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Abstract

The paper contains the proof of the weak-type (∞,∞) estimate for the trian-
gular projection on Schatten classes. The argument rests on a number of trace
inequalities for matrices, which are of independent interest and connections.
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1. Introduction

The purpose of this paper is to establish a new weak-type estimate for the so-
called triangular projection, an important object arising in the operator theory.
Assume that H is a separable complex Hilbert space and let B(H) denote the
algebra of all bounded linear operators on H. For any compact operator A, we
de�ne its modulus by |A| = (A∗A)1/2 and let s1(A), s2(A), . . . be the singular
values of A, i.e., the eigenvalues of |A| in decreasing order and repeated according
to multiplicity. A compact operator A belongs to the Schatten p-class Cp (here
1 ≤ p <∞), if

‖A‖Cp
=

∑
n≥1

sn(A)
p

1/p

<∞.

The space Cp, equipped with the Schatten p-th norm ‖·‖p, is a Banach space; in
the special case p = 1, it is sometimes referred to as the trace class, while C2 is
called the Hilbert-Schmidt class. We let C∞ be the ideal of compact operators
and endow it with the usual operator norm ‖·‖C∞ = ‖·‖. If the Hilbert space H
is �nite-dimensional, i.e., H = CN for some N , we will denote the corresponding
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Schatten classes by CNp , 1 ≤ p ≤ ∞. Given a self-adjoint operator A ∈ Cp, let
A =

∫∞
−∞ λdEλ stand for its spectral decomposition. This allows us to de�ne

f(A) for any Borel function f on R, by f(A) =
∫∞
−∞ f(λ)dEλ.

Suppose further that ξ1, ξ2, . . . is an orthonormal basis of H. Given an
operator A ∈ C1, we de�ne its trace by Tr(A) =

∑∞
n=1 an,n, where (ai,j)i,j is the

in�nite matrix representation of A, with the complex coe�cients ai,j = 〈Aξi, ξj〉
for all i, j. This de�nition of the trace is independent of a particular choice of

the basis. It is not di�cult to check that ‖A‖Cp =
(
Tr(|A|p)

)1/p
for any �nite

p. See [11, 13] for the more systematic presentation of the subject.
The central role in the paper will be played by a certain important oper-

ator on matrices, the so-called lower triangular projection. If ξ = (ξn)n≥1 is
a given orthonormal basis of H and A is an element of B(H) with the matrix
representation (ai,j)i,j , then we de�ne T (A) = (T (A)i,j)i,j by setting

(T (A))i,j =

{
ai,j if i ≥ j,
0 otherwise.

This operator plays an important role in analysis and operator theory. First, it
serves as a convenient tool for providing e�cient lower bounds for a number of
estimates in the theory of noncommutative martingales and Schur multipliers:
see e.g. [7, 8, 10]. It applies to the theory of (p, q)-summing operators and
properties of unconditional bases of B(H) (see Section 4 in [9]) and gives a
characterization of optimal constants in Menshov-Rademacher inequality [3].
The triangular projection can be also regarded as the matrix analogue of the
analytic projection Pa acting on trigonometric series by the formula

Pa

( ∞∑
n=−∞

ane
int

)
=

∞∑
n=0

ane
int.

See [6, 12] for more on this subject and consult the references therein.
Our motivation comes from the question about the boundedness properties

of the triangular projection on Schatten classes (see Chapters II and III in [6]
and Section 1 in [9] for a detailed presentation). It is well-known that T is
bounded on Cp when 1 < p <∞. More speci�cally, we have ‖T‖Cp→Cp = O(p)
as p→∞ and ‖T‖Cp→Cp

= O((p−1)−1) as p→ 1. Since T is self-adjoint on C2,
we also have ‖T‖Cp→Cp

= ‖T‖Cp′→Cp′ for all 1 < p <∞, where p′ = p/(p−1) is
the harmonic conjugate to p. On the other hand, the triangular projection is not
bounded on C1 or C∞, actually, we have the more precise result: ‖T‖CN

