# A sharp weak-type $(\infty, \infty)$ inequality for the Hilbert transform 

Adam Osȩkowski


#### Abstract

The paper is devoted to sharp weak type $(\infty, \infty)$ estimates for $\mathcal{H}^{\mathbb{T}}$ and $\mathcal{H}^{\mathbb{R}}$, the Hilbert transforms on the circle and real line, respectively. Specifically, it is proved that


$$
\left\|\mathcal{H}^{\mathbb{T}} f\right\|_{W(\mathbb{T})} \leq\|f\|_{L^{\infty}(\mathbb{T})}
$$

and

$$
\left\|\mathcal{H}^{\mathbb{R}} f\right\|_{W(\mathbb{R})} \leq\|f\|_{L^{\infty}(\mathbb{R})},
$$

where $W(\mathbb{T})$ and $W(\mathbb{R})$ stand for the weak- $L^{\infty}$ spaces introduced by Bennett, DeVore and Sharpley. In both estimates, the constant 1 on the right is shown to be the best possible.

Mathematics Subject Classification (2010). Primary: 42A50. Secondary: 31B05.
Keywords. Hilbert transform, weak type inequality, best constants.

## 1. Introduction

Our motivation comes from a very basic question about the Hilbert transform $\mathcal{H}^{\mathbb{T}}$ on the unit circle $\mathbb{T} \simeq(-\pi, \pi]$ equipped with a normalized uniform measure $m$. Recall that this operator is given by the singular integral

$$
\mathcal{H}^{\mathbb{T}} f(x)=\text { p.v. } \int_{-\pi}^{\pi} f(t) \cot \frac{x-t}{2} m(\mathrm{~d} t), \quad x \in \mathbb{T},
$$

when $f \in L^{1}(\mathbb{T})$. A classical result of M. Riesz [13] states that for any $1<$ $p<\infty$ there is a finite universal constant $C_{p}$ such that

$$
\begin{equation*}
\left\|\mathcal{H}^{\mathbb{T}} f\right\|_{L^{p}(\mathbb{T})} \leq C_{p}\|f\|_{L^{p}(\mathbb{T})}, \quad f \in L^{p}(\mathbb{T}) \tag{1.1}
\end{equation*}
$$

[^0]For $p=1$ the above estimate does not hold with any $C_{1}<\infty$, but, as Kolmogorov showed in [11], there is an absolute $c_{1}<\infty$ such that

$$
\begin{equation*}
\left\|\mathcal{H}^{\mathbb{T}} f\right\|_{L^{1, \infty}(\mathbb{T})}:=\sup _{\lambda>0}\left[\lambda m\left(\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} f(x)\right| \geq \lambda\right\}\right)\right] \leq c_{1}\|f\|_{L^{1}(\mathbb{T})} \tag{1.2}
\end{equation*}
$$

whenever $f \in L^{1}(\mathbb{T})$. The optimal values of the constants $C_{p}$ and $c_{1}$ were determined in 1970s: Pichorides [12] and Cole (unpublished: see Gamelin [9]) proved that the best constant in (1.1) equals $\cot \frac{\pi}{2 p^{*}}$, where $p^{*}=\max \{p, p /(p-$ $1)\}$, and Davis [6] showed that the optimal choice for the constant $c_{1}$ in (1.2) is

$$
\left(\frac{1}{\pi} \int_{\mathbb{R}} \frac{\left|\frac{2}{\pi} \log \right| t| |}{t^{2}+1} \mathrm{~d} t\right)^{-1}=\frac{1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots}{1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\ldots}=1.347 \ldots
$$

The above results are of fundamental importance to harmonic analysis. Furthermore, the methods developed by Riesz [13] have had a profound influence on the shape of the contemporary mathematics. For numerous extensions and applications of the above statements, consult e.g. the works of Burkholder [3], Calderón and Zygmund [5], Essén [8], Gohberg and Krupnik [10], Stein [14] and Zygmund [15], and many more.

We will continue the research in this direction. We will be interested in a "dual" version of Kolmogorov's result, i.e., in a weak- $L^{\infty}$ estimate for $\mathcal{H}^{\mathbb{T}}$. To explain what the weak- $L^{\infty}$ space is, we need more notation. For a given measurable function $f: \mathbb{T} \rightarrow \mathbb{R}$, we define $f^{*}$, the decreasing rearrangement of $f$, by

$$
f^{*}(t)=\inf \{\lambda \geq 0: m(\{x \in \mathbb{T}:|f(x)|>\lambda\}) \leq t\}
$$

Then $f^{* *}:(0,1] \rightarrow[0, \infty)$, the maximal function of $f^{*}$, is given by the formula

$$
f^{* *}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(s) \mathrm{d} s, \quad t \in(0,1]
$$

