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Abstract. We study one- and two-weight inequalities for the geometric max-

imal operator on probability spaces equipped with a tree-like structure. We
provide a characterization of weights, in terms of Muckenhoupt and Sawyer-

type conditions, for which the appropriate strong-type estimates hold. Our

approach rests on Bellman function method, which allows us to identify sharp
constants involved in the estimates.

1. Introduction

Hardy-Littlewood maximal operator M on Rd is an operator acting on measur-
able functions f : Rd → R by the formula

Mf(x) = sup

{
1

|Q|

∫
Q

|f(u)|du
}
, x ∈ Rd.

Here the supremum is taken over all cubes Q ⊂ Rd containing x, with sides parallel
to the axis, and |Q| is the Lebesgue measure of Q. A related object, the so-called
geometric maximal operator, is given by

Gf(x) = sup exp

{
1

|Q|

∫
Q

log(|f(u)|)du
}
, x ∈ Rd,

the supremum being taken over the same parameters as above. The purpose of
this paper is to investigate sharp versions of one- and two-weight inequalities for
the operator G. Here and below, the word “weight” stands for a nonnegative and
integrable function on Rd. Let us discuss several related results from the literature.
The paper [7] by Shi contains the characterization of weights w such that G is
bounded as an operator on Lp(w).

Theorem 1.1. Given a weight w, the following conditions are equivalent.
(i) w ∈ A∞: there exists a finite constant C such that for all cubes Q,(

1

|Q|

∫
Q

wdx

)
exp

(
1

|Q|

∫
Q

log(w−1)dx

)
≤ C.

(ii) For 0 < p <∞, there is a finite Cp such that the inequality

||Gf ||Lp(w) ≤ Cp||f ||Lp(w)

holds for all f ∈ Lp(w).
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Here we have used the notation

||f ||Lp(w) =

(∫
Rd
|f(x)|pw(x)dx

)1/p

for the usual weighted p-th norm of f . A two-weight version of the result above,
involving a Sawyer-type testing condition, was established by Yin and Muckenhoupt
[14] in the one-dimensional setting. The statement can be formulated as follows.

Theorem 1.2. Given a pair of weights (w, v) on R, the following are equivalent:
(i) (w, v) ∈W∞: there exists a constant C such that for all dyadic intervals I,∫

I

G(v−1χI)wdx ≤ C|I|.

(ii) For 0 < p <∞, there is a constant Cp <∞ for which the estimate

||Gf ||Lp(w) ≤ Cp||f ||Lp(v)

holds for all f ∈ Lp(v).

Two remarks are in order. First, the two theorems above imply that (w,w) ∈
W∞ if and only if w ∈ A∞ (possibly with different constants C on the right).
Furthermore, we would also like to mention here that when studying the Lp estimate
of Theorem 1.2, it is enough to consider the case p = 1 only: this follows directly
from the identity G|f |p = (G|f |)p.

For further results in this direction, see e.g. Cruz-Uribe [1], Cruz-Uribe and
Neugebauer [2], Ortega Salvador and Ramı́rez Torreblanca [6].

We will study versions of the two theorems above in the dyadic setting, putting
the particular emphasis on the size of the constants involved. Let us first handle
the local context. Suppose that (0, 1]d is the unit cube equipped with the family D
of all the dyadic subcubes Q ⊆ (0, 1]d. The dyadic maximal operator MD and the
geometric maximal operator GD on (0, 1]d act on integrable functions f : (0, 1]d → R
by the formulae

MDf(x) = sup

{
1

|I|

∫
I

|f(u)|du : x ∈ I, I ∈ D
}

and

GDf(x) = sup

{
exp

(
1

|I|

∫
I

log(|f(u)|)du
)

: x ∈ I, I ∈ D
}
.

We start the analysis with the one-weight inequalities. The question is: for a given
0 < p <∞, characterize those weights w such that for all f ,

||GDf ||Lp(w) ≤ C||f ||Lp(w),

with C independent of f . Suppose that w has this property, fix ε > 0 and plug
f = (w ∨ ε)−1/pχQ for a fixed Q ∈ D. Here and below, we use the notation

a ∨ b = max{a, b}.

It is easy to compute that then

GDf ≥ exp

(
1

|Q|

∫
Q

log(w ∨ ε)−1/pdx

)
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on Q and GDf = 0 on the complement of Q. Consequently, the assumed Lp estimate
gives

Cp|Q| ≥ Cp||f ||pLp(w) ≥ ||GDf ||
p
Lp(w) ≥ exp

(
1

|Q|

∫
Q

log(w ∨ ε)−1dx

)
·
∫
Q

wdx.

Letting ε → 0 and using the fact that Q is arbitrary, we see that w must satisfy
the dyadic A∞ condition

[w]A∞ := sup
Q∈D

(
1

|Q|

∫
Q

wdx

)
exp

(
1

|Q|

∫
Q

log(w−1)dx

)
<∞.