1 →CN
1

=

‖T‖CN
∞→CN

∞
= O(logN) as N →∞. However, as a substitute in the case p = 1,

T satis�es the weak-type bound

‖T (A)‖C1,∞ ≤ K‖A‖C1 , (1)

where ‖A‖C1,∞ = supn>0

(
nsn(A)

)
is the standard quasinorm in the weak L1

(cf. [6, 12]). There is a natural question about the analogue of this weak-
type bound in the case p = ∞. This in particular leads to the problem of
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de�ning an appropriate version of the weak Schatten norm (or rather functional)
‖·‖C∞,∞ . Let us brie�y discuss the classical, measure-theoretic approach to this
problem, due to Bennett, DeVore and Sharpley [1]. Suppose that (X,F , µ) is
a measure space and let f : X → C be a measurable function. The decreasing
rearrangement f∗ : (0,∞)→ [0,∞) is given by

f∗(t) = inf
{
λ ≥ 0 : µ({x ∈ X : |f(x)| > λ}) ≤ t

}
and the maximal function of f is de�ned as f∗∗(t) = 1

t

∫ t
0
f∗(s)ds for t > 0.

Equivalently,

f∗∗(t) =
1

t
sup

{∫
E

|f |dµ : E ∈ F , µ(E) ≤ t
}

for all t. Following Bennett, DeVore and Sharpley, we set

‖f‖weak(L∞) = sup
t>0

(f∗∗(t)− f∗(t))

and de�ne the weak-L∞ as the collection of all (equivalent classes of) func-
tions f with ‖f‖weak(L∞) < ∞. The main motivation behind the introduction
of this space comes from interpolation theory. Obviously, weak-L∞ contains
L∞(X,F , µ). The �rst important property is that if an operator S is bounded
from L1 to L1,∞ and from L∞ to weak(L∞), then it can be extended to a
bounded operator on all Lp spaces, 1 < p < ∞. In other words, thanks to the
above de�nition, we have a substitute of Marcinkiewicz interpolation theorem
for operators which are unbounded on L∞. There is a further complementary
explanation. Namely, the Peetre K-functional for the pair (L1, L∞) (consult [2,
p.184]) can be expressed explicitly in the form

K(f, t;L1, L∞) =

∫ t

0

f∗(s)ds = tf∗∗(t), t > 0,

and the weak-L1 quasinorm is given by the formula ‖f‖1,∞ = supt>0 tf
∗(t) =

supt>0 t
d
dtK(f, t;L1, L∞). It seems plausible to de�ne the weak-L∞ functional

by interchanging the roles of L1 and L∞ in the latter expression. Because of
the identity K(f, t;L∞, L1) = tK(f, t−1;L1, L∞), we compute that

sup
t>0

t
d

dt
K(f, t;L∞, L1) = sup

t>0

(
f∗∗(t)− f∗(t)

)
= ‖f‖weak(L∞).

It should be emphasized that there are some drawbacks: in general, the weak-
L∞ is not a linear space and the functional ‖ · ‖weak(L∞) is not a norm, it is not
even a quasinorm. Nevertheless, these objects are of importance in the study of
many classical operators, e.g. the maximal functions of singular integrals. See
[1] for the more detailed discussion of this topic.

We easily extend the above concept of weak-L∞ to the operator context.
De�ne the space C∞,∞ as the collection of all compact operators A for which

‖A‖C∞,∞ = sup
n≥1

(
1

n

n∑
k=1

sk(A)− sn(A)

)
<∞. (2)
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So, roughly speaking, A ∈ C∞,∞ if its singular values decrease in a moderate
manner.

