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AND SHARP INEQUALITIES FOR MARTINGALES
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Abstract. Bellman function method is an efficient device which enables to
relate certain types of estimates arising in probability and harmonic analysis
to the existence of the associated special function satisfying appropriate ma-
jorization and concavity. This technique has gained considerable interest in the
recent years and led to many interesting results concerning the boundedness of
wide classes of singular integrals, Fourier multipliers, maximal functions and
other related objects. The objective of this survey is to describe the Bellman
function approach to certain classical results for martingale transforms. We
present the detailed study of the weak-type and moment estimates, and de-
velop some arguments which allow us to simplify and extend the statements,
originally proved by Burkholder and others.
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1. Introduction

Bellman function method is a powerful tool in proving various types of inequal-
ities arising in probability and harmonic analysis. The technique has its origins
in the theory of stochastic optimal control, and its fruitful connection with other
areas of mathematics was firstly observed by Burkholder in [8], during the study of
certain sharp inequalities for martingale transforms. Since then, the approach has
been extended and applied essentially in two directions. The first path is proba-
bilistic: Burkholder’s arguments from [8] were modified and exploited extensively
to investigate numerous estimates for semimartingales. The literature here is quite
large, we mention here only the subsequent works of Burkholder [10]-[13], K. P.
Choi [14], [15], Suh [44], Wang [51]-[53] and the monograph [33] by the author,
which contains the more complete bibliography on the subject. The second path,
which pushed the method towards applications in harmonic analysis, started with
the seminal paper [29] by Nazarov and Treil (inspired by the preprint version of
[30]). This analytic approach has been continued in many papers, including the
works of Dragičević and Volberg [20]-[22], Ivanishvili et. al. [23], Melas [26], Melas
and Nikolidakis [27], Nazarov, Treil and Volberg [31], Slavin, Stokolos and Vasyunin
[41], Slavin and Vasyunin [42], [43], Vasyunin [45], [46], Vasyunin and Volberg [47]-
[49] and the author [35]. The results in the aforementioned papers have found many
important applications, including tight bounds for wide classes of Fourier multipli-
ers and stochastic integrals: see the papers cited above, consult also Bañuelos,
Bielaszewski and Bogdan [1], Bañuelos and Wang [2], Borichev, Janakiraman and
Volberg [3], [4], Nazarov and Volberg [32], the author [34], and the works of many
other mathematicians.

The purpose of the current work is to present the refined study of some fundamen-
tal results for martingale transforms, with the use of both probabilistic and analytic
aspects of the Bellman function method. The contents of this survey extends and
complements the material contained in the monograph [33]. Our contribution will
be of twofold nature. First, this mixed approach will allow us to strengthen some
of the classical results: we will obtain a more exact information on the control of a
martingale over its ±1-transforms. Second, we will present a certain simplification
argument which, in a sense, splits the problem of identifying a given Bellman func-
tion into two easier steps. In some cases, this argument reduces significantly the
technical difficulties involved in the search of the corresponding Bellman function
and, as we hope, can be applied and further extended in many other problems of
this type.

We start with some motivation and introduce some basic notation. Let (hn)n≥0

be the Haar system on [0, 1]. Recall that this family of functions is given by

h0 = [0, 1), h1 = [0, 1/2)− [1/2, 1),

h2 = [0, 1/4) − [1/4, 1/2), h3 = [1/2, 3/4)− [3/4, 1),

h4 = [0, 1/8) − [1/8, 1/4), h5 = [1/4, 3/8)− [3/8, 1/2),

h6 = [1/2, 5/8)− [5/8, 3/4), h7 = [3/4, 7/8)− [7/8, 1)

and so on (here we have identified a set with its indicator function). As shown
by Schauder [40], this collection forms a basis in Lp(0, 1) (endowed with Lebesgue
measure) for 1 ≤ p < ∞. A classical result of Marcinkiewicz [25] (exploiting the
earlier work of Paley [37]) asserts that this basis is unconditional if and only if
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1 < p < ∞. That is, for any such p there is a finite constant βp (depending only on
p), such that the following holds: for any sequence a0, a1, a2, . . . of real numbers
and any sequence ε0, ε1, ε2, . . . of signs, we have

(1.1)
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This beautiful property of (hn)n≥0 is a starting point for various extensions, which
greatly influenced the shape of contemporary mathematics and stimulated the de-
velopment of many areas, including harmonic analysis, complex analysis, interpo-
lation theory and the geometry of Banach spaces.

We will be interested in the probabilistic version of (1.1), obtained in 1966 by
Burkholder [5]. Suppose that (Ω,F , P) is a probability space, filtered by (Fn)n≥0,
a non-decreasing family of sub-σ-algebras of F . Let f = (f0, f1, f2, . . .) be a real,
adapted martingale with difference sequence df = (df0, df1, df2, . . .). That is,

fn =

n
∑

k=0

dfk, n = 0, 1, 2, . . . ,

where for each k the variable dfk : Ω → R is integrable and Fk-measurable with
E(dfk+1|Fk) = 0 (the latter condition is equivalent to saying that for any bounded
function ϕ : R

k+1 → R we have E
[

dfk+1ϕ(f0, f1, . . . , fk)
]

= 0). We say that
g = (g0, g1, g2, . . .) is a ±1-transform of f , if there is a deterministic sequence ε0,
ε1, ε2, . . . of signs such that

gn =

n
∑

k=0

εkdfk, n = 0, 1, 2, . . . .

That is, for any n ≥ 0 we have dgn ≡ dfn or dgn ≡ −dfn. Note that the sequence
g is also an adapted martingale. The aforementioned result of Burkholder can be
stated as follows.

Theorem 1.1. For any 1 < p < ∞ there is a constant βp depending only on p,
such that if f is a martingale and g is its ±1-transform, then

(1.2) ||gn||p ≤ βp||fn||p, n = 0, 1, 2, . . . .

Here we have used the notation ||fn||p = ||fn||Lp(Ω). Actually, Burkholder proved
this strong-type estimate in the more general case when ε0, ε1, ε2, . . . is an arbitrary
predictable sequence bounded in absolute value by 1. Here by predictability we
mean that each εk is F(k−1)∨0-measurable (and in particular, it may be random).
However, in our considerations below, we will be mainly concerned with the case
when ε is a deterministic sequence of signs: in most situations, having proved an
estimate in this extremal setting, one deduces the more general predictable version
with the use of appropriate decomposition theorems (cf. Lemma A.1 in [10]).

Haar system forms a martingale difference sequence on the probability space
([0, 1],B(0, 1), | · |) (equipped with its natural, dyadic filtration), and hence so does
(anhn)n≥0, for an arbitrary sequence a0, a1, a2, . . . of real numbers. Consequently,
the above statement does generalize (1.1). As a further illustration, let us provide
another, closely related example.
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Definition 1.2. A system {An,i : i = 1, 2, . . . , 2n, n = 0, 1, 2, . . .} of subsets of
[0, 1] is called a dyadic tree, if for all n and 1 ≤ i ≤ 2n we have

An+1,2i−1 ∩ An+1,2i = ∅

and

An+1,2i−1 ∪ An+1,2i = An,i.

Definition 1.3. Given a dyadic tree of sets satisfying µ(An,i) > 0 for all n and
i, we define the associated generalized Haar sequence h = (hk)k≥0 by h0 = h0,1 =
χA0,1

/||χA0,1
||1 and

h2n−1+i−1 = hn,i = Hn,i/||Hn,i||1,

where

Hn,i = χAn,2i−1
/µ(An,2i−1) − χAn,2i

/µ(An,2i), i ≤ 2n, n = 1, 2, . . . .

As in the classical case, one easily verifies that the generalized Haar system
(hn)n≥0 is a martingale difference sequence with respect to the filtration it gener-
ates. Thus, if (hn)n≥0 forms a basis of Lp(0, 1) (for some 1 < p < ∞), then (1.2)
implies that it is automatically unconditional. This statement is a particular case
of a more general fact, which also follows from (1.2), that every monotone basis of
Lp(0, 1) is unconditional; see Dor and Odell [18] and Pe lczyński and Rosenthal [38].
Consult also the first of these papers and the work of Doust [19] for closely related
results concerning contractive projections in Lp.

Let us say a few words about the proof of (1.2). In his original approach,
Burkholder established first the related weak-type bound

(1.3) P(|gn| ≥ 1) ≤ c||fn||1, n = 0, 1, 2, . . . ,

for some absolute constant c. Since ||gn||2 = ||fn||2 (which is a consequence of the
orthogonality of martingale differences), Marcinkiewicz interpolation theorem gives
the Lp bound for 1 < p < 2, and the case 2 < p < ∞ follows from duality arguments.
This reasoning, though simple and very natural, does not produce the best (i.e.,
the least possible) value of the constant βp. From the viewpoint of applications
(as well as for aesthetic reasons), it is desirable to identify this optimal number for
each p. To accomplish this, Burkholder refined his proof and constructed in [8] a
certain special object: the Bellman function associated with the inequality (1.2).
The careful exploitation of the properties of this function yields that the best βp in
(1.2) equals p∗ − 1, where p∗ = max{p, p/(p− 1)}. In fact, the paper [8] contains a
number of other estimates, proved by the Bellman function approach, including the
sharp version of (1.3) as well as the more general sharp weak-type (p, p) estimate
for 1 ≤ p ≤ 2:

(1.4) P(|gn| ≥ 1) ≤
2

Γ(p + 1)
||fn||

p
p, n = 0, 1, 2, . . . .