One easily verifies that $f^{* *}$ can alternatively be defined by

$$
f^{* *}(t)=\frac{1}{t} \sup \left\{\int_{E}|f| \mathrm{d} m: E \subseteq \mathbb{T}, m(E)=t\right\}
$$

We are ready to introduce the weak- $L^{\infty}$ space. Following Bennett, DeVore and Sharpley [1], we let

$$
\|f\|_{W(\mathbb{T})}=\sup _{t \geq 0}\left(f^{* *}(t)-f^{*}(t)\right)
$$

and define $W(\mathbb{T})=\left\{f: \mathbb{T} \rightarrow \mathbb{R}:\|f\|_{W(\mathbb{T})}<\infty\right\}$. Some words explaining the meaning of this space are in order. For each $1 \leq p<\infty$, the usual weak space $L^{p, \infty}$ properly contains $L^{p}$, but for $p=\infty$, the two spaces coincide. Thus, there is no Marcinkiewicz interpolation theorem between $L^{1}$ and $L^{\infty}$ for operators which are unbounded on $L^{\infty}$. The reason for introducing the space $W$ was to fill this gap. It can be verified that this space contains $L^{\infty}$, can be understood as an appropriate limit of $L^{p, \infty}$ as $p \rightarrow \infty$, and enjoys the required interpolation property: if $T$ is bounded as an operator from $L^{1}$ to $L^{1, \infty}$ and from $L^{\infty}$ to $W$, then it has an extension which is bounded on
$L^{p}$ spaces, $1<p<\infty$. See [1] for details. There is a further evidence, again rooted in the interpolation theory, that the space $W$ can serve as a substitute for weak- $L^{\infty}$. Namely, the Peetre $K$-functional for the pair $\left(L^{1}, L^{\infty}\right)$ (cf. [4, p.184]) is explicitly given by

$$
K\left(f, t ; L^{1}, L^{\infty}\right)=\int_{0}^{t} f^{*}(s) \mathrm{d} s=t f^{* *}(t), \quad t \in(0,1]
$$

Thus, the weak- $L^{1}$ norm can be expressed in terms of the $K$-functional by

$$
\begin{equation*}
\|f\|_{L^{1, \infty}(\mathbb{T})}=\sup _{t \in(0,1]} t f^{*}(t)=\sup _{t \in(0,1]} t \frac{d}{d t} K\left(f, t ; L^{1}, L^{\infty}\right) \tag{1.3}
\end{equation*}
$$

Now if we reverse the roles of $L^{1}$ and $L^{\infty}$, and make use of the identity $K\left(f, t ; L^{\infty}, L^{1}\right)=t K\left(f, t^{-1} ; L^{1}, L^{\infty}\right)$, we see that the expression on the right of (1.3) is precisely $\sup _{t \in(0,1]}\left[f^{* *}(t)-f^{*}(t)\right]$. Hence this number can be understood as a substitute for the norm in the weak- $L^{\infty}$. For more on this interplay, the connections between $W$ and $B M O$, as well as other interesting properties of $W$, we refer the reader to [1] and the monograph [2] by Bennett and Sharpley.

One of our main results is the identification of the norm of $\mathcal{H}^{\mathbb{T}}$ as an operator acting from $L^{\infty}(\mathbb{T})$ to $W(\mathbb{T})$. Here is the precise statement.

Theorem 1.1. For any $f \in L^{\infty}(\mathbb{T})$ we have

$$
\begin{equation*}
\left\|\mathcal{H}^{\mathbb{T}} f\right\|_{W(\mathbb{T})} \leq\|f\|_{L^{\infty}(\mathbb{T})} \tag{1.4}
\end{equation*}
$$

The inequality is sharp: for any $c<1$ there is a function $f \in L^{\infty}(\mathbb{T})$ such that $\left\|\mathcal{H}^{\mathbb{T}} f\right\|_{W(\mathbb{T})}>c\|f\|_{L^{\infty}(\mathbb{T})}$.

We will also study an analogue of the above result in the nonperiodic case. Recall that the Hilbert transform $\mathcal{H}^{\mathbb{R}}$ on the real line is defined by the principal value integral

$$
\mathcal{H}^{\mathbb{R}} f(x)=\frac{1}{\pi} \text { p.v. } \int_{\mathbb{R}} \frac{f(t)}{x-t} \mathrm{~d} t, \quad x \in \mathbb{R}
$$

when $f \in L^{1}(\mathbb{R})$. The above strong and weak-type inequalities (1.1), (1.2) can be extended to analogous statements for $\mathcal{H}^{\mathbb{R}}$ and the optimal constants remain unchanged (see e.g. [13], [15]). It is natural to ask about a sharp weak-type $(\infty, \infty)$ inequality in this setting. To study this problem, define the weak space $W(\mathbb{R})$ in the same manner as above:

$$
W(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R}:\|f\|_{W(\mathbb{R})}:=\sup _{t>0}\left[f^{* *}(t)-f^{*}(t)\right]<\infty\right\}
$$

where, as previously, $f^{*}$ denotes the decreasing rearrangement of $f$ and $f^{* *}$ stands for the maximal function of $f^{*}$. Here is the nonperiodic version of Theorem 1.1. It is well known that some technical problems arise when one defines the action of the Hilbert transform on $L^{\infty}(\mathbb{R})$; to avoid these, we impose a slightly stronger integrability on functions.

Theorem 1.2. If $f$ belongs to $L^{\infty}(\mathbb{R}) \cap L^{p}(\mathbb{R})$ for some $1 \leq p<\infty$, then we have the sharp bound

$$
\begin{equation*}
\left\|\mathcal{H}^{\mathbb{R}} f\right\|_{W(\mathbb{R})} \leq\|f\|_{L^{\infty}(\mathbb{R})} \tag{1.5}
\end{equation*}
$$

The paper is organized as follows. In the next section we establish Theorem 1.1. In the proof of (1.4) we make use of Bellman function method: the estimate is deduced from the existence of a certain special superharmonic function. In the final part of the paper we present the proof of Theorem 1.2, which follows from Theorem 1.1 by certain transference-type arguments.

## 2. Periodic case

For any $c \geq 0$, define the function $V^{(c)}:[-1,1] \times[0, \infty) \rightarrow \mathbb{R}$ by $V^{(c)}(x, y)=$ $(y-c) \chi_{\{y>0\}}$ (here and below, $\chi_{A}$ denotes the indicator function of a set $A$ ). Furthermore, let $U^{(c)}:(-1,1) \times(0, \infty) \rightarrow \mathbb{R}$ be given by the formula

$$
\begin{aligned}
U^{(c)}(x, y)=y-c & +\frac{2 c}{\pi} \arctan \left(\frac{e^{-\pi y / 2}}{\cos (\pi x / 2)}-\tan \frac{\pi x}{2}\right) \\
& +\frac{2 c}{\pi} \arctan \left(\frac{e^{-\pi y / 2}}{\cos (\pi x / 2)}+\tan \frac{\pi x}{2}\right)
\end{aligned}
$$

It is easy to check that $U^{(c)}$ is a harmonic function. Actually, it can be regarded as a harmonic lift of $V^{(c)}$, in the sense explained in the first part of the lemma below.

Lemma 2.1. The function $U^{(c)}$ has the following properties.
(i) If $Y>0$, then $\lim _{(x, y) \rightarrow( \pm 1, Y)} U^{(c)}(x, y)=V^{(c)}( \pm 1, Y)$; if $X \in$ $(-1,1)$, then $\lim _{(x, y) \rightarrow(X, 0)} U^{(c)}(x, y)=V^{(c)}(X, 0)$.
(ii) For any $x \in(-1,1)$, we have

$$
\lim _{y \downarrow 0} U^{(c)}(x, y) / y=1-c\left(\cos \frac{\pi x}{2}\right)^{-1}
$$

(iii) For any $(x, y) \in(-1,1) \times(0, \infty)$, we have $U^{(c)}(x, y) \geq V^{(c)}(x, y)$.

Proof. The properties (i) and (ii) are straightforward and left to the reader. The majorization (iii) is also easy: we must show that

$$
\arctan \left(\frac{e^{-\pi y / 2}}{\cos (\pi x / 2)}-\tan \frac{\pi x}{2}\right)+\arctan \left(\frac{e^{-\pi y / 2}}{\cos (\pi x / 2)}+\tan \frac{\pi x}{2}\right) \geq 0
$$

This follows from the estimate

$$
\left(\frac{e^{-\pi y / 2}}{\cos (\pi x / 2)}-\tan \frac{\pi x}{2}\right)+\left(\frac{e^{-\pi y / 2}}{\cos (\pi x / 2)}+\tan \frac{\pi x}{2}\right) \geq 0
$$

and the fact that the arctangent function is odd and increasing on the real line.

It will be convenient for us to extend $U^{(c)}$ to the halfstrip $[-1,1] \times[0, \infty)$ by the requirement that $U^{(c)}$ and $V^{(c)}$ match at the boundary of this set. Then $U^{(c)}$ becomes a harmonic majorant of $V^{(c)}$ on the whole $[-1,1] \times[0, \infty)$, and it is continuous except for the points $( \pm 1,0)$. In addition, part (ii) of the above lemma implies that for $c \geq 1$, the one-sided partial derivative $U_{y+}^{(c)}$ satisfies $U_{y+}^{(c)}(x, 0) \leq 0$ for all $x \in(-1,1)$.