Let us discuss some basic properties of the space C∞,∞ and the functional
‖·‖C∞,∞ . It is clear that the spaces C∞,∞ and C∞ are equal as sets, furthermore,
it follows directly from (2) that ‖A‖C∞,∞ ≤ ‖A‖C∞ for all operators A. On
the other hand, the inclusion C∞,∞ ↪→ C∞ is not bounded: there is no �nite
universal constant K such ‖A‖C∞ ≤ K‖A‖C∞,∞ for all A. To see the latter,
consider the �nite-rank operators with singular values equal to lnN , ln(N − 1),
. . ., ln 2, 0, 0, . . . , and let N → ∞. It should also be emphasized that the
functional ‖ · ‖C∞,∞ is not even a quasinorm: there is no universal constant K
such that ‖A+B‖C∞,∞ ≤ K(‖A‖C∞,∞ + ‖B‖C∞,∞). The example is similar to
that above: �x a positive integer N and consider the N ×N diagonal matrices
with the entries ln 1, ln 2, . . ., lnN and − ln 1, − ln 2, . . ., − ln(N − 1), lnN
on the main diagonals, respectively. Then ‖A‖C∞,∞ = ‖B‖C∞,∞ = 1, while
‖A + B‖C∞,∞ = 2 lnN can be arbitrarily large. The same calculation shows
that there is no nontrivial upper bound for the ratio ‖A±‖C∞,∞/‖A‖C∞,∞ , where
A is self-adjoint and A± are the negative/positive parts of A, de�ned spectrally.

One of the main goals of the paper is to show that the triangular projection
is bounded as an operator from C∞ to C∞,∞, under the additional compactness
assumption.

Theorem 1.1. For any N and any operator A ∈ CN∞ we have the estimate

‖T (A)‖CN
∞,∞
≤ 32‖A‖CN

∞
. (3)

In addition, if A ∈ C∞ and T (A) is compact, then

‖T (A)‖C∞,∞ ≤ 32‖A‖C∞ . (4)

As we will see, the main di�culty lies in proving (3); the passage to the
in�nite-dimensional case involves standard limiting arguments only. This ob-
servation reduces the problem to the analysis of appropriate trace inequalities
for �nite-dimensional matrices, which are of their own interest.

As an exemplary application of the above theorem, consider the Toeplitz
matrices

An =



0 −1 − 1
2 − 1

3 . . . − 1
n

1 0 −1 − 1
2 . . . − 1

n−1
1
2 1 0 −1 . . . − 1

n−2
1
3

1
2 1 0 . . . − 1

n−3

. . . . . . . . . . . . . . . . . .
1
n

1
n−1

1
n−2

1
n−3 . . . 0


, n = 1, 2, . . . .

which are closely related to the so-called Hilbert matrix, playing an important
role in harmonic analysis (see e.g. Chapter II in [6] or Section 1 in [9]). It is well-
known that supn≥1 ‖An‖ = π and supn≥1 ‖T (An)‖ =∞: a convenient reference
is [4, p. 306]. Theorem 1.1 implies that ‖T (An)‖C∞,∞ ≤ 32π, n = 1, 2, . . ..
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The second application is related to the interpolation results obtained in
[1]. Let S denote the Calderón maximal operator which acts on nonnegative
functions on (0,∞) by

S(f)(t) =
1

t

∫ t

0

f(s)ds+

∫ ∞
t

f(s)
ds

s
, t > 0.

Theorem 2.2 of [1], combined with (1) and Theorem 1.1 above yields the fol-
lowing fact. With a slight abuse of notation, the symbol A∗∗ stands for the
maximal function of A, that is, A∗∗(t) = 1

t

∑
1≤k≤t sk(A). This should not lead

to any confusion: the notation will be used just once, in the statement below,
and it is consistent with the above measure-theoretic context.

Theorem 1.2. Let A be a compact operator whose projection T (A) is also
compact. Then for any t > 0 we have

T (A)
∗∗
(t) ≤ CS(A∗∗)(t),

where C is a universal constant.

Finally, we would like to comment on the compactness assumption appearing
in the second part of Theorem 1.1. It plays the role of an appropriate localization
which is very natural if we compare the result to similar statements in the
functional context. For example, for the analytic projection Pa on the real line
(cf. Chapter III in [6]), one proves easily that the estimate

‖Paf‖weak(L∞(R)) ≤ K‖f‖L∞(R) (5)

does not hold in general with any �nite constant K. To �x the inequality, one
can use one of the following options: (i) consider its periodic version; (ii) in-
vestigate (5) for compactly supported functions f (which leads to the so-called
restricted weak-type estimates [1]); (iii) localize the norm on the left, replacing
it by ‖Paf‖weak(L∞(0,1)). All these modi�cations, on the level of matrices, cor-
respond to imposing the compactness assumption on the function on the left.
Furthermore, note that (i) suggests a simple su�cient condition on A which
guarantees the compactness of T (A): this is the case if A is of �nite rank.