For the review of further results in this direction, we refer the interested reader to
the monograph [33] and the references therein.

In what follows, we will mainly focus on the estimates (1.2), (1.3), (1.4) and
their various improvements. The remainder of this paper is organized as follows.
The next section contains the description of the Bellman function method in the
probabilistic setting. In Section 3 we apply the technique to study various versions
of weak-type inequalities for martingale transforms. The final part of the paper
addresses the strong-type bound and its certain aspects.
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Before we proceed, we would like to point out that in general, the guessing of the
Bellman function is a difficult task, and in fact, in most cases it is the heart of the
matter. Having constructed this special object, the verification that it enjoys all
the necessary properties (and hence yields the desired bound) is just a question of
some more or less complicated calculations. For the readers’ convenience, in most
of the estimates studied below, we have decided to present the detailed steps which
lead to the discovery of the associated Bellman function. As we hope, this can be
helpful during the study of other related problems which arise naturally in the area.
On the other hand, to control the size of this survey, we have decided to skip some
technicalities, referring instead to the papers where they were originally proved.

2. Bellman function method

The underlying concept of the Bellman function method, both in the proba-
bilistic and analytic version, relates the validity of a certain given inequality to
the existence of a certain special function, which possesses appropriate majoriza-
tion and concavity-type properties. Actually, this special object often carries much
more information concerning the problem: see below. The purpose of this section is
to present the probabilistic version of the technique. The contents of this part of the
survey is a refined version of Chapter 2 from [33], combined with some arguments
taken from the works [8], [10], [29] and [49].

2.1. A basic version. Assume that (Ω,F , P) is a probability space equipped with
the filtration (Fn)n≥0, a nondecreasing sequence of sub-σ-algebras of F . In what
follows, f = (fn)n≥0, g = (gn)n≥0 will be two adapted martingales taking values
in R, with the corresponding difference sequences (dfn)n≥0, (dgn)n≥0, respectively.
We may and will assume that (Fn)n≥0 is the natural filtration of f and g, i.e.,
Fn = σ(f0, g0, f1, g1, . . . , fn, gn) for each n ≥ 0.

In the previous section we assumed that dgn = εndfn for each n, but it will be
convenient to work with a wider class of sequences. For any x, y ∈ R, let M(x, y)
denote the class of all pairs (f, g) of adapted martingales satisfying (f0, g0) ≡ (x, y)
(that is, f starts from x and g starts from y), such that dgn ≡ dfn or dgn ≡ −dfn

for any n ≥ 1. Thus, we see that g need not be the ±1-transform of f , but this
can be violated only on the first difference (which happens if and only if x 6= ±y).
We stress here that the filtration can vary, as well as the underlying probability
space (unless it is nonatomic). For technical reasons, we will assume throughout
that f is a simple martingale: that is, for any nonnegative integer n the random
variable fn takes a finite number of values and there is a deterministic integer N
such that fN = fN+1 = fN+2 = . . .. Of course, then g is also simple, and in a
typical situation it suffices to deal with a given martingale inequality under such
more restrictive assumption (the passage to the general case follows by standard
approximation).

Next, let V : R×R → R be a function, not necessarily Borel or even measurable.
Suppose that we are interested in the numerical value of the associated Bellman
function

(2.1) B0(x, y) = sup
{

EV (fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

.

Of course, there is no problem with measurability or integrability of V (fn, gn), since
the sequences f and g are simple.
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The relation between the function B0 and the bounds mentioned in the previous
section is evident. For instance, the inequality (1.2) is equivalent to saying that
B0(x,±x) ≤ 0 for all x ∈ R, where the underlying function V is given by V (x, y) =
|y|p − βp

p |x|
p. The same applies to (1.3), (1.4), and it is clear that a large class

of martingale inequalities (encoded with appropriate V ) can be deduced from the
corresponding upper bounds for B0. At the first glance it seems that only the
values of B0 at the diagonals y = ±x are relevant, but this is not the case: the use
of a certain inductive argument (see below) requires the knowledge of the values of
B0 on the whole domain R × R. As a by-product, if we successfully estimate B0

on the plane, we get more information about the underlying inequality: we obtain
a related result for martingales starting from arbitrary points (but then evolving
according to the transforming sequence ε1, ε2, . . .).

The key idea during the search of an upper bound for B0 is to introduce a class
of special functions. The class consists of all B : R × R → R which satisfy the
following conditions 1◦ and 2◦:

1◦ (Majorization property) For all x, y ∈ R,

(2.2) B(x, y) ≥ V (x, y).

2◦ (Concavity-type property) For all x, y ∈ R, ε ∈ {−1, 1} and any α ∈ (0, 1),
t1, t2 ∈ R such that αt1 + (1 − α)t2 = 0, we have

(2.3) αB(x + t1, y + εt1) + (1 − α)B(x + t2, y + εt2) ≤ B(x, y).

By a straightforward induction argument, the condition 2◦ is equivalent to the
following: for any (x, y) ∈ R

2, any ε ∈ {−1, 1} and any simple mean-zero variable
ξ we have

(2.4) EB(x + ξ, y + εξ) ≤ B(x, y).

That is to say, (2.3) means that the function B is diagonally concave, i.e., concave
along the lines of slope ±1.

What is the connection between the above class and the Bellman function B0?
The answer is contained in the two statements below, Theorem 2.1 and 2.2.

Theorem 2.1. Suppose that B satisfies 1◦ and 2◦ and let f , g be two simple
martingales such that dgn ≡ dfn or dgn ≡ −dfn for all n ≥ 1. Then we have

(2.5) EV (fn, gn) ≤ EB(f0, g0), n = 0, 1, 2, . . . .

In particular, this implies

(2.6) B0(x, y) ≤ B(x, y) for all x, y ∈ R.

Proof. The general fact, which is valid in essentially all versions of the Bellman
method, is that the composition of the special function with the underlying pro-
cesses forms a supermartingale. In our situation, the sequence (B(fn, gn))n≥0 has
this property. Indeed, all the variables involved are integrable (by simplicity of f
and g); furthermore, for any n ≥ 1 we have

E
[

B(fn, gn)|Fn−1

]

= E
[

B(fn−1 + dfn, gn−1 + dgn)|Fn−1

]

.

Applying (2.4) conditionally on Fn−1, with x = fn−1, y = gn−1, ε = εn and ξ = dfn,
we get the supermartingale property. Combining this with the majorization 1◦, we
obtain

(2.7) EV (fn, gn) ≤ EB(fn, gn) ≤ EB(f0, g0)



MARTINGALE INEQUALITIES 7

and the proof is complete. �

As a corollary, we see that B0(x, y) ≤ inf B(x, y), where the infimum is taken
over all B satisfying 1◦ and 2◦. The remarkable feature of the method is that the
reverse estimate is also valid. Namely, we have the following statement.

Theorem 2.2. If B0 is finite, then it is the least function satisfying 1◦ and 2◦.

Proof. The fact that B0 satisfies 1◦ is immediate: the deterministic constant pair
(x, y) belongs to M(x, y). To prove 2◦, we make use the so called “splicing ar-
gument”. Take x, y, ε, α, t1, t2 as in the statement of the condition. Pick two
arbitrary pairs (f j , gj) from the class M(x + tj , y + εtj), j = 1, 2. We may assume
that these pairs are given on the Lebesgue’s probability space ([0, 1],B([0, 1]), | · |),
equipped with some filtration. By the simplicity, there is a deterministic integer T
such that these pairs terminate before time T . Now we will “glue” these pairs into
one using the number α. To be precise, let (f, g) be a pair on ([0, 1],B([0, 1]), | · |),
given by (f0, g0) ≡ (x, y),

(f2n−1, g2n−1)(ω) =

{

(f1
n−1, g

1
n−1)(ω/α) if ω ∈ [0, α) ,

(f2n−2, g2n−2)(ω) if ω ∈ [α, 1)

and

(f2n, g2n)(ω) =

{

(f2n−1, g2n−1)(ω) if ω ∈ [0, α),

(f2
n−1, g

2
n−1)

(

ω−α
1−α

)

if ω ∈ [α, 1) ,

when n = 1, 2, . . . , T. Finally, we let dfn = dgn ≡ 0 for n > 2T . Then it is
straightforward to check that f , g are martingales with respect to natural filtration
and (f, g) ∈ M(x, y). Therefore, by the very definition of B0,

B0(x, y) ≥ EV (f2T , g2T )

=

∫ α

0

V (f1
T−1, g

1
T−1)

(ω

α

)

dω +

∫ 1

α

V (f2
T−1, g

2
T−1)

(

ω − α

1 − α

)

dω

= αEV (f1
T−1, g

1
T−1) + (1 − α)EV (f2

T−1, g
2
T−1).