This condition is also sufficient, as we will prove now. Furthermore, we will identify
the best constant involved in the Lp estimate. Here is the precise statement.

Theorem 1.3. Let w be a weight on (0, 1]d satisfying the dyadic A∞ condition.
Then for any 0 < p <∞ we have

(1.1) ||GDf ||Lp(w) ≤ Cp,[w]A∞
||f ||Lp(w),

where Cp,r is the largest positive root of the equation

(1.2) Cp = erp logC.

The result is sharp in the sense that for any 0 < p < ∞, any 1 ≤ r < ∞ and any
C < Cp,r there are a function f and a weight w with [w]A∞ ≤ r such that

||GDf ||Lp(w) > C||f ||Lp(w).

Actually, we will prove a more general statement involving a mixture of two
weights. Consider the two-weight A∞ condition

(1.3) [w, v]A∞ := sup
Q∈D

(
1

|Q|

∫
Q

wdx

)
exp

(
1

|Q|

∫
Q

log(v−1)dx

)
<∞.

It is well-known that (1.3) is not sufficient for the validity of the Lp(w)→ Lp(v)
estimate for GD (cf. [14]). However, we will manage to establish the following
generalization of (1.1).

Theorem 1.4. Let w, v be two weights on (0, 1]d. If the condition (1.3) is satisfied,
then for any 0 < q < p <∞ and any f ∈ Lp(v) we have

(1.4) ||GDf ||Lp(w) ≤
(

[w, v]A∞
p

p− q

)1/q

||f ||Lp(vp/qw(q−p)/q).

The factor p/(p − q) is the best possible: for any 0 < q < p < ∞ and any η <
p/(p− q) there are weights w, v and a function f for which

||GDf ||Lp(w) > ([w, v]A∞η)
1/q ||f ||Lp(vp/qw(q−p)/q).

We turn our attention to two-weight Lp bounds. Pick two weights w, v on (0, 1]d,
a parameter 0 < p <∞ and assume that there is a finite constant C such that∫

(0,1]d
(GDf)pwdx ≤ C

∫
(0,1]d

|f |pvdx

for all functions f on (0, 1]d. Testing this inequality on the functions f = v−1/pχQ,
where Q is a fixed element of D, we see that w and v must enjoy the bound∫

(0,1]d
GD(v−1χQ)wdx =

∫
(0,1]d

(
GD(v−1/pχQ)

)p
wdx ≤ C|Q|,



4 ADAM OSȨKOWSKI

or |Q|−1
∫
Q
GD(v−1χQ)wdx ≤ C. In particular, this implies the Sawyer-type condi-

tion (see Theorem 1.2 above)

(1.5) Sw,v := sup
Q∈D

1

|Q|

∫
Q

GD(v−1χQ)wdx <∞.

We will show that this condition is sufficient for the validity of the Lp inequality,
at the cost of additional multiplicative factor e1/p. Here is the precise statement.

Theorem 1.5. Suppose that w, v are weights on (0, 1]d such that Sw,v <∞. Then
for any 0 < p <∞ and any f on (0, 1]d we have

(1.6) ||GDf ||Lp(w) ≤ e1/pS1/p
w,v ||f ||Lp(v).

The constant e1/p is the best possible: for any 0 < p < ∞ and any c < e1/p there
are weights w, v satisfying (1.5) and a function f on (0, 1]d such that

||GDf ||Lp(w) > cS1/p
w,v ||f ||Lp(v).

Though the above statements are formulated in the localized setting (i.e., when
the functions and weights are defined on (0, 1]d), a straightforward dilation argu-
ment immediately generalizes the results to the case when the underlying space is
equal to Rd (and when the suprema defining A∞ and Sawyer testing conditions are
taken over all dyadic cubes in Rd).

Actually, all the above results remain valid in the context of probability spaces
equipped with a tree-like structure. Here is the appropriate definition.

Definition 1.6. Suppose that (X,µ) is a nonatomic probability space. A set T of
measurable subsets of X will be called a tree if the following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there is a finite subset Ch(I) ⊂ T containing at least two
elements such that

(a) the elements of Ch(I) are pairwise disjoint subsets of I,
(b) I =

⋃
J∈Ch(I) J .

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
I∈Tm Ch(I).

(iv) We have limm→∞ supI∈Tm µ(I) = 0.

It is easy to see that the cube (0, 1]d endowed with Lebesgue measure and the
tree of its dyadic subcubes has the properties listed above. Any probability space
equipped with a tree gives rise to the corresponding maximal operator MT and
the geometric maximal operator GT , given by

MT f(x) = sup

{
1

µ(I)

∫
I

|f(u)|dµ(u) : x ∈ I, I ∈ T
}

and

GT f(x) = sup

{
exp

(
1

µ(I)

∫
I

log(|f(u)|)dµ(u)

)
: x ∈ I, I ∈ T

}
.