The rest of the paper is organized as follows. The next section contains
some preliminary material: we introduce some basic matrices and study their
properties. Section 3 is devoted to the proof of Theorem 1.1.

2. Some special matrices and their properties

We start with a simple fact which follows directly from the de�nition of
matrix multiplication. Here and below, the symbol `0' will denote a square or
rectangular matrix (the dimension will be always speci�ed or clear from the
context), with all entries equal to zero.
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Lemma 2.1. Suppose that A, B are square matrices of the block form

A =

[
A11 0

0 A22

]
, B =

[
0 B12

B21 0

]
,

such that the corresponding blocks in A and B have the same dimension. Then

Tr(AB) = Tr(BA) = 0. (6)

From now on, we assume that A = (ai,j)1≤i,j≤N is a �xed matrix of dimen-
sion N ×N . For a given 1 ≤ k ≤ N , de�ne

Ck =



0 0 . . . 0 a1,k 0 . . . 0
0 0 . . . 0 a2,k 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 ak−1,k 0 . . . 0
ak,1 ak,2 . . . ak,k−1 ak,k 0 . . . 0
0 0 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0


and

Dk =



0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0
ak,1 ak,2 . . . ak,k−1 ak,k 0 . . . 0
0 0 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0


.

The following properties of these matrices will be needed later.

Lemma 2.2. We have A =
∑N
k=1 Ck,

∑N
k=1 |Dk|2 = |T (A)|2 and |Dk|2 ≤ |Ck|2.

Proof. The �rst identity is clear. To check the second equality, observe that
(|Dk|2)i,j , i.e., the entry of |Dk|2 which lies in the i-th row and j-th column, is
equal to ak,iak,j if both i and j do not exceed k, and zero otherwise. Conse-
quently, for any 1 ≤ i, j ≤ N ,(

N∑
k=1

|Dk|2
)
i,j

=
∑

k≥max{i,j}

ak,iak,j = (|T (A)|2)i,j .

To establish the estimate |Dk|2 ≤ |Ck|2, set Bk = Ck −Dk and observe that

|Ck|2 = (B∗k +D∗k)(Bk +Dk) = |Bk|2 +B∗kDk +D∗kBk + |Dk|2 = |Bk|2 + |Dk|2.

This completes the proof.
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In our considerations below, it will also be convenient for us to work with
a larger algebra of matrices of dimension N(N + 1) × N(N + 1). In what
follows, the symbol I will stand for the identity matrix in this larger dimension.
Furthermore, for any 1 ≤ k ≤ N , let Sk be given, in the block form, by

Sk =



0 D∗1 D∗2 . . . D∗k 0 . . . 0

D1 0 0 . . . 0 0 . . . 0

D2 0 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
Dk 0 0 . . . 0 0 . . . 0

0 0 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 . . . 0


.

Here each block is a matrix of dimension N×N , there are N+1 block-rows and
N + 1 block-columns. The relation between SN and the triangular projection
T (A) is studied in a lemma below.

Lemma 2.3. For any function f : R → R we have the identity Tr(f(|SN |)) =
2Tr(f(|T (A)|)).

Proof. We have

|SN |2 =

[ ∑N
k=1 |Dk|2 0

0
[
DiD

∗
j

]
i,j

]
=

[
|T (A)|2 0

0
[
DiD

∗
j

]
i,j

]

and hence for any positive integer m,

|SN |2m =

 |T (A)|2m 0

0

([
DiD

∗
j

]
i,j

)m  .
This implies

Tr(|SN |2m) = Tr(|T (A)|2m) + Tr

(([
DiD

∗
j

]
i,j

)m)
and by the tracial property, we have

Tr

(([
DiD

∗
j

]
i,j

)m)
= Tr

((
(D1, D2, . . . , DN )T (D∗1 , D

∗
2 , . . . , D

∗
N )
)m)

= Tr
((

(D∗1 , D
∗
2 , . . . , D

∗
N )(D1, D2, . . . , DN )T

)m)
= Tr

((
N∑
k=1

|Dk|2
)m)

= Tr(|T (A)|2m).