Taking supremum over the pairs (f1, g1) and (f2, g2) gives

B0(x, y) ≥ αB0(x + t1, y + εt1) + (1 − α)B0(x + t2, y + εt2),

which is 2◦. To see that B0 is the least special function, simply apply (2.6). �

The above two facts give the following general method of proving inequalities
for ±1-transforms. Let V : R × R → R be a given function and suppose we are
interested in showing that

(2.8) EV (fn, gn) ≤ 0, n = 0, 1, 2, . . . ,

for all simple f , g, such that dgn ≡ dfn or dgn ≡ −dfn for all n (in particular, also
for n = 0).

Theorem 2.3. The inequality (2.8) is valid if and only if there exists B : R×R → R

satisfying 1◦, 2◦ and the initial condition

3◦ B(x,±x) ≤ 0 for all x ∈ R.
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Proof. If there is a function B satisfying 1◦, 2◦ and 3◦, then (2.8) follows immedi-
ately from (2.5), since 3◦ guarantees that the term EB(f0, g0) is nonpositive. To
get the reverse implication, we use Theorem 2.2: as we know from its proof, the
function B0 satisfies 1◦ and 2◦. It also enjoys 3◦, directly from the definition of B0

combined with the inequality (2.8). The only thing which needs to be checked is
the finiteness of B0, which is assumed in Theorem 2.2. Since B0 ≥ V > −∞, we
only need to show the upper bound B0(x, y) < ∞ for every (x, y). The condition
3◦, which we have already established, guarantees the inequality on the diagonals
y = ±x. Suppose that |x| 6= |y| and let (f, g) be any pair from M(x, y). Consider
another martingale pair (f ′, g′), which starts from ((x+y)/2, (x+y)/2) and, in the
first step, moves to (x, y) or to (y, x). If it jumped to (y, x), it stops; otherwise, we
determine (f ′, g′) by the assumption that the conditional distribution of (f ′

n, g′n)n≥1

with respect to F1 coincides with the (unconditional) distribution of (fn, gn)n≥0.
We easily check that g′ is a ±1-transform of f ′, and hence, for any n ≥ 1,

0 ≥ EV (f ′
n, g′n) =

1

2
V (y, x) +

1

2
EV (fn−1, gn−1).

Consequently, taking supremum over f , g and n gives B0(x, y) ≤ −V (y, x) and we
are done. �

Let us say a few words about the notation we plan to use throughout; we hope
that the reader will find it helpful. Typically, the superscript “0” will be reserved
for the “theoretical” Bellman functions as in (2.1): that is, for such objects, we will
use the symbols B0, b0, b0

c , and so on. On the other hand, the lack of this superscript
(e.g., B, b, bc) will indicate that we work with the corresponding candidates.

We conclude this subsection by providing several important comments and ob-
servations.

(a) Suppose we want to show the inequality (2.8) for some given V . As we
have already proved, if this estimate holds true, it can be established with the use
of Theorem 2.3 above. A very natural question arises: is the special function B
unique (i.e., does it necessarily equals B0)? The answer in general is no, and in some
situations the choice of the right function does simplify the calculations involved.
On the other hand, we would like to repeat (and stress) here that the knowledge of
B0 is desirable: the discovery of this function brings much more information about
the estimate (2.8).

(b) As previously, suppose we are given a function V and we want to prove (2.8).
A natural idea in the search of the corresponding special function is to take a look
at the definition (2.1). This formula shows that B0 inherits some types of properties
from V . For instance, if V enjoys the symmetry property

(2.9) V (x, y) = V (−x, y) for all x, y ∈ R,

then so does B0. Indeed, we have (f, g) ∈ M(x, y) if and only if (−f, g) ∈ M(−x, y),
so

B0(−x, y) = sup
{

EV (fn, gn) : (f, g) ∈ M(−x, y), n = 0, 1, 2, . . .
}

= sup
{

EV (−fn, gn) : (−f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

= B0(x, y).

Analogously, if V is homogeneous of order p, then the same is true for B0. This
can be shown as above, with the use of the fact that (f, g) ∈ M(x, y) if and only
if (λf, λg) = M(λx, λy) for all λ 6= 0. In other words, if V has a property of the
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above type, then we may search for Bellman function in the class of all functions
which share this property.

(c) The above method concerns real-valued martingales f and g. This can be
easily modified to the case when the sequences take values in some other domains.
For instance, suppose we are interested in showing (2.8) for nonnegative f (but g
may take negative values). Then all the above arguments remain valid (only some
minor straightforward modifications are required). Namely, one needs to construct
appropriate special functions on [0,∞)×R and the parameters x, ti appearing in 2◦

must be assumed to satisfy x+ti ≥ 0. We leave the necessary changes to the reader.
Analogously, one extends the method so that it worked for Hilbert or Banach-space
valued sequences: see Subsection 2.3 below, and [10], [33] for the more detailed
exposition.

(d) There is an iterative procedure which may be helpful in some situations,
as it provides some approximation for Bellman function. This type of reasoning
has its roots in the theory of moments: for the description of this theory, see e.g.
Kemperman [24] and Cox [16], [17]. Suppose that V : R × R → R is given and
fixed, and we aim at solving (2.1). Consider the sequence (Vn)n≥0 of real-valued
functions on R × R, given by V0 = V and, for n ≥ 0 and (x, y) ∈ R

2,

(2.10) Vn+1(x, y) = sup EVn(x + ξ, y + εξ),

where the supremum is taken over all ε ∈ {−1, 1} and all two-point centered random
variables ξ. This recurrence has a very nice geometrical interpretation: given Vn,
let us consider all the intervals of slope ±1, with endpoints lying on the graph
of this function (here by slope ±1 we mean that the endpoints are of the form
(x, y, V (x, y)), (x + t, y ± t, V (x + t, y ± t)) for some x, y, t ∈ R; in particular, we
allow t = 0). Then the graph of Vn+1 is the upper boundary of the union of all
such intervals. Clearly, the sequence (Vn)n≥0 is nondecreasing; furthermore, if B0

is finite, then it coincides with the pointwise limit of (Vn)n≥0. To prove the latter
statement, observe that by a straightforward induction, the equality (2.10) holds
for arbitrary simple centered random variable ξ. Therefore we have the following
alternative definition of Vn:

Vn(x, y) = sup
{

EV (fn, gn) : (f, g) ∈ M(x, y)
}

,

or, to put it in yet another words, Vn is a version of B0 in which only the martingales
of length n + 1 are considered. This clearly gives the pointwise convergence of
(Vn)n≥0 to B0. In particular, if the iteration (2.10) stabilizes after a finite number
of steps, then the “fixed function” must coincide with B0.

2.2. An extension. Sometimes it is of interest to study the function (2.1) under
more restrictive assumptions on the martingales f and g. We will consider this
problem given some additional integral-norm bounds on f and/or g. To formulate
the statement rigorously, assume that Φ, Ψ : R → R are two fixed functions and
let x, y, t, s be four real numbers. We define M(x, y, s, t) as the class of all pairs
(f, g) ∈ M(x, y) such that

(2.11) EΦ(f∞) = s and EΨ(g∞) = t.

Here and below, f∞, g∞ denote the pointwise limits of f and g, which exist be-
cause of the simplicity of the martingales. Suppose that the class M(x, y, s, t) is
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nonempty for all (x, y, s, t). In analogy with the preceding setting, assume that we
are interested in the numerical value of

(2.12) B0(x, y, s, t) = sup
{

EV (fn, gn) : (f, g) ∈ M(x, y, s, t), n = 0, 1, 2, . . .
}

.

Of course, this problem is more difficult that (2.1) and the solution to it gives much
more information about the behavior of the pairs (f, g) (indeed: having successfully
identified B0, we recover the Bellman function from the previous section by taking
the supremum over all s and t). As previously, to study (2.12), we introduce a class
of special functions. The modification of the method requires some changes in the
conditions 1◦ and 2◦, which become

1◦ (Majorization) For all (x, y, s, t) ∈ R
4,

(2.13) B(x, y, s, t) ≥ V (x, y).

2◦ (Concavity) For all (x, y, s, t) ∈ R
4, ε ∈ {−1, 1} and any α ∈ (0, 1),

d1, d2, s1, s2, t1, t2 ∈ R such that

αd1 + (1 − α)d2 = 0, αs1 + (1 − α)s2 = s, αt1 + (1 − α)t2 = t,

we have

(2.14) αB(x + d1, y + εd1, s1, t1) + (1 − α)B(x + d2, y + εd2, s2, t2) ≤ B(x, y, s, t).

Sometimes we will also refer to (2.14) as to diagonal concavity of B. Observe
that by a simple induction argument, this property implies the following: for any
x, y, s, t ∈ R, ε ∈ {−1, 1} and any simple random variables ξ, S, T satisfying
Eξ = 0, ES = s and ET = t,

(2.15) EB(x + ξ, y + εξ, S, T ) ≤ B(x, y, s, t).

We have the following version of Theorems 2.1 and 2.2.