The above function $U^{(c)}$ is a "building block" for a larger class of superharmonic functions. For a fixed parameter $\lambda \geq 0$, introduce the functions $\mathcal{U}_{\lambda}^{(c)}, \mathcal{V}_{\lambda}^{(c)}$ on the strip $[-1,1] \times \mathbb{R}$ by the formulas

$$
\mathcal{U}_{\lambda}^{(c)}(x, y)=U^{(c)}\left(x,(|y|-\lambda)_{+}\right)= \begin{cases}U^{(c)}(x, y-\lambda) & \text { if } y \geq \lambda \\ 0 & \text { if }|y|<\lambda \\ U^{(c)}(x,-\lambda-y) & \text { if } y<-\lambda\end{cases}
$$

and $\mathcal{V}_{\lambda}^{(c)}(x, y)=V^{(c)}\left(x,(|y|-\lambda)_{+}\right)=(|y|-\lambda)_{+}-c \chi_{\{|y|>\lambda\}}$.
Lemma 2.2. For each $\lambda \geq 0$ and $c \geq 1$, the function $\mathcal{U}_{\lambda}^{(c)}$ is a superharmonic majorant of $\mathcal{V}_{\lambda}^{(c)}$.

Proof. Assume first that $c>1$. The inequality $\mathcal{U}_{\lambda}^{(c)} \geq \mathcal{V}_{\lambda}^{(c)}$ follows immediately from the majorization $U^{(c)} \geq V^{(c)}$ established above; hence all we need is the superharmonicity of $\mathcal{U}_{\lambda}^{(c)}$. Observe that this function is harmonic on each of the domains $(-1,1) \times(-\infty,-\lambda),(-1,1) \times(-\lambda, \lambda)$ and $(-1,1) \times(\lambda, \infty)$. Consequently, it is enough to check that $\mathcal{U}_{\lambda}^{(c)}$ satisfies the mean value property at each point of the form $(x, \pm \lambda)$. But this follows at once from the inequality $U_{y+}^{(c)}(x, 0)<0$ (here the strictness is due to $c>1$ ). To get the claim for $c=1$, note that $U^{(1)}$ is a pointwise limit of $U^{(c)}$ as $c \downarrow 1$.

In the next lemma we establish an intermediate result which is of its own interest.

Lemma 2.3. For any $f: \mathbb{T} \rightarrow[-1,1]$ and any $\lambda \geq 0$, we have

$$
\begin{equation*}
\int_{\mathbb{T}}\left(\left|\mathcal{H}^{\mathbb{T}} f\right|-\lambda\right)_{+} d m \leq m\left(\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} f(x)\right|>\lambda\right\}\right) . \tag{2.1}
\end{equation*}
$$

Proof. Let $u, v$ denote the harmonic extensions of $f$ and $\mathcal{H}^{\mathbb{T}} f$ to the unit disc, obtained via the Poisson kernel. Then $u, v$ satisfy Cauchy-Riemann equations and $v(0,0)=0$ (cf. Riesz [13]). Consequently, the function $\mathcal{U}_{\lambda}^{(1)}(u, v)$ is superharmonic (being the composition of a superharmonic $\mathcal{U}^{(1)}$ and the analytic $u+i v)$ and it majorizes $\mathcal{V}_{\lambda}^{(1)}(u, v)$. Therefore, by the mean value property,

$$
\begin{aligned}
\int_{\mathbb{T}} \mathcal{V}_{\lambda}^{(1)}(u, v) \mathrm{d} m & \leq \int_{\mathbb{T}} \mathcal{U}_{\lambda}^{(1)}(u, v) \mathrm{d} m \\
& \leq \mathcal{U}_{\lambda}^{(1)}(u(0,0), v(0,0))=\mathcal{U}_{\lambda}^{(1)}(u(0,0), 0)=0 .
\end{aligned}
$$

This is precisely (2.1).