Hence, for any polynomial W on R we have Tr(W (S2
N )) = 2Tr(W (|T (A)|2))

and the claim follows, since the spectra of |SN | and |T (A)| are �nite.
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The �nal step of this section is the introduction of a certain class (ek)0≤k≤N
of projections on CN(N+1), motivated by the construction due to Cuculescu [5].
Assume that λ is a �xed positive parameter. Let e0 = I be the identity matrix
(of dimension N(N + 1)×N(N + 1)) and de�ne, inductively,

ek = ek−1χ(−∞,λ)(ek−1Skek−1) k = 1, 2, . . . , N. (7)

To gain some intuition about these operators, observe that ek is a projection
onto the subspace on which all the matrices S1, S2, . . ., Sk are smaller than
λI. In other words, ek can be regarded as a formal version of the projec-
tion χ(−∞,λ)(max1≤j≤k Sj) (of course, the latter symbol makes no sense: the
maximum of matrices is not well-de�ned). In addition, note that due to the ap-
pearance of ek−1 in front of the right-hand side of (7), the sequence (ek)0≤k≤N
is nonincreasing.

Further properties of these projections are studied in a lemma below.

Lemma 2.4. (i) For any k the projection ek has the block form

[
b 0

0 I(N−k)N

]
,

where b is a matrix of dimension (k+1)N × (k+1)N and I(N−k)N is the iden-
tity matrix. Furthermore, the upper-left block of b of dimension N ×N is of the

form

[
c 0

0 IN−k

]
.

(ii) For all 1 ≤ j ≤ k ≤ N we have

ekSjek ≤ λek and (ek−1 − ek)Sk(ek−1 − ek) ≥ λ(ek−1 − ek).

(iii) For all 1 ≤ k ≤ j ≤ N , we have Tr(ekSjek) = Tr(ekSkek).
(iv) For all 1 ≤ k ≤ N , we have

Tr((ek−1−ek)(SN−Sk)ek(Sk−λI)) = Tr((ek−1−ek)(Sk−λI)ek(SN−Sk)) = 0.

(v) If ‖A‖ ≤ 1, then for all 1 ≤ k ≤ N , we have

Tr((ek−1 − ek)(SN − Sk)2) ≤ 4Tr(ek−1 − ek).

(vi) For any λ ≥ a > 0 we have Tr(I − eN ) ≤ a−1 Tr
(
(SN − (λ− a)I)+

)
.

Proof. (i) We will only prove the �rst half, the second is established analogously.
We proceed by induction. The claim is clear for k = 0; assuming its validity
for k− 1, we see that all entries of ek−1Skek−1, which lie outside the upper-left
corner of dimension (k + 1)N × (k + 1)N , are equal to zero. This proves that
ek is of the desired form.

(ii) This follows directly from the very de�nition of ek.
(iii) We rewrite the identity in the form Tr(ek(Sj−Sk)ek) = 0 or Tr(ek(Sj−

Sk)) = 0, by the tracial property. The latter equality follows from Lemma 2.1
and part (i).

(iv) We proceed as in the proof of the previous part. By the tracial property,
we have

Tr((ek−1 − ek)(SN − Sk)ek(Sk − λI)) = Tr
(
ek(Sk − λI)(ek−1 − ek)(SN − Sk)

)
8



and it remains to note that the matrices ek(Sk − λI)(ek−1 − ek), SN − Sk have
appropriate block structure as in Lemma 2.1. The second trace in the assertion is
handled by passing to the adjoint matrix, showing that both traces are actually
equal.