Theorem 2.4. (i) Suppose that B : R
4 → R is a function satisfying 1◦ and 2◦.

Then B0 ≤ B.
(ii) If B0 is finite on R

4, then it is the least function satisfying 1◦ and 2◦.

Proof. (i) Pick (f, g) ∈ M(x, y, s, t) and consider the auxiliary martingales Sn =
E(Φ(f∞)|Fn), Tn = E(Ψ(g∞)|Fn), n = 0, 1, 2, . . .. Then, arguing as in the proof
of Theorem 2.1 (i.e., using the conditional version of (2.15)), we show that the
sequence (B(fn, gn, Sn, Tn))n≥0 is a supermartingale. Therefore, by (2.13),

EV (fn, gn) ≤ EB(fn, gn, Sn, Tn) ≤ EB(f0, g0, S0, T0).

But F0 is a trivial σ-field, so S0 = EΦ(f∞) = s, T0 = EΨ(g∞) = t and hence

EV (fn, gn) ≤ B(x, y, s, t).

Taking the supremum over all n ≥ 0 and all (f ,g) from M(x, y, s, t) yields the claim.
(ii) We proceed exactly in the same manner as in the proof of Theorem 2.2. The

function B0 clearly satisfies (2.13): we may always take n = 0 in its definition. To
prove (2.14), pick two pairs (f j , gj) ∈ M(x+dj , y +εdj, sj , tj) and splice them into
one pair (f, g) as above. Then f , g are simple martingales starting from x and y,
respectively, which satisfy dfn ≡ dgn or dfn ≡ dgn for all n ≥ 1. Furthermore, the
distribution of (f∞, g∞) is an appropriate mixture of (f1

∞, g1
∞) and (f2

∞, g2
∞), so

the inclusion (f, g) ∈ M(x, y, s, t) is valid. Thus,

B0(x, y, s, t) ≥ EV (f∞, g∞) = αEV (f1
∞, g1

∞) + (1 − α)EV (f2
∞, g2

∞),

and taking the supremum over all (f1, g1), (f2, g2) as above completes the proof. �



MARTINGALE INEQUALITIES 11

The above theorem covers only an exemplary situation. The modifications men-
tioned at the end of the previous subsection are valid (with some obvious alter-
ations). Let us describe here some further changes which will be often used later.

(e) In practice, the class M(x, y, s, t) may be empty for some choices of the
parameters (x, y, s, t), and one has to restrict to appropriate subsets of R

4. For in-
stance, if one assumes that Φ, Ψ are nonnegative, then the requirement (x, y, s, t) ∈
R

4 should be replaced by (x, y, s, t) ∈ R
2 × R

2
+. Another important example con-

cerns the case when Φ, Ψ are convex: then one has to consider the set {(x, y, s, t) :
s ≥ Φ(x), t ≥ Ψ(y)}.

(f) If we want to impose the restriction (2.11) on one martingale only, the corre-
sponding boundary value problem simplifies to three-dimensional. This is evident:
if we study (2.12) for all (f, g) ∈ M(x, y) such that, say,

EΦ(f∞) = t,

then the function B0 depends only on three variables: x, y and t.

(g) Sometimes it is convenient to work with the modification of (2.11) in which
equalities are replaced by inequalities

(2.16) EΦ(f∞) ≤ s, and EΨ(g∞) ≤ t.

Then the whole methodology can be applied, since the class M(x, y, s, t) (which
this time consists of all (f, g) ∈ M(x, y) which satisfy (2.16)) is monotone in the
sense that it grows when s, t increase. The necessary change in the approach is as
follows. In Theorem 2.4, instead of working with B which satisfy 1◦ and 2◦, one
considers the class of all functions which enjoy 1◦, 2◦ and the additional property

2◦’ For any s′ ≤ s, t′ ≤ t we have B(x, y, s′, t′) ≤ B(x, y, s, t).

Indeed, then the technique works: in the proof of (i), we write

EV (fn, gn) ≤ EB(f0, g0, S0, T0) = B
(

x, y, EΦ(f∞), EΨ(g∞)
)

≤ B(x, y, s, t)

so the assertion holds true; in the proof of the second half, we observe that B0

satisfies 2◦’ directly from its definition and the monotonicity of the class M .

There is a very natural question which we want to address now. Namely, given V ,
how can we proceed in the search of the corresponding function B0? The remark (b)
mentioned above shows that we can restrict ourselves to symmetric or homogeneous
functions if only V enjoys these properties. We will present some further, intuitive
observations which may be helpful. In many aspects, the search is similar to that
arising in the optimal stopping problems. In that setting, one looks for the least
superharmonic majorant (in the sense of an underlying Markov process) of the
gain function, which in turn leads to the corresponding free-boundary problem (a
convenient reference is [39]). To give some ideas, assume that we are in the setting
of Theorem 2.4. The “state space” R

4 can be split into two sets:

S = {(x, y, s, t) : B0(x, y, s, t) = V (x, y)},

C = {(x, y, s, t) : B0(x, y, s, t) > V (x, y)},

which in the theory of the optimal stopping, are called the stopping and the contin-
uation region, respectively. This is due to the following interpretation: during the
computation of B0(x, y, s, t), on the set S the best choice is just to take any pair
(f, g) ∈ M(x, y, s, t) and evaluate it at its starting point; so, from the viewpoint of
B0, the pair could just stop at the point (x, y) (its further evolution occurs only
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due to the assumptions on M(x, y, s, t)). On contrary, when (x, y, s, t) ∈ C, then
there is a nontrivial choice of (f, g) and n, that is, there are non-constant sequences
which matter in the computation of B0(x, y, s, t).

Thus, the problem reduces to finding C and the restriction of B0 to C. Since
B0 is the least diagonally concave majorant of V , it seems plausible to assume the
following. For each (x, y, s, t) ∈ C there is a direction along which B0 is locally
linear: otherwise, it would be possible to make B0 a little smaller. More precisely,
for such (x, y, s, t), there are ε ∈ {−1, 1} and m, n ∈ R such that

d 7→ B0(x + d, y + εd, s + md, t + nd)

is linear for d lying in some neighborhood of 0. In other words, the whole set C can
be “foliated” into line segments of appropriate slope along which the function B0 is
linear. If B0 were twice differentiable on C (this is quite a reasonable expectation:
this function is extremal, so it should possess some additional regularity), the latter
condition yields the second-order differential equation for B0. It is more convenient
to state it in terms of the“rotated” function

M(x, y, s, t) = B0(x + y, x − y, s, t).

After this change of variables, we see that the condition on B0 becomes

the functions (x, s, t) 7→ M(x, y, s, t), (y, s, t) 7→ M(x, y, s, t) are concave,

and for each point (x, y, s, t) one of them is linear in some direction.

In particular, this enforces the following “system” of Monge-Ampère equations: for

each (x, y, s, t) we have

det





Mxx Mxs Mxt

Msx Mss Mst

Mtx Mts Mtt



 (x, y, s, t) = 0

or

det





Myy Mys Myt

Msy Mss Mst

Mty Mts Mtt



 (x, y, s, t) = 0.

Sometimes this system can be explicitly solved: see e.g. [8], [49], [50], and this
brings the candidate for the Bellman function. It may not satisfy the assumed
regularity (i.e., it need not be of class C2 on C), but this is not important: having
obtained the candidate, one proves rigorously that the function has all the desired
properties, and the problem is solved.

There is an alternative approach, which will also be of interest for us below.
Namely, from more or less formal arguments one can guess the (approximate) shape
of C and then try to get the formula for B0 by indicating the appropriate foliation
of this set. Though this approach seems difficult and sometimes the reasoning does
depend on luck, it has turned out to be very efficient. Actually, having seen several
Bellman functions, in some cases the discovery of the new special function is not
hard at all: the foliations often share some common features.

2.3. Further extensions. This subsection is irrelevant for our further considera-
tions, but we decided to include it here to indicate some further refinements and
extensions of the methodology. Our primary goal is to show here how to modify
the technique so that it worked for wider class of processes.
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Our first comment concerns the values of the transforming sequence. In our
previous setting, we assumed that (εn)n≥0 is deterministic and its terms are ±1.
However, it is easy to adjust the method to the less restrictive case. Namely, suppose
that the sequence ε is simple, predictable and takes values in [−1, 1]; furthermore,
allow the martingales to be vector-valued. Then we have the following statement;
the proof is the same as in the real-valued setting and hence is omitted.

Theorem 2.5. Let X be a Banach space and let V : X × X → R be a given
function. Consider the estimate

EV (fn, gn) ≤ 0, n = 0, 1, 2, . . . ,

where (f, g) runs over the class of all simple pairs of X-valued martingales such
that g is a transform of f by a predictable sequence bounded in absolute value by 1.
This inequality holds true if and only if there exists B : X × X → R satisfying the
following three conditions.

1◦ B ≥ V on X × X.
2◦ For all (x, y) ∈ X × X, any deterministic a ∈ [−1, 1] and any α ∈ (0, 1),

t1, t2 ∈ B such that αt1 + (1 − α)t2 = 0 we have

αB(x + t1, y + at1) + (1 − α)B(x + t2, y + at2) ≤ B(x, y).