Furthermore, one easily defines the corresponding one- and two-weight A∞ con-
ditions, simply by requiring that appropriate suprema are taken over all Q ∈ T .
We will prove below that the assertions of Theorems 1.3-1.5 hold true in this more
general context as well.
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In a sense, the main “bulding blocks” of this paper are Theorems 1.4 and 1.5.
These results will be proved with the use of the so-called Bellman function tech-
nique: roughly speaking, the estimates (1.4) and (1.6) will be deduced from the
existence of certain special functions, enjoying appropriate majorization and con-
cavity. This type of approach has gathered a lot of interest in the literature: see
e.g. [5], [8], [9], [10], [11], [13] and the references therein.

The next section is devoted to the weighted estimates which follow from the
assumption (1.3), i.e., to the proofs of Theorems 1.3 and 1.4. The final part of the
paper studies the condition (1.5) and its consequence, Theorem 1.5.

2. Mixed-weight estimates

Fix a positive constant c, two exponents 0 < q < p and consider the function
b = bc,p,q : R× R× [0,∞)× R→ R, given by

b(x, y, r, s) = epy
(
r

p
− c

p− q
eq(x−y)−s

)
.

Let us start the properties of this object.

Lemma 2.1. (i) If x, r, s ∈ R satisfy res ≤ c, then

(2.1) b(x, x, r, s) ≤ 0.

(ii) For any x, y, r, s ∈ R we have

(2.2) b(x, y, r, s) ≥ q

p2

(
epyr −

(
pc

p− q

)p/q
epx−ps/qr1−p/q

)
.

Proof. (i) We have b(x, x, r, s) = epx
(
r/p−ce−s/(p−q)

)
≤ repx(p−1−(p−q)−1) ≤ 0.

(ii) The majorization is equivalent to the estimate

p− q
p
· r
p

+
p

q

[
p−q/p

pc

p− q
eq(x−y)−srq/p−1

]p/q
≥
(
r

p

)(p−q)/p [
p−q/p

pc

p− q
eq(x−y)−srq/p−1

]
,

which follows directly from Young’s inequality. �

The key property of b is the following concavity. In what follows, the symbols
bx, by, br and bs will stand for the partial derivatives of b with respect to x, y, r
and s.

Lemma 2.2. Fix (x, y, r, s) ∈ R × R × [0,∞) × R and h, t and u ∈ R such that
x ≤ y, res ≤ c and (r + t)es+u ≤ c. Then we have

b(x+ h, y ∨ (x+ h), r + t, s+ u) ≤ b(x, y, r, s) + bx(x, y, r, s)h

+ br(x, y, r, s)t+ bs(x, y, r, s)u.
(2.3)

Proof. Note first that if x′ > y, then by(x′, y, r, s) = epy(r − ceq(x′−y)) ≤ 0. This
implies

(2.4) b(x+ h, y ∨ (x+ h), r + t, s+ u) ≤ b(x+ h, y, r + t, s+ u),

regardless of whether x+ h ≥ y or not. However,

r + t

p
epy =

r

p
epy + br(x, y, r, s)t
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and, using the convexity of the exponential function,

− c

p− q
epy+q(x+h−y)−(s+u) ≤ − c

p− q
epy+q(x−y)−s + bx(x, y, r, s)h+ bs(x, y, r, s)u.

Adding these two facts gives

b(x+ h, y, r + t, s+ u) ≤ b(x, y, r, s) + bx(x, y, r, s)h

+ br(x, y, r, s)t+ bs(x, y, r, s)u,

which combined with (2.4) yields the assertion. �

Proof of (1.4). Fix weights w, v as in the statement and a function f on X. We
may assume that f ≥ 0, replacing f with |f | if necessary. Consider functional
sequences (fn)n≥0, (wn)n≥0 and (vn)n≥0 given as follows. For any n ≥ 0 and
x ∈ X, set

(2.5) fn(x) =
1

µ(Qn(x))

∫
Qn(x)

log fdµ, wn(x) =
1

µ(Qn(x))

∫
Qn(x)

wdµ

and

vn(x) =
1

µ(Qn(x))

∫
Qn(x)

log(v−1)dµ,

where Qn(x) is the unique element of T n which contains x. Furthermore, set
gn = sup0≤k≤n fk and let b = b[w,v]A∞ ,p,q

be the special function corresponding to
the parameters [w, v]A∞ , p and q (the number [w, v]A∞ is defined in (1.3)). Then,
as we will prove now, the sequence(∫

X

b(fn, gn, wn, vn)dµ

)
n≥0

is nonincreasing. To show this, fix n ≥ 0, Q ∈ T n and let Q1, Q2, . . ., Qm be
the pairwise disjoint elements of T n+1 whose union is Q. By the definition, the
functions fn, gn, wn and vn are constant on Q: let us denote the corresponding
values by x, y, r and s. Similarly, fn+1, gn+1, wn+1 and wn+1 are constant on each
Qj , and hence there exist real numbers hj , tj and uj such that

x+ hj = fn+1|Qj , r + tj = wn+1|Qj , and s+ uj = vn+1|Qj .