(v) Here the argument will be a little more involved. Observe that

Tr((ek−1 − ek)(SN − Sk)2) =
∑

k+1≤i,j≤N

Tr((ek−1 − ek)(Si − Si−1)(Sj − Sj−1))

=

N∑
j=k+1

Tr((ek−1 − ek)(Sj − Sj−1)2),

since for i 6= j we have Tr((ek−1 − ek)(Si − Si−1)(Sj − Sj−1)) = 0 (which can
be proved exactly in the same manner as parts (iii) and (iv) above). Next,
by part (i), we see that all the entries of the projection ek−1 − ek which lie
outside the upper-left corner of dimension (k + 1)N × (k + 1)N , are equal to
zero. Consequently, for j ≥ k + 1,

(ek−1 − ek)(Sj − Sj−1)2 = (ek−1 − ek)


|Dj |2 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0

 .
Indeed, in the formula for (Sj−Sj−1)2 there would be an additional entry |D∗j |2
in the j-th row and j-th column, but it can be omitted due to the block form of
ek−1−ek discussed above. Summing over j and applying Lemma 2.2, we obtain

N∑
j=k+1

Tr((ek−1 − ek)(Sj − Sj−1)2)

= Tr

(ek−1 − ek)


∑N
j=k+1 |Dj |2 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0




≤ Tr

(ek−1 − ek)


∑N
j=k+1 |Cj |2 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0


 .

Now we will prove the identity

Tr

(ek−1 − ek)


C∗i Cj 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0


 = 0, i, j ≥ k + 1, i 6= j. (8)
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Before we do this, let us see how it shows the claim. Combining the last two
identities yields

Tr((ek−1 − ek)(SN − Sk)2)

≤ Tr

(ek−1 − ek)


∑
i, j≥k+1 C

∗
i Cj 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0




= Tr

(ek−1 − ek)


|
∑N
j=k+1 Cj |2 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0


 .

But
∑N
j=k+1 Cj = A − Pk(A), where Pk(A) is obtained from A by leaving the

upper-left corner of dimension k×k unchanged, and changing all the remaining
entries to zero. Since ‖Pk(A)‖ ≤ ‖A‖ ≤ 1, we get ‖A − Pk(A)‖ ≤ 2 and the
desired estimate follows.

It remains to show (8). Let us look at the product of the matrices under the
trace. We may restrict ourselves to the upper-left corners of dimension N ×N ,
the other parts do not contribute to the trace. By the second half of part (i),

the corresponding corner for the projection ek−1−ek is of the form
[
c 0

0 0

]
for

some matrix c of dimension k×k; by the very de�nition of Cj , the corresponding

block form of C∗i Cj is

[
0 d

e f

]
. The product of these two matrices, and hence

also the product under the trace in (8), has only zeros on the main diagonal.
This gives the claim.

(vi) By the tracial property and parts (ii) and (iii) established above, we
have

λTr(I − eN ) = λ

N∑
k=1

Tr(ek−1 − ek)

≤
N∑
k=1

Tr((ek−1 − ek)Sk(ek−1 − ek))

=

N∑
k=1

[
Tr(ek−1Skek−1)− Tr(ekSkek)

]
=

N∑
k=1

[
Tr(ek−1SNek−1)− Tr(ekSNek)

]
=

N∑
k=1

[
Tr(SN )− Tr(eNSNeN )

]
= Tr((I − eN )SN ).
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This implies

aTr(I − eN )

≤ Tr
(
(I − eN )(SN − (λ− a)I)

)
= Tr

(
(I − eN )(SN − (λ− a)I)+

)
+Tr

(
(I − eN )(SN − (λ− a)I)−

)
≤ Tr

(
(I − eN )(SN − (λ− a)I)+

)
≤ Tr

(
(SN − (λ− a)I)+

)
,

where the last two inequalities follow from the fact that the matrix (SN − (λ−
a)I)− is nonpositive, while I − eN is nonnegative.

3. Proof of the weak-type estimate

Equipped with all the auxiliary objects, we turn our attention to the weak-
type estimate (3). The proof will be split into several intermediate lemmas.

Lemma 3.1. We have

Tr
(
(I − eN ) (SN − λI)2

)
≤ 2

N∑
k=1

Tr
(
(ek−1 − ek) (SN − λI) ek−1 (SN − λI)

)
.