3◦ B(x, y) ≤ 0 for all x, y ∈ X such that y = ax for some a ∈ [−1, 1].

Straightforward modifications lead to the similar vector-valued version of Theo-
rem 2.4. The details are left to the reader.

The next extension concerns another very important class of martingale pairs. It
is much wider than that considered in the previous two subsections and has many
interesting applications. Assume that X is a Banach space with the norm | · |.

Definition 2.6. Suppose that f , g are martingales taking values in X . Then g is
differentially subordinate to f , if for any n = 0, 1, 2, . . . we have

|dgn| ≤ |dfn|

with probability 1.

If g is a transform of f by a predictable sequence bounded in absolute value
by 1, then, obviously, g is differentially subordinate to f . Another very important
example is related to martingale square function. Namely, suppose that f takes
values in X and let g be ℓ2(X)-valued martingale, whose difference sequence is
defined by dgn = (0, 0, . . . , 0, dfn, 0, . . .), n = 0, 1, 2, . . . (the term dfn appears
on the n-th place). If we treat f as an ℓ2(X)-valued process, via the embedding
fn ∼ (fn, 0, 0, . . .), then g is differentially subordinate to f and f is differentially
subordinate to g. However,

||gn||ℓ2(X) =

(

n
∑

k=0

|dfk|
2

)1/2

, n = 0, 1, 2, . . . ,

is the square function of f . Thus, any inequality valid for differentially subordi-
nated martingales with values in ℓ2(X) leads to a corresponding estimate for the
square function of a X-valued martingale. This observation has turned out to be
particularly efficient when X is a separable Hilbert space (cf. [10]).
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Let us formulate the version of Bellman function method when the considered
martingales satisfy the differential subordination. Assume that V : X × X → R is
a given Borel function and consider the class of all B : X × X → R such that

1◦ B(x, y) ≥ V (x, y) for all x, y ∈ X ,
2◦ there are Borel a, b : X × X → X∗ such that for any x, y ∈ X and any

h, k ∈ X with |k| ≤ |h|, we have

B(x + h, y + k) ≤ B(x, y) + 〈a(x, y), h〉 + 〈b(x, y), k〉.

3◦ B(x, y) ≤ 0 for all x, y ∈ X with |y| ≤ |x|.

Theorem 2.7. Suppose that B satisfies 1◦, 2◦ and 3◦. Let f , g be B-valued mar-
tingales such that g is differentially subordinate to f and

E|V (fn, gn)| < ∞, E|B(fn, gn)| < ∞,

E
(

|a(fn, gn)||dfn+1| + |b(fn, gn)||dgn+1|
)

< ∞,
(2.17)

for all n = 0, 1, 2, . . .. Then

(2.18) EV (fn, gn) ≤ 0, n = 0, 1, 2, . . . .

The proof is similar to that above: using 2◦, we show that the composition
(B(fn, gn))n≥0 is a supermartingale, and then apply 1◦ and 3◦ to get

EV (fn, gn) ≤ EB(fn, gn) ≤ EB(f0, g0) ≤ 0.

The details are left to the reader. Analogously, one can extend Theorem 2.4 to this
new setting.

Finally, let us mention that it is possible to extend the Bellman function method
to other, less restrictive classes of semimartingales. For instance, one can handle
the case in which the transformed sequence (fn)n≥0 is a submartingale, i.e., an
adapted sequence of integrable variables satisfying E(dfk+1|Fk) ≥ 0 for each k ≥ 0.
This setting is maybe not that important for analytic applications, but plays a
distinguished role in stochastic analysis. Again, we focus on appropriate version of
Theorems 2.1 and 2.2; the modification which leads to the analogue of Theorem 2.4
is left to the reader. For a given V : R × R → R, let

B0(x, y) = sup
{

EV (fn, gn) : (f, g) ∈ S(x, y), n = 0, 1, 2, . . .}.

Here S(x, y) denotes the class of all simple pairs (f, g) starting from (x, y) such
that f is a submartingale and for each n ≥ 1 we have dgn ≡ dfn or dgn ≡ −dfn. To
study this object, consider the class which consists of all B : R × R → R satisfying

1◦ We have B ≥ V on R
2,

2◦ For any x, y ∈ R, any ε ∈ {−1, 1} and any α ∈ (0, 1), t1, t2 ∈ R such that
αt1 + (1 − α)t2 ≥ 0, we have

αB(x + t1, y + εt1) + (1 − α)B(x + t2, y + εt2) ≤ B(x, y).

By induction, 2◦ implies that

EB(x + ξ, y + εξ) ≤ B(x, y)

for all x, y ∈ R, ε ∈ {−1, 1} and all simple random variables with nonnegative
expectation. In other words, B is concave and nondecreasing (when going “from
left to the right”) on each line of slope ±1.

Repeating the proof of Theorems 2.1 and 2.2, we get the following statement.
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Theorem 2.8. (i) Suppose that B : R
2 → R is a function satisfying 1◦ and 2◦.

Then B0 ≤ B.
(ii) If B0 is finite on R

2, then it is the least function satisfying 1◦ and 2◦.

For further discussion and many examples, we refer the reader to [11] and to the
monograph [33].

3. Weak type (1, 1) inequalities for martingale transforms

The purpose of this section is to apply the above methodology in the study of
sharp weak-type (1, 1) inequalities for martingale transforms.

3.1. A toy example. Suppose we are interested in the sharp estimate

P(|gn| ≥ 1) ≤ C1||fn||1, n = 0, 1, 2, . . . ,

where f is a martingale and g is its ±1-transform. By standard approximation, we
may assume that f is simple and thus the problem can be rewritten in the form
(2.8), with V (x, y) = 1{|y|≥1} − C1|x|. There are two objects to be determined: a
priori unknown optimal value of the constant C1 and an appropriate special function
(which may be equal to B0, but need not: see Remark (a) in §2.1). To gain some
intuition about the special function to be found, let us write down the definition
(2.1) of B0:

B0(x, y) = sup
{

P(|gn| ≥ 1) − C1E|fn| : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

.

It is not difficult to determine the formula for B0, basing on the conditions 1◦, 2◦

and 3◦. We will present two different approaches to this problem: the first will be
probabilistic, while the second will have analytic flavor.

Probabilistic approach. We will construct B0 by the very definition: for each
(x, y) we will provide the corresponding extremal example. We split the reasoning
into three steps.

Step 1. The case |y| ≥ 1. Under this assumption, we have

(3.1) B0(x, y) = 1 − C1|x|.

Indeed, if (f, g) ∈ M(x, y), then P(|gn| ≥ 1) ≤ 1 and E|fn| ≥ |x| for any n. This
gives the inequality in one direction; letting f ≡ x and g ≡ y (or using 1◦) yields
the reverse estimate.

Step 2. The case |x| + |y| ≥ 1. Next we show that for such (x, y),

(3.2) B0(x, y) = 1 − C1|x|.

We have already done this for |y| ≥ 1, so let us assume that |x| + |y| ≥ 1 > |y|.
Furthermore, we may restrict ourselves to nonnegative x and y, since B0(x, y) =
B0(−x, y) = B0(x,−y) for all x, y: see Remark (b) in §2.1. Reasoning as in the
previous step, we obtain B0(x, y) ≤ 1−C1|x|. To get the reverse bound, we need an
example. It is not difficult to find it: we must have P(|gn| ≥ 1) = 1 and E|fn| = |x|
for some n; thus, we want to send g outside (−1, 1), and, on the other hand, f
cannot change sign (otherwise, E|fn| would increase). A little experimentation
leads to the following element of M(x, y): we set (f0, g0) ≡ (x, y), assume that
df1 = −dg1 is a centered random variable taking values in {−x, y + 1} (we do not
need to specify the probabilities: they are uniquely determined by the requirement
that the variable has mean zero) and put dfn = dgn ≡ 0 for n ≥ 2. Then f ≥ 0, so
E|fn| = x for all n; furthermore, g1 takes values in the set {−1, x + y}, so |g1| ≥ 1
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almost surely. This implies the reverse inequality B0(x, y) ≥ 1 − C1|x| and yields
(3.2).

Step 3. The case |x|+ |y| < 1. How to construct an appropriate example in this
case? A little thought and experimentation leads to the following idea: start the
pair (f, g) at (x, y), then, at the first step, send it to the set {(x, y) : x+y ∈ {−1, 1}},
and then move according to the pattern described in Step 2. Precisely, consider the
following Markov martingale (f, g):

(i) It starts from (x, y): (f0, g0) ≡ (x, y).
(ii) The random variable df1 = dg1 is centered and takes values in {(1 − x −

y)/2, (−1 − x − y)/2}.
(iii) Conditionally on {df1 > 0} and conditionally on {df1 < 0}, the random

variable df2 = −dg2 is centered and takes values in {−f1, g1 + 1}.
(iv) Put dfn = dgn ≡ 0 for n ≥ 3.