Note that gn+1|Qj = max{gn|Qj , fn+1|Qj} = y∨ (x+hj). Furthermore, the param-
eters introduced above satisfy the following conditions. First, we have x ≤ y, since
gn ≥ fn on X. Furthermore, we have res ≤ [w, v]A∞ and (r + tj)e

s+uj ≤ [w, v]A∞ ,
which is a direct consequence of the assumption (1.3) (applied to the sets Q and
Qj). Finally, observe that the obvious identity

1

µ(Q)

∫
Q

fdµ =

m∑
j=1

µ(Qj)

µ(Q)
· 1

µ(Qj)

∫
Qj

fdµ,

with similar versions for w and v, implies that

(2.6)

m∑
j=1

µ(Qj)

µ(Q)
hj = 0,

m∑
j=1

µ(Qj)

µ(Q)
tj = 0 and

m∑
j=1

µ(Qj)

µ(Q)
uj = 0.
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Let us apply the estimate (2.3) to h = hj , t = tj and u = uj , multiply both sides
by µ(Qj)/µ(Q) and sum over j to obtain

m∑
j=1

µ(Qj)

µ(Q)
b(x+ hj , y ∨ (x+ hj), r + tj , s+ uj) ≤ b(x, y, r, s)

(here we have exploited the identities (2.6)), or, equivalently,∫
Q

b(fn+1, gn+1, wn+1, vn+1)dµ ≤
∫
Q

b(fn, gn, wn, vn)dµ.

Summing over all Q ∈ T n, we get the aforementioned monotonicity of the sequence
(
∫
X
b(fn, gn, wn, vn)dµ)n≥0. Therefore, for any n we have

(2.7)

∫
X

b(fn, gn, wn, vn)dµ ≤
∫
X

b(f0, g0, w0, v0)dµ = b(f0, g0, w0, v0) ≤ 0,

where the latter inequality follows from (2.1). Now we carry out a (partial) limiting
procedure. By the very definition, the function wn is a conditional expectation of
w with respect to the σ-algebra generated by T n (see (2.5)), so

1

p

∫
X

epgnwndµ =
1

p

∫
X

epgnwdµ.

Furthermore, fn, vn are conditional expectations of w and log(v−1), so by Jensen’s
inequality,

− c

p− q

∫
X

eqfn−vn+(p−q)gndµ ≥ − c

p− q

∫
X

eq log f−log(v−1)+(p−q)gndµ.

If we add the two statements above, we get∫
X

b(fn, gn, wn, vn)dµ ≥
∫
X

b(log f, gn, w, log(v−1))dµ.

Combining this with (2.2) and (2.7) yields∫
X

[
epgnw −

(
pc

p− q

)p/q
ep log f−p log(v−1)/qw1−p/q

]
dµ ≤ 0.

However, note that gn ↑ supk≥0 fk and hence epgn ↑ (GT f)p. Therefore, the claim
follows from Lebesgue’s monotone convergence theorem. �

The sharpness of the above estimate is a more delicate issue. We start with the
following lemma, which can be found in [4].

Lemma 2.3. For every I ∈ T and every α ∈ (0, 1) there is a subfamily F (I) ⊂ T
consisting of pairwise disjoint subsets of I such that

µ

 ⋃
J∈F (I)

J

 =
∑

J∈F (I)

µ(J) = αµ(I).

We will also need the following simple geometric fact (see Figure 1 below). In
what follows, we will use the following notation: for a given positive number a, set

γa = {(x, y) ∈ R2 : xey = a}.
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Lemma 2.4. Let a < b be two positive numbers. For (x0, y0) ∈ γa, let `x0,y0 denote
the line passing through (x0, y0) and tangent to the curve γb at some point (x1, y1)
with x1 > x0. Then there is a constant κ = κa,b ∈ (0, 1) depending only on a and b
such that slope of the line `x0,y0 is equal to −κa,b/x0.

Proof. Suppose that the line `1,log a is given by the equation y = −κx+B. Clearly,
κ < 1: the slope of `1,log a must be bigger than the slope of the line tangent to γa
(which is equal to −1). It remains to check that for any (x0, y0) ∈ γa, the equation
for `x0,y0 is given by y = − κ

x0
x+B − log x0. �

Sharpness. Fix 0 < q < p, a parameter ε > 0 and let L be the optimal constant in
the inequality

(2.8)

∫
X

(GT f)pwdµ ≤ (L[w, v]A∞)
p/q
∫
X

fpvp/qw(q−p)/qdµ.

We will construct an example showing that L ≥ p
(p−q)(1+2ε) ; since ε has been chosen

arbitrarily, this will complete the proof. For the sake of clarity, we have decided to
split the reasoning into several separate parts.

Step 1. Auxiliary parameters. It is straightforward to check that

lim
K→p/(p−q)

lim
δ→0

δ

K + δ

(
1− Ke−qδ/p

K + δ

)−1

=
p− q
p

and

lim
K→p/(p−q)

lim
δ→0

 q(K + δ)

pδ
K+δ

(
1− Ke−qδ/p

K+δ

)−1

− peqδ/p
+
K + δ

δ

(
1− Ke−qδ/p

K + δ

) = 0.