We turn our attention to Theorem 1.1.
Proof of (1.4). By homogeneity, we may and do assume that $\|f\|_{L^{\infty}(\mathbb{T})}=1$. By the definition of $\left(\mathcal{H}^{\mathbb{T}} f\right)^{* *}$, we may write

$$
\begin{aligned}
& \left(\mathcal{H}^{\mathbb{T}} f\right)^{* *}(t)-\left(\mathcal{H}^{\mathbb{T}} f\right)^{*}(t) \\
& \quad=\sup \left\{\frac{1}{m(E)} \int_{E}\left[\left|\mathcal{H}^{\mathbb{T}} f(x)\right|-\left(\mathcal{H}^{\mathbb{T}} f\right)^{*}(t)\right] m(\mathrm{~d} x): E \subseteq \mathbb{T}, m(E)=t\right\}
\end{aligned}
$$

It is clear that when computing this supremum, we may restrict ourselves to those $E$, which satisfy

$$
\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} f(x)\right|>\lambda\right\} \subseteq E \subseteq\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} f(x)\right| \geq \lambda\right\}
$$

for some $\lambda \geq 0$. Actually, since $m(E)=t$, this $\lambda$ must be equal to $\left(\mathcal{H}^{\mathbb{T}} f\right)^{*}(t)$. For such $E$, it is clear that

$$
\begin{aligned}
& \frac{1}{m(E)} \int_{E}\left[\left|\mathcal{H}^{\mathbb{T}} f(x)\right|-\left(\mathcal{H}^{\mathbb{T}} f\right)^{*}(t)\right] m(\mathrm{~d} x) \\
& \leq \frac{1}{m\left(\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} f(x)\right|>\lambda\right\}\right)} \int_{\left\{\left|\mathcal{H}^{\mathbb{T}} f\right|>\lambda\right\}}\left[\left|\mathcal{H}^{\mathbb{T}} f\right|-\lambda\right] \mathrm{d} m \leq 1
\end{aligned}
$$

where the latter bound is due to (2.1). This establishes (1.4).
Sharpness. Fix an arbitrary $\lambda \in(0, c / 2)$. Consider the region $\mathcal{C}=[-1,1] \times$ $[-\lambda, \infty)$ and let $F$ be the conformal mapping which sends the unit disc $\mathbb{D}$ onto $\mathcal{C}$ and $(0,0) \in \mathbb{D}$ to $(0,0) \in \mathcal{C}$. Then $F$ transports $m$, the harmonic measure on $\mathbb{T}$ with respect to $(0,0)$, to $\mu$, the harmonic measure on $\partial \mathcal{C}$ with respect to $(0,0)$. Finally, put $u=\operatorname{Re} F$ and $v=\operatorname{Im} F$; clearly, the restrictions $f=\left.u\right|_{\mathbb{T}}$ and $g=\left.v\right|_{\mathbb{T}}$ satisfy the relation $g=\mathcal{H}^{\mathbb{T}} f$. The function $(x, y) \mapsto U^{(c)}(x, y+\lambda)$ is harmonic in the interior of $\mathcal{C}$, so by the mean-value property,

$$
\begin{aligned}
U^{(c)}(0, \lambda) & =\int_{\partial \mathcal{C}} U^{(c)}(x, y+\lambda) \mathrm{d} \mu(x, y) \\
& =\int_{\mathbb{T}} U^{(c)}(u, v+\lambda) \mathrm{d} m \\
& =\int_{\mathbb{T}}(v+\lambda-c) \chi_{\{v+\lambda>0\}} \mathrm{d} m \\
& \leq \int_{\mathbb{T}}(v+\lambda-c) \chi_{\{v-\lambda>0\}} \mathrm{d} m \\
& =\int_{\mathbb{T}} \mathcal{H}^{\mathbb{T}} f \chi_{\left\{\mathcal{H}^{\mathbb{T}} f>\lambda\right\}} \mathrm{d} m-(c-\lambda) m\left(\left\{x \in \mathbb{T}: \mathcal{H}^{\mathbb{T}} f(x)>\lambda\right\}\right)
\end{aligned}
$$

However, if $\lambda$ is sufficiently close to 0 , then $U^{(c)}(0, \lambda)>0$ : this follows from Lemma 2.1 (ii). Hence, for such $\lambda$,

$$
\frac{1}{m\left(\left\{x \in \mathbb{T}: \mathcal{H}^{\mathbb{T}} f(x)>\lambda\right\}\right)} \int_{\left\{\mathcal{H}^{\mathbb{T}} f>\lambda\right\}}\left|\mathcal{H}^{\mathbb{T}} f(x)\right| m(\mathrm{~d} x) \geq c-\lambda
$$

Now take $t=m\left(\left\{x \in \mathbb{T}: \mathcal{H}^{\mathbb{T}} f(x)>\lambda\right\}\right)$. The above inequality implies that

$$
\begin{equation*}
\left(\mathcal{H}^{\mathbb{T}} f\right)^{* *}(t) \geq c-\lambda \tag{2.2}
\end{equation*}
$$

In addition, since $\mathcal{H}^{\mathbb{T}} f \geq-\lambda$ on $\mathbb{T}$, we actually have $t=m(\{x \in \mathbb{T}$ : $\left.\left.\left|\mathcal{H}^{\mathbb{T}} f(x)\right|>\lambda\right\}\right)$. Hence, from the very definition of the decreasing rearrangement, we infer that $\left(\mathcal{H}^{\mathbb{T}} f\right)^{*}(t) \leq \lambda$. Combining this with (2.2), we obtain

$$
\left\|\mathcal{H}^{\mathbb{T}} f\right\|_{W(\mathbb{T})} \geq c-2 \lambda
$$

It remains to observe that the right-hand side can be made arbitrarily close to 1 , by choosing $c$ appropriately close to 1 and then picking $\lambda$ sufficiently small. This proves that the constant 1 cannot be replaced in (1.4) by a smaller number.