Then we have P(|g2| ≥ 1) = 1. Furthermore, we easily derive that df1 takes values
(1 − x − y)/2 and (−1 − x − y)/2 with probabilities p− = (1 + x + y)/2 and
p+ = (1 − x − y)/2, respectively. In consequence, since f2 has the same sign as f1,
we may write

E|f2| = E|f1| =

∣

∣

∣

∣

x +
1 − x − y

2

∣

∣

∣

∣

·
1 + x + y

2
+

∣

∣

∣

∣

x +
−1 − x − y

2

∣

∣

∣

∣

·
1 − x − y

2

=
1 + |x|2 − |y|2

2
.

and hence

(3.3) B0(x, y) ≥ 1 − C1(1 + |x|2 − |y|2)/2.

If we apply the initial condition 3◦, we get 1 − C1/2 ≤ B0(0, 0) ≤ 0, or C1 ≥ 2.
Assuming equality here and in (3.3), we obtain that B0(x, y) should be equal to
|y|2 − |x|2. Summarizing, the above three steps have led us to the candidate

(3.4) B(x, y) =

{

|y|2 − |x|2 if |x| + |y| ≤ 1,

1 − 2|x| if |x| + |y| > 1.

Now, one can easily check that this candidate satisfies 1◦, 2◦ and 3◦. Consequently,
we get B0 ≤ B and C1 ≤ 2. However, we have already proved that C1 ≥ 2; hence
we actually have C1 = 2. Now the equality B0 = B follows directly from Step 2
and (3.3). For a related reasoning, consult [6] and [8].

Analytic approach. Here we will use the iterative procedure described in Remark
(d) from §2.1. We start with the function V0(x, y) = 1{|y|≥1} − C1|x|, where C1 is
a constant to be found. Then some a bit lengthy, but straightforward calculations
show that for C1 ≤ 2 we have

V2(x, y) = V3(x, y) = . . . =

{

1 − C1|x| if |x| + |y| ≥ 1,

1 − C1(1 + |x|2 − |y|2)/2 if |x| + |y| < 1.

For C1 > 2 the situation is more complicated: we will study this case in our later
considerations. Therefore, we get that B0 = V2 when C1 ≤ 2. In the limit case
C1 = 2, the function B0 satisfies 3◦ and hence 2 is the best constant in the weak-type
(1, 1) inequality.
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Figure 1. Examples arising in the study of B0. When |y| ≥ 1,
the examples are constant; when |y| < 1, they evolve as indicated.

Remark 3.1. There is a very natural question about the vector-valued version of
the above weak-type estimate. Though we will not go further in this direction, let
us say a few words about this more general setting, as they may shed some light
on the differences between the scalar and vector cases. It turns out that if the
transformed martingale f takes values in a Hilbert space X , then the best constant
is still 2. This can be shown with the use of the Bellman function (3.4), with | · |
being the norm of X . However, this function does not coincide with B0 (unless the
Hilbert space is one-dimensional)! It can be shown (consult [9]) that

B0(x, y) =

{

1−(1 + 2(x + y, x − y) + |x + y|2|x − y|2)1/2 if |x + y| ∨ |x − y| < 1,

1−2|x| if |x + y| ∨ |x − y| ≥ 1,

where (·, ·) denotes the scalar product of X . In the case when X is a Banach space
which is not isomorphic to a Hilbert space, the situation is even more interesting
(and much more difficult). Namely, it can be proved that the best constant for such
X is strictly larger than 2, and it is finite if and only if X is the so-called UMD space
(where UMD is the abbreviation for Unconditional for Martingale Differences). In
this setting, the problem of identification of the weak-type constant becomes very
difficult. See [7], [9] or [33] for more information on the subject.

3.2. Related one-sided bound. The estimate P(|gn| ≥ 1) ≤ 2E|fn| we have just
proved has its weaker, one-sided version, which is also of interest. Namely, we have

(3.5) P(gn ≥ 1) ≤ 2E|fn|, n = 0, 1, 2, . . . ,

and it turns out that 2 is also the best here (modify slightly the above examples;
see also [28], [33], [36]). The purpose of this section is to give an explicit formula
for the related Bellman function

B0(x, y, t) = sup

{

P(gn ≥ 1) : (f, g) ∈ M(x, y), E|f∞| ≤ t, n = 0, 1, 2, . . .

}

,

defined on the set {(x, y, t) : t ≥ |x|} (it is obvious that for each (x, y, t) from
this set, there is at least one pair (f, g) which satisfies the requirements under the
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supremum). By the facts presented above, we have B0(x,±x, t) ≤ 2t, but for some
points the inequality is strict. Thus, the identification of B0 can be regarded as
a stronger, more exact version of (3.5). Furthermore, the formula for B0 will be
useful for us later, when we study analogous Bellman function corresponding to the
two-sided bound for g. Due to the appearance of control condition on E|f∞|, we
are forced to take the more difficult approach described in §2.2.

We present two solutions to this problem. In the first of them we will follow the
path described at the end of §2.2: we will exploit a certain homogeneity property
of B0 and point out the appropriate foliation. The second approach is different
and is of independent interest, as it can be applied successfully in other Bellman
function problems. Namely, we will show that the search for B0 can be split into
two parts: first one searches for the whole family of simpler (less dimensional)
Bellman functions, and then comes back to the original problem by appropriate
optimization argument.

Approach 1. A direct use of Theorem 2.4. It is more convenient to work with

B(x, y, t) = sup
{

P(gn ≥ 0) : (f, g) ∈ M(x, y), E|f∞| ≤ t, n = 0, 1, 2, . . .
}

,

which is related to B0 by the identity B0(x, y, t) = B(x, y−1, t) for all (x, y, t) ∈ R
3

such that t ≥ |x|. By Theorem 2.4, the function B is diagonally concave and
satisfies the majorization

(3.6) B(x, y, t) ≥ 1{y≥0}.

The reason why we have turned to B is that this function enjoys the homogeneity-
type property

(3.7) B(±αx, αy, αt) = B(x, y, t), for all α > 0.

Indeed, we have P(gn ≥ 0) = P(αgn ≥ 0) and the equivalence (f, g) ∈ M(x, y),
E|f∞| ≤ t if and only if (±αf, αg) ∈ M(αx, αy), E|αf∞| ≤ αt.

In particular, (3.7) implies that the function x 7→ B(x,−x, x) is constant on
(0,∞). On the other hand, this function is concave on R, in view of the diagonal
concavity of B. Hence

(3.8) B(1/2,−1/2, 1/2) ≥ B(0, 0, 0) = 1,

where the latter equality follows from (3.6) and the obvious bound B ≤ 1. Next,
let us introduce the function

b(x, y) = B

(

x + 1

2
,
x − 1

2
, y

)

,

defined on the set D =
{

(x, y) ∈ R
2 : y ≥ |x+1

2 |
}

. Using (3.7), we see that for
x 6= ±y,

b

(

x + y

x − y
,

t

x − y

)

= B(x, y, t) = B(−x, y, t) = b

(

x − y

x + y
,−

t

x + y

)

,

and hence b satisfies

(3.9) b (x, y) = b

(

1

x
,−

y

x

)

.

Furthermore, since B is diagonally concave, we see that b is a concave function,
and the majorization (3.6) implies that b(x, y) ≥ 1{x≥1} ≥ 0. The condition (3.8)
implies that b(0, 1/2) ≥ 1; hence, using the concavity of b along the halflines starting
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from (0, 1/2) and contained in D, we infer that b(x, y) ≥ 1 (and hence b(x, y) = 1)
provided y ≥ −x/2 + 1/2. Therefore, all that remains is to identify the explicit
formula for b on

Ω = {(x, y) ∈ D : y ≤ −x/2 + 1/2}.

It is easy to show that b(−1, 0) = B(0,−1, 0) = 0: indeed, the conditions (f, g) ∈
M(0,−1), E|f∞| ≤ 0 are satisfied by only one, constant pair (0,−1). The line
segment which joins (−1, 0) and (0, 1/2) is a part of the boundary of Ω, so it
seems plausible to guess that b is linear along this segment: b(2y − 1, y) = 2y for
y ∈ [0, 1/2].

Next, we impose some regularity on b: assume that b is of class C1 in the interior
of Ω. By (3.9), we may restrict our search to the triangle Ω∩{(x, y) : x ≥ −1}. Let
us try to identify the foliation F of b restricted to this set (i.e., split the triangle into
the union of maximal segments along which b is linear). We already know that the
segment with the endpoints (0, 1/2) and (−1, 1), as well as the boundary segment
with endpoints (−1, 0), (0, 1/2), belong to the foliation. Now pick a segment I ∈ F
which contains the point (−1, y) for a given y ∈ (0, 1). If I intersects one of the
two boundary segments (call it J), at a point different from (0, 1/2), then b must
be linear in the triangle spanned by I and J (i.e., the convex hull of I ∪ J). In
particular, this implies that b must be linear along the segment which joins (−1, y)
with (0, 1/2). Consequently, we see that there is only one reasonable foliation: the
fan of segments from the vertex (0, 1/2). This implies

b(−1, y) − 1 = −bx(−1, y) + by(−1, y)

(

y −
1

2

)

.