Therefore there are K < p/(p− q) and δ > 0 such that

(2.9)
p− q
p

(1 + ε) ≤ δ

K + δ

(
1− Ke−qδ/p

K + δ

)−1

≤ p− q
p

(1 + ε)

and

(2.10)
q(K + δ)

pδ
K+δ

(
1− Ke−qδ/p

K+δ

)−1

− peqδ/p
+ κ · K + δ

δ

(
1− Ke−qδ/p

K + δ

)
< 0.

Finally, let a = eKq/p(p− q)(1 + ε)/p, b = eKq/p(p− q)(1 + 2ε)/p and let κ = κa,b ∈
(0, 1) be the number guaranteed by the preceding lemma.

Step 2. Construction of f , w and v. First we introduce an appropriate family
(An)n≥0 of subsets ofX, such that each An is a union of at most countable collection
of pairwise disjoint elements of T (called the atoms of An): An =

⋃
Q∈Fn Q. We

proceed by induction: to start, put A0 = X. Suppose that we have successfully
defined An =

⋃
Q∈Fn Q. Then, by Lemma 2.3, for each Q ∈ Fn there is a family

F (Q) ⊂ T of subsets of Q such that µ(
⋃
R∈F (Q)R) = Kµ(Q)/(K + δ); we set

Fn+1 =
⋃
Q∈Fn F (Q). Directly from this definition, we see that A0 ⊃ A1 ⊃ A2 ⊃ . . .

and µ(An) = (K/(K + δ))n. Next, introduce f : X → R by

(2.11) f = exp((−K + nδ)/p) on An \An+1, n = 0, 1, 2, . . . .

Finally, consider the weights v = w = f−q.
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Step 3. Integral properties of f . Let k ≥ 0 and let Q ∈ Fk be an atom of Ak.
By the above construction, we have

1

µ(Q)

∫
Q

log fdµ =

∞∑
n=k

−K + nδ

p

[(
K

K + δ

)n−k
−
(

K

K + δ

)n−k+1
]

=
−K + kδ

p
+

∞∑
m=0

mδ

p

(
K

K + δ

)m
δ

K + δ

=
−K + kδ

p
+
K

p
=
kδ

p
,

(2.12)

where in the second passage we have used the substitution m = n−k. Consequently,
we have (GT f)p ≥ e−kδ on Ak; since fp = eK−kδ on Ak \Ak+1 and k was arbitrary,
we conclude that

(2.13) (GT f)p ≥ eKfp on X.

A similar calculation shows that for any atom Q of Ak and any r ≤ p− q we have

1

µ(Q)

∫
Q

frdµ =

∞∑
m=0

exp

(
r(−K + (m+ k)δ)

p

)(
K

K + δ

)m
δ

K + δ

=
δ

K + δ
exp

(
r(−K + kδ)

p

) ∞∑
m=0

(
Kerδ/q

K + δ

)m
.

If δ is sufficiently small, then the above geometric series converges; this is due to

Kerδ/p

K + δ
= 1 +

(
r

p
− 1

K

)
δ + o(δ) ≤ 1 +

(
p− q
p
− 1

K

)
δ + o(δ) < 1,

since K < p/(p− q), as we have assumed at the beginning. So, we obtain

(2.14)
1

µ(Q)

∫
Q

frdµ =
δ

K + δ
exp

(
r(−K + kδ)

p

)(
1− Kerδ/p

K + δ

)−1

<∞.

Step 4. Back to the weighted estimate. Using (2.13) and (2.14), we obtain∫
X

fpvp/qw(q−p)/qdµ =

∫
X

fp−qdµ ≤ e−K
∫
X

GT fpwdµ.

Plugging these facts into (2.8) and dividing throughout by the finite quantity∫
X
fp−qdµ, we see that L[w, v]A∞ ≥ eKq/p. Now we will prove that [w, v]A∞ ≤

eKq/p(p − q)(1 + 2ε)/p, which will yield the desired claim. We need to show that
for any R ∈ T we have

(2.15)

(
1

µ(R)

∫
R

wdµ

)
exp

(
1

µ(R)

∫
R

log(v−1)dµ

)
≤ eKq/p (p− q)(1 + 2ε)

p
.

There is a positive integer k such that R ⊆ Ak−1 and R 6⊆ Ak, and the set R splits
into R ∩ Ak and R \ Ak. If Q is an atom of Ak contained in R, then by (2.14)
applied to r = −q,

(2.16)
1

µ(Q)

∫
Q

wdµ =
1

µ(Q)

∫
Q

f−qdµ =
δ

K + δ
eq(K−kδ)/p

(
1− Ke−qδ/p

K + δ

)−1

.
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Furthermore, by (2.12),

(2.17) exp

(
1

µ(Q)

∫
Q

log(v−1)dµ

)
= exp

(
q

µ(Q)

∫
Q

log fdµ

)
= eqkδ/p.