## 3. The non-periodic case

Proof of (1.5). To deduce the weak-type estimate for the Hilbert transform on the real line, we use a standard argument known as "blowing up the circle", which is due to Zygmund ([15], Chapter XVI, Theorem 3.8). Let $f \in L^{p}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ be a fixed function. For a given positive integer $n$ and $x \in \mathbb{R}$, put

$$
g_{n}(x)=\frac{1}{2 \pi n} \text { p.v. } \int_{-\pi n}^{\pi n} f(t) \cot \frac{x-t}{2 n} \mathrm{~d} t .
$$

As shown in [15], we have $g_{n} \rightarrow \mathcal{H}^{\mathbb{R}} f$ almost everywhere as $n \rightarrow \infty$. On the other hand, the function

$$
x \mapsto g_{n}(n x)=\text { p.v. } \int_{-\pi}^{\pi} f(n t) \cot \frac{x-t}{2} m(\mathrm{~d} t)
$$

is precisely the periodic Hilbert transform of the function $f_{n}: x \mapsto f(n x)$, $|x| \leq \pi$. Consequently, by (2.1), we may write

$$
\begin{aligned}
\left|\left\{x \in(-\pi n, \pi n]:\left|g_{n}(x)\right|>\lambda\right\}\right| & =2 \pi n m\left(\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} f_{n}(x)\right|>\lambda\right\}\right) \\
& \geq 2 \pi n \int_{\mathbb{T}}\left(\left|\mathcal{H}^{\mathbb{T}} f_{n}(x)\right|-\lambda\right)_{+} m(\mathrm{~d} x) \\
& =\int_{-\pi n}^{\pi n}\left(\left|g_{n}(x)\right|-\lambda\right)_{+} \mathrm{d} x .
\end{aligned}
$$

Now we let $n \rightarrow \infty$; using some routine limiting arguments, we get

$$
\left|\left\{x \in \mathbb{R}: \mathcal{H}^{\mathbb{R}} f(x)>\lambda\right\}\right| \geq \int_{\mathbb{R}}\left(\mid \mathcal{H}^{\mathbb{R}} f(x)-\lambda\right)_{+} \mathrm{d} x
$$

It remains to repeat the reasoning from the periodic case to obtain, for any $t>0$,

$$
\begin{aligned}
& \left(\mathcal{H}^{\mathbb{R}} f\right)^{* *}(t)-\left(\mathcal{H}^{\mathbb{R}} f\right)^{*}(t) \\
& \quad \leq \frac{1}{\left|\left\{x \in \mathbb{R}:\left|\mathcal{H}^{\mathbb{R}} f(x)\right|>\lambda\right\}\right|} \int_{\left\{\left|\mathcal{H}^{\mathbb{R}} f\right|>\lambda\right\}}\left[\left|\mathcal{H}^{\mathbb{R}} f(x)\right|-\lambda\right] \mathrm{d} x \leq 1 .
\end{aligned}
$$

Sharpness. As we have shown in the previous section, for any $c \in(0,1)$ and $\lambda$ sufficiently close to 0 , there is a function $\varphi: \mathbb{T} \rightarrow[-1,1]$ such that $\int_{\mathbb{T}} \varphi \mathrm{d} m=0$ and

$$
\begin{equation*}
\frac{1}{\left|\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} \varphi(x)\right|>\lambda\right\}\right|} \int_{\left\{\left|\mathcal{H}^{\mathbb{T}} \varphi\right|>\lambda\right\}}\left|\mathcal{H}^{\mathbb{T}} \varphi(x)\right| \mathrm{d} x \geq c-\lambda . \tag{3.1}
\end{equation*}
$$

We will expand this function onto the real line. We will use Davis' argument from [6]. For the sake of clarity, we have divided the reasoning into three parts.