On the other hand, differentiating (3.9) with respect to x at the point (−1, y),
y ∈ (0, 1), yields

2bx(−1, y) = yby(−1, y).

If we combine the two latter identities, we obtain the following differential equation:
for ϕ(y) = b(−1, y), y ∈ [0, 1], we have

ϕ(y) − 1 = ϕ′(y) ·
y − 1

2
.

The solution is ϕ(y) = K(y − 1)2 + 1 for some parameter K. To determine this
number, note that ϕ(0) = B(0,−1, 0) = 0; this gives K = −1 and therefore

b(x, y) = (1 + x)b

(

0,
1

2

)

− xb

(

−1,
1 + x − 2y

2x

)

= 1 −

(

x−1
2 + y

)2

x

for (x, y) ∈ Ω, x ∈ [−1, 0]. By (3.9), the same formula is valid on the whole Ω. This
yields the candidate

B(x, y, t) = B(x, y − 1, t) = b

(

x + y − 1

x − y + 1
,

t

x − y + 1

)

,

which is given explicitly by

(3.10) B(x, y, t) =

{

1 if y + t ≥ 1,

1 − (1−y−t)2

(1−y)2−x2 if y + t < 1.

We easily check that this function indeed satisfies the conditions 1◦ and 2◦, which
implies B0 ≤ B. Actually, it can be shown that it coincides with the desired
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function B0 (cf. [28]; one can also consult [33] and [36]). An alternative reasoning
will be presented below.

Approach 2. Two-step procedure. Now we will present a very simple, yet powerful
argument, which in some cases simplifies considerably the whole approach. Let us
first note that the reasoning presented above rests on a direct search of a special
function of three variables. The key is to reduce the problem to the simpler two-
dimensional case described in §2.1. To accomplish this we take the restriction
E|f∞| ≤ t and, in a sense, we move it into the optimized expression. More precisely,
we consider a slightly different problem: let

(3.11) b0(x, y) = sup

{

P(gn ≥ 0) − E|fn| : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}

.

We already know that b0 is the least diagonally concave function which majorizes
V : R × R → R given by V (x, y) = 1{y≥0} − |x|. To find b0, we split the reasoning
into a few parts.

Step 1. If |x| + y ≥ 0, then b0(x, y) = 1 − |x|. Indeed, the estimate “≤” follows
from the inequalities P(gn ≥ 0) ≤ 1 and E|fn| ≥ |x| (valid for all (f, g) ∈ M(x, y)),
while “≥” can be shown with the use of the following example: take a large number
M > |x| and consider a pair (f, g) satisfying

(i) (f0, g0) ≡ (x, y),
(ii) df1 = −sgn x·dg1 is a centered random variable taking values (M−|x|)sgn x

and −x only,
(iii) df2 = df3 = . . . = dg2 = dg3 = . . . ≡ 0.

Then f does not change its sign, so E|f∞| = |x|. Furthermore, on the set where
df1 = −x we have g1 = y + |x| ≥ 0, so

P(|g∞| ≥ 0) ≥
M − |x|

M
,

which can be made arbitrarily close to 1. Hence b0(x, y) ≥ 1 − |x|.

Step 2. Consider the sets

S = {(x, y) : b0(x, y) = V (x, y)}, C = {(x, y) : b0(x, y) > V (x, y)},

which we have called the stopping region and the continuation region. We will
study the “shape” of S and C. Assume that |x| + y < 0 and observe that if x 6= 0,
then (x, y) ∈ C. This can be easily shown by the construction of an appropriate
martingale pair: clearly, there is (f, g) ∈ M(x, y) such that f does not change its
sign and P(gn ≥ 0) > 0 for some n ≥ 1; thus, b0(x, y) ≥ P(gn ≥ 0)−E|fn| > −|x| =
V (x, y). Next, note that for any fixed x, the function b0(x, ·) is nondecreasing.
This follows directly from the fact that V has this property. Indeed, fix a pair
(f, g) ∈ M(x, y); then for any d ≥ 0 we have (f, g + d) ∈ M(x, y + d) and

P(gn ≥ 0) − E|fn| ≤ P(gn + d ≥ 0) − E|fn| ≤ b0(x, y + d).

Taking the supremum over all (f, g) ∈ M(x, y) gives the desired monotonicity of b0.
Thus, if (0, y) ∈ S, then automatically the whole halfline {0}×(−∞, y] is contained
within S. These considerations lead us to the following conjecture: we have

S = (R × [0,∞)) ∪
(

{0} × (−∞, y0]
)

and C = R
2 \ S,

for some y0 < 0 to be found.
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Step 3. Now we guess the right foliation and the formula for b0. Let us first
look at the set {|x| + y ≤ y0}. If we decomposed the set into halflines of slope −1,
this would lead to the function (x, y) 7→ −|x| which, as we have already observed
above, does not work (indeed, then we would get (x, y) ∈ S). Thus, it in natural to
foliate the angle into line segments of slope −1. Actually, a little thought suggests
to extend this foliation (i.e., all the segments) to the whole set {(x, y) : |x| + y ≤
0, y ≤ |x|+ y0}. We already know b0 on {0}× (−∞, y0] and {(x,−|x|) : x ∈ R}, so
we obtain

b0(x, y) ≥
2|x|

|x| − y

(

1 −
|x| − y

2

)

=
2|x|

|x| − y
− |x|.

Let us denote the right-hand side by b(x, y). Before we proceed, let us specify the
examples which lead to the value of b(x, y). We will describe them for x > 0, in
the case when x is negative we proceed symmetrically. Let M be a large positive
number and consider (f, g) such that

(i) (f0, g0) ≡ (x, y),
(ii) df1 = dg1 is a centered random variable taking values −x and (−x − y)/2

(so, (f1, g1) moves along the line of slope 1, and ends at the line x = 0 or
at the line y = −x).

(iii) On the set where df1 = −x, put df2 = dg2 ≡ 0; on the set where df1 =
(−x − y)/2, we have (f1, g1) =

(

(x − y)/2, (−x + y)/2
)

, and we copy the
example from the Step 1. That is, conditionally on this set, we assume that
df2 = −dg2 is a centered random variable taking values (−x + y)/2 and M
only.

(iv) df3 = df4 = . . . = dg3 = dg4 = . . . ≡ 0.

Step 4. Finally, we turn our attention to the value of y0 and the lower bound
for b0 on the remaining part of the domain. In many situations, it is natural to
conjecture that the Bellman function has some additional regularity. For instance,
in our case it is plausible to assume that the derivative b0

x(0, y), y ∈ [y0, 0), exists
(and thus is equal to zero, by the symmetry of b0). On the other hand, by the
previous step, b0

x(0, y0) = −1 − 2/y0. This suggests y0 = −2, and thus all we need
is to construct a candidate on the square {(x, y) : |x| + y < 0, y − |x| ≥ −2}. This
is done with the use of similar examples as in the two-sided case above, which we
will describe in a Markovian language. Namely, for (x, y) from the square, consider
a pair (f, g) satisfying

(i) (f0, g0) ≡ (x, y),
(ii) (f1, g1) moves along the line of slope −1 and ends at the line x + y = 0 or

x + y = −2.
(iii) Depending on whether f1 + g1 = 0 or f1 + g1 = −2, the process (fn, gn)n≥2

evolves according to the rules listed in Step 1 or Step 3, respectively.

Computing EV (f∞, g∞), we get the candidate b(x, y) = [(y + 2)2 − x2]/4. Summa-
rizing, we have constructed the following special function:

(3.12) b(x, y) =











1 − |x| if |x| + y ≥ 0,
1
4 [(y + 2)2 − x2] if |x| + y < 0, y − |x| ≥ −2,
2|x|
|x|−y − |x| if |x| + y < 0, y − |x| < −2.
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So far, we can only say that b0 ≥ b, since the construction of b was based on
examples. To prove the reverse, we check that b satisfies the conditions 1◦ and 2◦

(cf. [33]). Hence b = b0, and the first part of our analysis is complete.

Remark 3.2. Alternatively, it is also quite easy to identify b0 with the use of
“iteration procedure” described in Remark (d) of §2.2. Namely, it can be shown
that the sequence (Vn)n≥0 stabilizes after three steps, and V4 = V5 = . . . is the
function given by (3.12).

Now, we come back to the problem of identifying B0. We have just shown that
for any (f, g) ∈ M(x, y) we have

P(gn ≥ 0) − E|fn| ≤ b0(x, y), n = 0, 1, 2, . . . .

Now we apply a simple homogenization and translation argument: for any (f, g) as
above and any α > 0, the pair (αf, αg − α) belongs to M(αx, αy − α) and hence

P(αgn − α ≥ 0) − αE|fn| ≤ b0(αx, αy − α), n = 0, 1, 2, . . . ,

or, in other words,

P(gn ≥ 1) ≤ b0(αx, αy − α) + αE|fn|, n = 0, 1, 2, . . . .