Multiply (2.16) throughout by µ(Q) and sum over all Q as above to obtain

xR∩Ak :=
1

µ(R ∩Ak)

∫
R∩Ak

wdµ =
δ

K + δ
eq(K−kδ)/p

(
1− Ke−qδ/p

K + δ

)−1

.

Similarly, if we rise (2.17) to power µ(Q) and multiply over all Q as above, we get

eyR∩Ak := exp

(
1

µ(R ∩Ak)

∫
R∩Ak

log(v−1)dµ

)
= eqkδ/p.

An application of (2.9) yields

(2.18) xR∩Ake
yR∩Ak =

δeKq/p

K + δ

(
1− Ke−qδ/p

K + δ

)−1

≤ eKq/p (p− q)
p

(1 + ε).

Next, observe that since f is constant on R \Ak, so are w and log(v−1), and hence

xR\Ak :=
1

µ(R \Ak)

∫
R\Ak

wdµ = w|R\Ak = eq(K−(k−1)δ)/p

and

eyR\Ak := exp

(
1

µ(R \Ak)

∫
R\Ak

log(v−1)dµ

)
= v−1|R\Ak = e−Kq/p · eq(k−1)δ/p.

Step 5. Application of Lemma 2.4. Observe that the point

(xR, yR) :=

(
1

µ(R)

∫
R

wdµ,
1

µ(R)

∫
R

log(v−1)dµ

)
lies on the line segment I joining the points (xR∩Ak , yR∩Ak), (xR\Ak , yR\Ak): in-
deed,

(xR, yR) =
µ(R ∩Ak)

µ(R)
(xR∩Ak , yR∩Ak) +

µ(R \Ak)

µ(R)
(xR\Ak , yR\Ak).

We will show that this line segment lies entirely under the curve γb, where, as above,
b = eKq/p(p− q)(1 + 2ε)/p: this will immediately yield (2.15).

First, note that by (2.18), the point (xR∩Ak , yR∩Ak) lies below the curve γa
(where a = eKq/p(p−q)(1+ε)/p). Furthermore, we have yR\Ak ≤ yR∩Ak . Therefore,
if we take (x0, y0) ∈ γa with x0 = xR∩Ak , then it suffices to show that the slope of
the segment I is not bigger than the slope of the line `x0,y0 . By Lemma 2.4, this is
equivalent to saying that

yR∩Ak − yR\Ak
xR∩Ak − xR\Ak

≤ − κa,b
xR∩Ak

,

which, after some lengthy but straightforward computations, reduces to (2.10). �

Remark 2.5. The proof shows that the weight w = v constructed above satisfies

[w]A∞ ≤ exp

(
q

p− q

)
p− q
p

(1 + 2ε),
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Figure 1. The line segment with endpoints (xR∩Ak , yR∩Ak),
(xR\Ak , yR\Ak) lies below the curve γb

which follows from (2.15) and the assumption K < p/(q − p). Increasing K if
necessary, we may assume that

[w]A∞ ≥ exp

(
q

p− q

)
p− q
p

(1− 2ε).

This follows from (2.16), (2.17) and the left bound in (2.9): there is Q ∈ T with(
1

µ(Q)

∫
Q

wdµ

)
exp

(
1

µ(Q)

∫
Q

log(w−1)dµ

)
=
δeKq/p

K + δ

(
1− Ke−qδ/p

K + δ

)−1

≥ exp

(
q

p− q

)
p− q
p

(1− 2ε).

The final part of this section is devoted to the proof of Theorem 1.3.

Proof of (1.1). Pick q ∈ (0, p) and apply (1.4) to v = w to obtain

(2.19) ||GT f ||Lp(w) ≤
(

[w]A∞
p

p− q

)1/q

||f ||Lp(w).

Now we optimize over q. Consider two cases. If [w]A∞ = 1, then we let q ↓ 0 to
get ||GT f ||Lp(w) ≤ e1/p||f ||Lp(w) = Cp,[w]A∞

||f ||Lp(w), as desired. If [w]A∞ > 1,

then Cp,[w]A∞
> e1/p: indeed, if we plug C = e into (1.2), then the left-hand side

is smaller that the right-hand side; on the other hand, this inequality is reversed
for sufficiently large C. Therefore, the number q = p− (logCp,[w]A∞

)−1 belongs to
(0, p), and plugging it into (2.19) yields (1.1), because

[w]A∞
p

p− q
= [w]A∞ logCpp,[w]A∞

= Cpp,[w]A∞
e−1

= Cqp,[w]A∞
exp

(
(p− q) logCp,[w]A∞

− 1
)

= Cqp,[w]A∞
. �
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Sharpness of (1.1), the case r = 1. The required condition [w]A∞ = 1 forces that
w is constant (by Jensen’s inequality). Fix an arbitrary constant K ∈ (0, 1). We
will be done if we show construct a nonnegative, µ-integrable function f for which∫
X
GT fdµ ≥ eK

∫
X
fdµ; this will yield the sharpness for p = 1, for other values of

the exponent p, the function f1/p will do the job, since
[
GT (f1/p)

]p
= GT f .