(9)

Proof. The argument rests on an appropriate splitting and rearrangement of
terms. First, we have I =

∑N
k=1(ek−1 − ek) + eN , which implies

Tr
(
(I − eN ) (SN − λI)2

)
=

N∑
j=1

N∑
k=1

Tr ((ek−1 − ek) (SN − λI) (ej−1 − ej) (SN − λI))

+ Tr ((I − eN ) (SN − λI) eN (SN − λI)) .

By the tracial property, all the summands on the right are nonnegative. Con-
sequently, we get

Tr
(
(I − eN ) (SN − λI)2

)
≤ 2

∑
k≤j

Tr ((ek−1 − ek) (SN − λI) (ej−1 − ej) (SN − λI))

+ 2Tr ((I − eN ) (SN − λI) eN (SN − λI))

= 2

N∑
k=1

Tr ((ek−1 − ek) (SN − λI) (ek−1 − eN ) (SN − λI))

+ 2

N∑
k=1

Tr ((ek−1 − ek) (SN − λI) eN (SN − λI))

= 2

N∑
k=1

Tr ((ek−1 − ek) (SN − λI) ek−1 (SN − λI))

11



and we are done.

The above statement will allow us to obtain the following further bound for

the trace Tr
(
(I − eN ) (SN − λI)2

)
.

Lemma 3.2. If ‖A‖ ≤ 1, then we have the estimate

Tr
(
(I − eN ) (SN − λI)2

)
≤ 16Tr(I − eN ). (10)

Proof. We need to bound the summands on the right of (9) appropriately. We
start with the observation that

Tr
(
(ek−1 − ek)(SN − λI)ek−1(SN − λI)

)
= Tr

(
(ek−1 − ek)(SN − Sk + Sk − λI)ek−1(SN − Sk + Sk − λI)

)
= Tr

(
(ek−1 − ek)(SN − Sk)ek−1(SN − Sk)

)
+Tr

(
(ek−1 − ek)(Sk − λI)ek−1(Sk − λI)

)
≤ Tr

(
(ek−1 − ek)(SN − Sk)2

)
+Tr

(
(ek−1 − ek)(Sk − λI)ek−1(Sk − λI)

)
=: J1 + J2.

Here the second passage follows by Lemma 2.4 (iv) and the inequality is due to
the tracial property and the estimate ek−1 ≤ I:

Tr
(
(ek−1 − ek)(SN − Sk)ek−1(SN − Sk)

)
= Tr

(
(ek−1 − ek)(SN − Sk)ek−1(SN − Sk)(ek−1 − ek)

)
≤ Tr

(
(ek−1 − ek)(SN − Sk)2(ek−1 − ek)

)
= Tr

(
(ek−1 − ek)(SN − Sk)2).

Now, observe that J1 ≤ 4Tr(ek−1 − ek), by Lemma 2.4 (v). Furthermore, by
the very de�nition of ek, we have (ek−1 − ek)(Sk − λI)ek−1 = (ek−1 − ek)(Sk −
λI)(ek−1− ek) ≥ 0 and since Sk−1 ≤ λI on ek−1 (and hence also on ek−1− ek),
we get

(ek−1−ek)(Sk−λI)(ek−1−ek) ≤ (ek−1−ek)(Sk−Sk−1)(ek−1−ek) ≤ 2(ek−1−ek).

Here in the last passage we used the estimate ‖Sk − Sk−1‖ ≤ ‖Dk‖ ≤ 2‖A‖ ≤
2. Consequently, we obtain J2 = Tr

((
(ek−1 − ek)(Sk − λI)(ek−1 − ek)

)2) ≤
4Tr(ek−1 − ek) and by Lemma 3.1,

Tr
(
(I − eN ) (SN − λI)2

)
≤ 16

N∑
k=1

Tr(ek−1 − ek) = 16Tr(I − eN ).

The proof is complete.

The next statement establishes an important distributional estimate for SN .