1. A conformal mapping and its properties. Let $H$ denote the closed upper halfplane of $\mathbb{C}$ and consider the conformal mapping $K(z)=-(1-$ $z)^{2} / 4 z$. This function maps the halfdisc $\mathbb{D} \cap H$ onto $H$, and the boundary of $\mathbb{D} \cap H$ onto $\mathbb{R}$. Let $L$ be the inverse of $K$. Then $L$ maps $[0,1]$ onto the halfcircle $\left\{e^{i \theta}: 0 \leq \theta \leq \pi\right\}$, and $\mathbb{R} \backslash[0,1]$ onto $(-1,1)$. Specifically, for $x \in[0,1]$ we have $L(x)=\exp (2 i \arcsin (\sqrt{x}))$, while for $x \notin[0,1]$,

$$
L(x)= \begin{cases}1-2 x-2 \sqrt{x^{2}-x} & \text { if } x<0 \\ 1-2 x+2 \sqrt{x^{2}-x} & \text { if } x>1\end{cases}
$$

We will also need the property

$$
\begin{equation*}
L(z) \rightarrow 0 \quad \text { as } z \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Next, for a positive integer $n$, let $d_{n}$ be the density of $L^{n}([0,1])$ on $\mathbb{T}$ with respect to $m$, i.e. for any $-\pi<\alpha<\beta<\pi$,

$$
\int_{\alpha}^{\beta} d_{n}\left(e^{i \theta}\right) m(\mathrm{~d} \theta)=\left|\left\{r \in[0,1]: L^{n}(r) \in\left\{e^{i \theta}: \alpha<\theta<\beta\right\}\right\}\right|
$$

Then it is easy to prove that

$$
\begin{equation*}
d_{n} \rightarrow 1 \text { uniformly on } \mathbb{T}, \tag{3.3}
\end{equation*}
$$

see Lemma 3 in [6].
2. Expansion of $\varphi$. Let $\Phi$ denote the holomorphic extension of $\varphi+i \mathcal{H}^{\mathbb{T}} \varphi$ to the unit disc. Then $\Phi$ satisfies $\Phi(0)=0$ : indeed, $\operatorname{Re} \Phi(0)=0$ is due to the condition $\int_{\mathbb{T}} \varphi \mathrm{d} m=0$, while $\operatorname{Im} \Phi(0)=0$ follows from the normalization property of the periodic Hilbert transform. Combining this with (3.2), we see that the analytic function $F_{n}=\Phi\left(L^{n}(z)\right)(n=1,2, \ldots)$, given on the halfplane $H$, satisfies $\lim _{z \rightarrow \infty} F_{n}(z)=0$. Put $f_{n}(x)=\operatorname{Re} F_{n}(x)$ for any $x \in \mathbb{R}$. This function is bounded in absolute value by 1 , since so is $\varphi$. Furthermore, $f_{n}$ is integrable when $n \geq 2$. Indeed, for any $x \notin[-1,1]$ we have

$$
\left|f_{n}(x)\right|=\left|\operatorname{Re} \Phi\left(L^{n}(x)\right)\right| \leq \kappa_{1}\left|L^{n}(x)\right| \leq \kappa_{2}|x|^{-n}
$$

for some universal constants $\kappa_{1}, \kappa_{2}$. Thus, we may speak of $\mathcal{H}^{\mathbb{R}} f_{n}$. Furthermore, by the aforementioned property $\lim _{z \rightarrow \infty} F_{n}(z)=0$, we have $\mathcal{H}^{\mathbb{R}} f_{n}=$ $\left.\operatorname{Im} F_{n}\right|_{\mathbb{R}}$.
3. Computations. If $x \notin[0,1]$, then $L(x) \in(-1,1)$ and hence $L^{n}(x) \rightarrow 0$ as $n \rightarrow \infty$. Consequently, we have

$$
\left|\left\{x \notin[0,1]:\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right|>\lambda\right\}\right| \rightarrow 0
$$

and, by Lebesgue's dominated convergence theorem,

$$
\int_{\left\{x \notin[0,1]:\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right|>\lambda\right\}}\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right| \mathrm{d} x \xrightarrow{n \rightarrow \infty} 0 .
$$

Next, observe that by (3.3),

$$
\begin{aligned}
\left|\left\{x \in[0,1]:\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right|>\lambda\right\}\right| & =\left|\left\{x \in[0,1]:\left|\operatorname{Im} \Phi\left(L^{n}(x)\right)\right|>\lambda\right\}\right| \\
& =\left|\left\{x \in[0,1]:\left|\mathcal{H}^{\mathbb{T}} \varphi\left(L^{n}(x)\right)\right|>\lambda\right\}\right| \\
& \xrightarrow{n \rightarrow \infty} m\left(\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} \varphi(x)\right|>\lambda\right\}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\left\{x \in[0,1]:\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right|>\lambda\right\}}\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right| \mathrm{d} x & =\int_{\left\{x \in[0,1]:\left|\mathcal{H}^{\mathbb{T}} \varphi\left(L^{n}(x)\right)\right|>\lambda\right\}}\left|\mathcal{H}^{\mathbb{T}} \varphi\left(L^{n}(x)\right)\right| \mathrm{d} x \\
& \xrightarrow{n \rightarrow \infty} \int_{\mathbb{T}}\left|\mathcal{H}^{\mathbb{T}} \varphi(x)\right| m(\mathrm{~d} x) .
\end{aligned}
$$