Actually, the appropriate construction has been carried out above. Fix δ > 0
and let f be the function given by (2.11), with the use of parameters K, δ and
p = 1. By (2.13), we have GT f ≥ eKf and hence all we need is the µ-integrability
of f . To this end, we proceed as in the proof of (2.14) and compute that∫

X

fdµ =
δ

K + δ
e−K

∞∑
m=0

(
Keδ

1 + δ

)m
,

which is finite for sufficiently small δ, since K < 1. �

Sharpness of (1.1), the case r > 1. Fix ε ∈ (0, (r − 1)/2) and η < 1. It is easy to
check that the function ξ(x) = ex−1/x, x ∈ (1,∞), is strictly increasing from 1 to
infinity. Therefore, there is a unique number q = q(ε) ∈ (0, p) such that

r

1 + 2ε
= ξ

(
p

p− q

)
= exp

(
q

p− q

)
p− q
p

,

which is equivalent to Cp,r/(1+2ε) = exp(1/(p−q)). Note that q(ε) is bounded away
from 0 as ε → 0; furthermore, observe that for a fixed p, the function r 7→ Cp,r
is continuous (being the inverse to the continuous and strictly increasing function
C 7→ Cp/(ep logC), C ≥ e1/p). Putting the above facts together, we see that if ε is
sufficiently close to 0, then

(2.20)

(
1− 2ε

1 + 2ε

)1/q

Cp,r/(1+2ε) > ηCp,r.

Fix such an ε. By Remark 2.5, decreasing ε if necessary, we can construct a weight
w and a function f such that r(1− 2ε)/(1 + 2ε) ≤ [w]A∞ ≤ r and

||GT f ||Lp(w) >

(
[w]A∞

p

(p− q)(1 + 2ε)

)1/q

||f ||Lp(w).

Consequently,

||GT f ||Lp(w) >

(
r(1− 2ε)

(1 + 2ε)2

p

p− q

)1/q

||f ||Lp(w)

=

(
1− 2ε

1 + 2ε

)1/q

exp

(
1

p− q

)
||f ||Lq(w)

=

(
1− 2ε

1 + 2ε

)1/q

Cp,r/(1+2ε)||f ||Lp(w)

> ηCp,r||f ||Lp(w).

This is precisely the desired sharpness. �
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3. Proof of Theorem 1.5

The proof of the strong-type result rests on the following exponential estimate
for Carleson sequences, which is of independent interest.

Theorem 3.1. Let K be a positive constant and let αQ, Q ∈ T , be nonnegative
numbers satisfying

(3.1)
1

µ(R)

∑
Q⊆R

αQ ≤ K

for all R ∈ T . Then for any integrable function f on X we have

(3.2)
∑
Q∈T

αQ exp

(
1

µ(Q)

∫
Q

fdµ

)
≤ Ke

∫
X

efdµ.

Proof. By homogeneity, we may and do assume thatK = 1. Consider the functional
sequences (fn)n≥0, (gn)n≥0 and (zn)n≥0 given by

fn(x) =
1

µ(Qn(x))

∫
Qn(x)

efdµ, gn(x) =
1

µ(Qn(x))

∫
Qn(x)

fdµ

and

zn(x) =
1

µ(Qn(x))

∑
Q⊆Qn(x)

αQ

(recall that Qn(x) is the unique element of T n which contains x). Introduce the
function B : R3 → R by the formula B(x, y, z) = ex−ey−z+1. Clearly, this function
is concave on R3, so for any x, y, z, h, k and ` we have

B(x+ h, y + k, z + `)

≤ B(x, y, z) +
∂B

∂x
(x, y, z)h+

∂B

∂y
(x, y, z)k +

∂B

∂z
(x, y, z)`.

(3.3)

Now we will show that the sequence (
∫
X
B(fn, gn, zn)dµ)n≥0 enjoys a certain mo-

notonicity-type property. To this end, fix n ≥ 0, Q ∈ T n and pairwise disjoint
elements Q1, Q2, . . ., Qm of T n+1 whose union is Q. Put x = fn|Q, y = gn|Q and
z = zn|Q; furthermore, for any j = 1, 2, . . . , m, let x + hj = fn+1|Qj , y + kj =
gn+1|Qj and z + `j = hn+1|Qj . Observe that z and z + `j belong to the interval
[0, 1], by the assumption of the lemma (and the equality K = 1 we imposed at the
beginning). Furthermore, arguing as in the proof of the weak-type estimate, we see
that

(3.4)

m∑
j=1

µ(Qj)

µ(Q)
hj =

m∑
j=1

µ(Qj)

µ(Q)
kj = 0.