12



Lemma 3.3. If ‖A‖ ≤ 1, then for any 0 < a ≤ λ < β we have

Tr(χ[β,∞)(SN )) ≤
32Tr

(
(SN − (λ− a))+

)
(β − λ)2a

. (11)

Proof. By Lemma 2.4 (ii), we have eNSNeN ≤ λeN , so

SN = eN (SN − λI)eN + (I − eN )(SN − λI)eN + (SN − λI)(I − eN ) + λI

≤ (I − eN )(SN − λI)eN + (SN − λI)(I − eN ) + λI.

Therefore, Chebyshev's inequality implies

Tr(χ[β,∞)(SN ))

≤ Tr
(
χ[β−λ,∞)

(
(I − eN )(SN − λI)eN + (SN − λI)(I − eN )

))
≤ (β − λ)−2 Tr

((
(I − eN )(SN − λI)eN + (SN − λI)(I − eN )

)2)
≤ 2(β − λ)−2 Tr

(
(I − eN )(SN − λI)2

)
.

It su�ces to apply the previous lemma and part (vi) of Lemma 2.4.

If we replace, in all the above considerations, the operators Sn by −Sn, n =
1, 2, . . . , N , and repeat the reasoning word-by-word, we obtain the analogous
estimate

Tr(χ(−∞,−β](SN )) ≤ 32Tr((−SN − (λ− a)I)+)
(β − λ)2a

.

Adding this to (11), we get

Tr
(
χ[β,∞)(|SN |)

)
≤

32Tr
(
(|SN | − (λ− a)I)+

)
(β − λ)2a

.

Hence by Lemma 2.3, we conclude that

Tr
(
χ[β,∞)(|T (A)|)

)
≤

32Tr
(
(|T (A)| − (λ− a)IN )+

)
(β − λ)2a

, (12)

where IN denotes the identity matrix of dimension N ×N .

We are ready for the proof of the weak-type estimate.

Proof of (3). Let α ≥ 0 and a > 0. Integrating by parts, we get

Tr
((
|T (A)| − αIN

)
+

)
=

∫ ∞
α

Tr
(
χ[β,∞)(|T (A)|)

)
dβ.

Let us bound appropriately the integrand on the right. If β ∈ [α, α+ 2a], then
we have the obvious estimate Tr

(
χ[β,∞)(|T (A)|)

)
≤ Tr

(
χ[α,∞)(|T (A)|)

)
; for

13



β > α+ 2a, we apply (12) with λ = α+ a. As the result, we obtain

Tr
((
|T (A)| − αIN

)
+

)
≤
∫ α+2a

α

Tr
(
χ[α,∞)(|T (A)|)

)
dβ

+

∫ ∞
α+2a

32Tr
(
(|T (A)| − αIN )+

)
(β − α− a)2a

dβ

= 2aTr
(
χ[α,∞)(|T (A)|)

)
+

32

a2
Tr
(
(|T (A)| − αIN )+

)
.

Putting a = 8 and rearranging terms, we get

Tr
((
|T (A)| − αIN

)
+

)
≤ 32Tr

(
χ[α,∞)(|T (A)|)

)
,

or
Tr
(
|T (A)|χ[α,∞)(|T (A)|)

)
Tr
(
χ[α,∞)(|T (A)|)

) − α ≤ 32.

Therefore, if we set α = sn(T (A)) (where 1 ≤ n ≤ N is arbitrary), we obtain

1

n

n∑
k=1

sk(T (A))− sn(T (A)) ≤ 32.

Taking the supremum over n yields ‖T (A)‖C∞,∞ ≤ 32‖A‖C∞ , which is the
claim.

Proof of (4). Let A be an arbitrary element of C∞ such that T (A) is com-
pact. Let PN : C∞ → CN∞ denote the projection onto the upper-left corner
of dimension N ×N . Then, by the compactness of T (A), we have the conver-
gence PN (T (A)) = T (PN (A)) → T (A) in norm and limN→∞ sn(PN (T (A)) =
sn(T (A)) for each n, so

1

n

n∑
k=1

sk(T (A))− sn(T (A))

= lim
N→∞

(
1

n

n∑
k=1

sk(T (PN (A)))− sn(T (PN (A)))

)
≤ 32,

where the latter estimate follows from (3). This yields the assertion.
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