Let us put all the above facts together and combine them with (3.1). We get that for an arbitrary $\eta<1$ we have

$$
\frac{1}{\left|\left\{x \in \mathbb{R}:\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right|>\lambda\right\}\right|} \int_{\left\{\left|\mathcal{H}^{\mathbb{R}} f_{n}\right|>\lambda\right\}}\left|\mathcal{H}^{\mathbb{R}} f_{n}(z)\right| \mathrm{d} z \geq \eta(c-\lambda),
$$

provided $n$ is sufficiently large. Now, set $t=\left|\left\{x \in \mathbb{R}:\left|\mathcal{H}^{\mathbb{R}} f(x)\right|>\lambda\right\}\right|$. Arguing as above, we prove that

$$
\left|\left\{x \notin[0,1]:\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right|>2 \lambda\right\}\right| \rightarrow 0
$$

and

$$
\left|\left\{x \in[0,1]:\left|\mathcal{H}^{\mathbb{R}} f_{n}(x)\right|>2 \lambda\right\}\right| \rightarrow m\left(\left\{x \in \mathbb{T}:\left|\mathcal{H}^{\mathbb{T}} \varphi(x)\right|>2 \lambda\right\}\right)<t .
$$

This shows that if $n$ is sufficiently large, then $\left(\mathcal{H}^{\mathbb{R}} f_{n}\right)^{*}(t) \leq 2 \lambda$. Hence, for large $n$,

$$
\left\|\mathcal{H}^{\mathbb{R}} f_{n}\right\|_{W(\mathbb{R})} \geq\left(\mathcal{H}^{\mathbb{R}} f_{n}\right)^{* *}(t)-\left(\mathcal{H}^{\mathbb{R}} f_{n}\right)^{*}(t) \geq \eta(c-\lambda)-2 \lambda .
$$

The latter constant can be made arbitrarily close to 1 , by choosing appropriate values for the parameters $\eta, c$ and $\lambda$. This proves that the constant 1 is indeed the best possible in (1.5).

## Acknowledgments

The research was partially supported by NCN grant DEC-2012/05/B/ST1/ 00412.

## References

[1] Bennett, C., DeVore, R. A., and Sharpley, R.: Weak- $L^{\infty}$ and BMO. Ann. of Math. 113, 601-611 (1981)
[2] Bennett C. and Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988.
[3] Burkholder, D. L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. Conference on Harmonic Analysis in Honor of Antoni Zygmund, Chicago, 1981, Wadsworth, Belmont, CA, 270-286 (1983)
[4] Butzer P. L. and Berens, H.: Semi-Groups of Operators and Approximation. Springer Verlag, New York, 1967.
[5] Calderón A. P. and Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85-139 (1952)
[6] Davis, B.: On the weak $(1,1)$ inequality for conjugate functions. Proc. Amer. Math. Soc. 44, 307-311 (1974)
[7] Dellacherie C. and Meyer, P. A.: Probabilities and potential B. North-Holland, Amsterdam, 1982.
[8] Essén, M.: Some best constant inequalities for conjugate harmonic functions. International Series of Nuberical Math. 103, Birkhäuser-Verlag, Basel, 129-140 (1992)
[9] Gamelin, T. W.: Uniform algebras and Jensen measures. Cambridge University Press, London, 1978.
[10] Gohberg I. and Krupnik, N.: One-Dimensional Linear Singular Integral Equations, Vol. I. II. Operator Theory: Advances and Appl. Vols. 53, 54. Birkhäuser, 1992.
[11] Kolmogorov, A. N.: Sur les fonctions harmoniques conjugées et les séries de Fourier. Fund. Math. 7, 24-29 (1925)
[12] Pichorides, S. K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math. 44, 165-179 (1972)
[13] Riesz, M.: Sur les fonctions conjugées. Math. Z. 27, 218-244 (1927)
[14] Stein, E. M.: Singular integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.
[15] Zygmund, A.: Trigonometric series Vol. 2, Cambridge University Press, London, 1968.

Adam Osȩkowski<br>Department of Mathematics, Informatics and Mechanics<br>University of Warsaw<br>Banacha 2, 02-097 Warsaw<br>Poland<br>e-mail: ados@mimuw.edu.pl


[^0]:    Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.
    Tel. +48225544561 , fax +48225544300 , email: ados@mimuw.edu.pl.