Finally, concerning the dynamics of the sequence (zn)n≥0, we easily check that

z =
1

µ(Q)

∑
R⊆Q

αR =
αQ
µ(Q)

+

m∑
j=1

µ(Qj)

µ(Q)
· 1

µ(Qj)

∑
R⊂Qj

αR

=
αQ
µ(Q)

+

m∑
j=1

µ(Qj)

µ(Q)
(z + `j),
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which is equivalent to

(3.5)

m∑
j=1

µ(Qj)

µ(Q)
`j = − αQ

µ(Q)
.

Let us apply (3.3), with h = hj , k = kj , ` = `j , multiply throughout by µ(Qj)/µ(Q)
and sum the obtained estimates over j. By (3.4) and (3.5), we get

n∑
j=1

µ(Qj)

µ(Q)
B(x+ hj , y + kj , z + `j) ≤ B(x, y, z)− ∂B

∂z
(x, y, z) · αQ

µ(Q)
.

Since z ≤ 1, we see that ∂B
∂z (x, y, z) = ey−z+1 ≥ ey and hence the above estimate

implies∫
Q

B(fn+1, gn+1, zn+1)dµ ≤
∫
Q

B(fn, gn, zn)dµ− αQ exp

(
1

µ(Q)

∫
Q

fdµ

)
.

Summing over all Q ∈ T n we get∫
X

B(fn+1, gn+1, zn+1)dµ ≤
∫
X

B(fn, gn, zn)dµ−
∑
Q∈T n

αQ exp

(
1

µ(Q)

∫
Q

fdµ

)
and hence for each n we have∫
X

B(fn+1, gn+1, zn+1)dµ ≤
∫
X

B(f0, g0, z0)dµ−
∑

Q∈T k, k≤n

αQ exp

(
1

µ(Q)

∫
Q

fdµ

)
.

Observe that the assumption zn+1 ≤ 1 and Jensen’s inequality imply

B(fn+1, gn+1, zn+1) ≥ efn+1 − egn+1+1 ≥ 0.

Consequently, the preceding estimate implies∑
Q∈T k, k≤n

αQ exp

(
1

µ(Q)

∫
Q

fdµ

)
≤ B(f0, g0, z0) ≤ ef0 = e

∫
X

efdµ.

It remains to let n→∞ to complete the proof. �

Proof of Theorem 1.5. Fix f , w and v as in the statement. As previously, we may
assume that f ≥ 0 and p = 1, replacing f with |f |1/p if necessary. Consider the
“truncated” geometric maximal operator GnT , given by

GnT (f)(x) = max
0≤k≤n

exp

(
1

µ(Qk(x))

∫
Qk(x)

log fdµ

)
.

Let us apply Theorem 3.1 to the sequence (αQ)Q∈T defined as follows. For any
x ∈ X there is a set Qx belonging to T 0 ∪ T 1 ∪ . . . ∪ T n and containing x such

that GnT (f)(x) = exp
(

1
µ(Qx)

∫
Qx

log |f |dµ
)

. There might be several sets with this

property; if this is the case, we choose Qx to be the set of the largest measure. For
Q ∈ T 0 ∪ T 1 ∪ . . . ∪ T n, define

αQ =

∫
{x∈X:Qx=Q}

exp

(
1

µ(Q)

∫
Q

log(v−1)dµ

)
wdµ

and for other Q’s, put αQ = 0. This sequence satisfies the condition (3.1) with
K = Sw,v (the number Sw,v was defined in (1.5)). Indeed, this is clear if R ∈ T k
for some k > n, since then the sum on the left is zero. If R ∈ T k for some k ≤ n,
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then we observe that the sets ({x ∈ X : Qx = Q})Q⊆R are pairwise disjoint and
contained in R. Furthermore, we have

αQ =

∫
{x∈X:Qx=Q}

exp

(
1

µ(Q)

∫
Q

log(v−1)dµ

)
wdµ

≤
∫
{x∈X:Qx=Q}

GT (v−1χR)wdµ

and therefore
1

µ(R)

∑
Q⊆R

αQ ≤
1

µ(R)

∫
R

GT (v−1χR)wdµ ≤ Sw,v.

Consequently, the inequality (3.2) applied to the function log(fv) gives∫
X

GnT (f)wdµ =
∑
Q∈T

∫
{x∈X:Qx=Q}

GnT (f)wdµ

=
∑
Q∈T

∫
{x∈X:Qx=Q}

exp

(
1

µ(Q)

∫
Q

log fdµ

)
wdµ

=
∑
Q∈T

αQ exp

(
1

µ(Q)

∫
Q

log(fv)dµ

)
≤ eSw,v

∫
X

elog(fv)dµ = eSw,v

∫
X

fvdµ.

It remains to note that if we let n→∞, then GnT (f) increases to GT f . Therefore,
the claim follows from Lebesgue’s monotone convergence theorem. �

Sharpness of the factor e1/p. This follows at once from the fact that the constant
e1/p is optimal even in the unweighted context, as we have already shown above. �
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