≤ s ≤ s2,

αs−p(q−1)/(q−p) if s ≥ s2,

(36)

satisfying
∫ t

0

ϕ = λt and

∫ 1

t

ϕ = 1 − λt

(note that the function ϕ studied in the previous step is also of that form, with s2 = s3
and α = β). A little computation yields

p(q − 1)

q(p− 1)
s2 = λ, α = ts

p(q−1)/(q−p)
2 , β = s

p(q−1)/(q−p)
1 = ts

p(q−1)/(q−p)
3 . (37)

Furthermore, the condition
∫ 1

0 ϕ = 1 is equivalent to

q(p− 1)

p(q − 1)
= s1 + (s2 − s3)t. (38)
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Now we express ||ϕ||p,q as a function of t and optimize. We derive that

||ϕ||qp,q =
p(q − 1)

q(p− 1)
sq2

[

(

s1
s2

)q

−
p− 1

q − 1
tq/p

(

s3
s2

)q

+ tq/p

+
q − p

1 − q

(

s1
s2

)q(q−1)/(q−p) (

s3
s2

)q(1−p)/(q−p)
]

.

(39)

Let r = s1/s2 < 1. By the last inequality in (37) we get that

s3
s2

= t(p−q)/(p(q−1))r

and plugging this into (38) and (39) yields

q(p− 1)

p(q − 1)

1

s2
= r + t− rtq(p−1)/(p(q−1)),

or

r = r(t) :=

q(p−1)
p(q−1)

1
s2

− t

1 − tq(p−1)/(p(q−1))
=

λ−1 − t

1 − tq(p−1)/(p(q−1))
, (40)

and, using the first identity from (37), we obtain

||ϕ||qp,q = Dp,q,λ(t) =

[

q(p− 1)

p(q − 1)

]q−1
[

(1 − λt)
q

(

1 − tq(p−1)/(p(q−1))
)q−1 + tq/pλq

]

(41)

(the function Dp,q,λ has already appeared in the statement of Theorem 3.2 above). Since

α ≥ β, we have |ϕ ≥ s| ≤ min{αs−p(q−1)/(q−p), 1} and consequently,

1 ≤

∫ ∞

0

min{αs−p(q−1)/(q−p), 1}ds,

which implies

α ≥

(

q(p− 1)

p(q − 1)

)p(q−1)/(q−p)

and thus, by the first and the second identity in (37),

t ≥

(

q(p− 1)

p(q − 1)

1

s2

)p(q−1)/(q−p)

= λ−p(q−1)/(q−p). (42)

We derive that

r′(t) =
(

1 − tq(p−1)/(p(q−1))
)2

×

×

[

−1 +
q − p

p(q − 1)
tq(p−1)/(p(q−1)) +

(

q(p− 1)

p(q − 1)

)2
1

s2
t(p−q)/(p(q−1))

]

and the expression in the square bracket is negative: the second term is smaller than

(q − p)/(p(q − 1)) and the third, in view of (42), does not exceed q(p − 1)/(p(q − 1)).

Thus the function r is decreasing. Next, a little calculation gives

D′
p,q,λ(t) =

[

q(p− 1)

p(q − 1)

]q−1

λq
[

p− 1

p
Rq(t) +

1

p
−Rq−1(t)

]

,
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where

R(t) =
λ−1t(p−q)/(p(q−1)) − tq(p−1)/(p(q−1))

1 − tq(p−1)/(p(q−1))
.

By (42), the first summand in the numerator is not larger than 1 and hence R(t) ≤ 1.

This implies D′
p,q,λ ≥ 0: indeed, since q > p, we get

p− 1

p
Rq(t) +

1

p
≥
q − 1

q
Rq(t) +

1

q
≥ Rq−1(t),

where the latter is due to Young’s inequality. In fact, we easily see that Dp,q,λ is strictly

increasing, since the equality D′
p,q,λ(t) = 0 is possible only for one value of t (for which

both sides of (42) are equal).

Step 5. We are ready to provide the formula for the Bellman function Bp,q. The

previous steps and Theorem 4.1 imply that in the computation of the supremum on the

right-hand side of (9), we may restrict ourselves to the functions studied in Step 4 above.

We have shown that the function Dp,q,λ given by (41) is strictly increasing, furthermore,

we check that

Dp,q,λ

(

λ−p(q−1)/(q−p)
)

= C−q
p,q

and

Dp,q,λ(λ
−1) = C−q

p,qλ
q−q/p.

In consequence, the function Dp,q,λ : [λ−p(q−1)/(q−p), λ−1] → [C−q
p,q , C

−q
p,qλ

q−q/p] is invert-

ible, and the inverse Gp,q,λ is also strictly increasing.

We are ready to complete the proof of Theorem 3.2.

Theorem 6.3. If q > p and C−1
p,q ≤ F < C−1

p,qλ
1−1/p, then

Bp,q(λ, F ) = Gp,q,λ(F
q).

The proof is the same as that of Theorem 5.3 and is omitted. As a corollary, we

establish the following sharp weak-type estimate for the maximal operator.

Theorem 6.4. Assume that q > p and r ∈ [1, p]. Then for any φ : X → [0,∞),

||MT φ||r,∞ ≤ Cp,q||φ||p,q (43)

and the constant is the best possible.

Proof. The argument is exactly the same as that used in the proof of Theorem 5.4.

Since no additional technical difficulties arise, we omit the details, leaving them to the

interested reader.
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