Therefore, if we additionally assume that E|f∞| ≤ t (and hence also E|fn| ≤ t), we
obtain that

B0(x, y, t) ≤ b0(αx, αy − α) + αt

for all α > 0. All that is left is to optimize over α. Actually, one easily checks that

B(x, y, t) = inf
α>0

{

b0(αx, αy − α) + αt
}

gives precisely the function (3.10). This proves B0 ≤ B. The reverse bound can be
verified with the use of the examples from Steps 1, 3 and 4 above. More precisely:
if y + t ≥ 1, then the equality B0(x, y, t) = 1 can be proved with the use of a
similar pair as in Step 1 (we only need to add 1 to y to ensure that P(|g1| ≥ 1) is
arbitrarily close to 1). If y + t < 1, we consider all the examples of Steps 3 and 4,
starting from the points of the form (αx, αy − α), where α runs over all positive
numbers. From all these pairs (f, g), we pick one which satisfies E|f∞| = αt (there
are many such pairs; we pick the one corresponding to a large parameter M). Then
(f̄ , ḡ) = (f/α, g/α + 1) belongs to M(x, y), E|f̄∞| = t and, after some calculations,
we check that P(ḡ∞ ≥ 1) can be made arbitrarily close to B(x, y, t) (by taking M
sufficiently large). This yields the desired lower bound B0 ≥ B.

3.3. More exact information on the two-sided bound. Now we will provide
the explicit formula for the function

B0(x, y, t)

= sup

{

P(|gn| ≥ 1) : (f, g) ∈ M(x, y), E|f∞| ≤ t, n = 0, 1, 2, . . .

}

.
(3.13)

This will be accomplished by the technique described in Section 2, with V (x, y) =
1{|y|≥1}.

Approach 1. In comparison to the one-sided case, the situation is more difficult
since the function B0 does not seem to have any homogeneity-type property. Never-
theless, it majorizes the Bellman function corresponding to the one-sided estimate,
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which gives

(3.14) B0(x, y, t) ≥

{

1 if |y| + t ≥ 1,

1 − (1−|y|−t)2

(1−|y|)2−x2 if |y| + t < 1.

This, in particular, yields

(3.15) B0(x, y, t) = 1 provided |y| + t ≥ 1.

Next, we proceed as follows. Fix a ∈ (0, 1) and consider the function

b(x, y) = B0

(

x + a

2
,
x − a

2
, y

)

,

given on the set
{

(x, y) ∈ R
2 : y ≥

∣

∣

x+a
2

∣

∣

}

. This function is concave and, by (3.15),

we have b(x, y) = 1 for y ≥ 1−
∣

∣

x−a
2

∣

∣. Thus all we need is to determine the formula

for b on the parallelogram P =
{

(x, y) :
∣

∣

x+a
2

∣

∣ ≤ y < 1 −
∣

∣

x−a
2

∣

∣

}

(see Figure 2).

Figure 2. The parallelogram P .

Directly from the concavity of b, we obtain that b(x, y) = 1 if (x, y) lies on
or above the dotted diagonal of P - precisely, the line segment with endpoints
(

−1, 1−a
2

)

and
(

1, 1+a
2

)

- due to the fact that b equals 1 when evaluated at the
sides of P lying above this segment. For (x, y) lying below the diagonal we have,
by (3.14),

b(x, y) ≥ ζ(x, y) = 1 −

(

1 −
∣

∣

x−a
2

∣

∣− y
)2

(1 − a)(1 + x)
.

Let us search for the least concave majorant of ζ. Some experiments lead to the
following idea. Take an interval I with endpoints

(

1, 1+a
2

)

and
(

t,− t+a
2

)

, where
t ∈ (−1,−a] (see Figure 2). It is easy to check that ζ is not concave along this
interval and that the least concave majorant of ζ|I is given by

b0(x, y) =

{

ζ(x, y) if (x, y) ∈ I, y < a
2 −

(

1
2 − a

)

x,

2y − ax if (x, y) ∈ I, y ≥ a
2 −

(

1
2 − a

)

x.
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Assuming b = b0 for all (x, y) below the diagonal, we obtain the candidate for the
Bellman function, given as follows. Consider the sets

D1 = {(x, y, t) : |x| + |y| ≥ 1} ∪

{

(x, y, t) : |x| + |y| < 1, t ≥
1

2
(x2 − y2 + 1)

}

,

D2 = {(x, y, t) : |x| + |y| < 1, t < x2 − y2 + |y|},

D3 =

{

(x, y, t) : |x| + |y| < 1, x2 − y2 + |y| ≤ t <
1

2
(x2 − y2 + 1)

}

.

Note that if |x| + |y| < 1, then x2 − y2 + |y| < 1
2 (x2 − y2 + 1); thus the subsets are

pairwise disjoint. The candidate B we obtain is given by

(3.16) B(x, y, t) =











1 on D1,

1 − (1−|y|−t)2

(1−|y|)2−x2 on D2,

2t − x2 + y2 on D3.

It can be shown that this function satisfies 1◦ and 2◦ and hence B0 ≤ B; on the
other hand, the bound B0 ≥ B follows directly from the above construction. Thus
B0 = B, as originally proved in [36].

Approach 2. As in the one-sided case, there is a question whether the function
(3.16) can be discovered with the use of two-dimensional boundary value problem.
The answer is positive, however, due to the fact that we have no additional ho-
mogeneity, we will actually need to study a whole family of auxiliary estimates.
Namely, for c ≥ 0, let Vc : R×R → R be given by Vc(x, y) = 1{|y|≥1} − c|x| and let

b0
c(x, y) = sup

{

EVc(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

.

We will find the formula for b0
c in several steps below.

Step 1. For c ≤ 2, we proceed exactly in the same manner as in the search for
(3.4) (or follow the analytic approach presented there). One way or another, we
obtain that

b0
c(x, y) =

{

c
2 (y2 − x2) + 1 − c

2 if |x| + |y| ≤ 1,

1 − c|x| if |x| + |y| > 1.

Step 2. The situation gets more interesting when c > 2. The above formula does
not work any more, since the majorization b0

c(0, 0) ≥ Vc(0, 0) is no longer valid. How
can we proceed? Again, some intuition can be gained from the one sided version of
the problem. In a sense, we expect that b0

c will be a “symmetrized” modification
of that Bellman function. A little thought leads to the following splitting of R

2:

D1 = {(x, y) : |x| + |y| ≥ 1},

D2 = {(x, y) : |x| + |y| < 1, |y| ≤ |x|},

D3 = {(x, y) : |x| + |y| < 1, |x| < |y| < |x| + α},

D4 = R
2 \ (D1 ∪ D2 ∪ D3).

Here the parameter α, to be determined later, has the property that b0
c(0, y) =

V (0, y) = 0 for |y| ≤ α, and b0
c(0, y) > 0 for |y| > α. What about the formula

for b0
c? The same arguments as previously give that b0

c(x, y) = 1 − c|x| on D1.
Furthermore, both D2 and D4 consist of two squares; on each square, in analogy
with the preceding considerations, we expect b0

c to be linear along line segments
of slope ±1 (in other words, it is quadratic there - see the computations below).
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Finally, on D3 ∩ [0,∞)2, b0
c should be linear along the segments of slope 1 (the

remaining part of D3 is dealt with using symmetry).

Step 3. Now let us present some computations. For any 0 ≤ y ≤ α, the candidate
bc satisfies bc(0, y) = 0, bc((1−y)/2, (1+y)/2) = 1−c|1−y|/2 (because ((1−y)/2, (1+
y)/2) ∈ D1) and is linear along the line segment joining the two evaluated points.
Thus,

bc(x, y) =
2|x|

1 + |x| − |y|
− c|x| on D3.

As in the one-sided case, we expect the equality bcx(0, α) = 0: this gives α = 1−2/c.
Now the discovery of the candidate bc on D2 and D4 is just a mere repetition of the
calculations from the one-sided setting. As the reader easily verifies, at the very
end we obtain

bc(x, y) =



















1 − c|x| if (x, y) ∈ D1,

y2 − x2 + 2|x| − c|x| if (x, y) ∈ D2,
2|x|

1+|x|−|y| − c|x| if (x, y) ∈ D3,

1 − c(1 − |y|) + c2

4

(

(|y| − 1)2 − x2
)

if (x, y) ∈ D4.

As we have already seen a few times, all that we can claim so far is the bound bc ≤ b0
c

(the construction of bc rests on examples). Now we will verify that bc satisfies 1◦

and 2◦. We start with 2◦. Fix y ∈ R and consider the function G(t) = bc(t, y − t),
t ∈ R. It suffices to prove that this function is concave (then, by the symmetry of
bc, we will obtain that the sections of the form t 7→ bc(t, y + t) are also concave,
and the property will follow). Note that if (t, y − t) lies in the interior of one of
the sets D2 or D4, we have G′′(t) = 0. The same is true if (t, y − t) belongs to
the interior of D1 or D3 (for the latter set, simply compute the second derivative),
unless t = 0. In this particular case the second derivative of G does not exist, but
we easily check that G′(0−) ≥ G′(0+), so the concavity is preserved. Thus, by
the continuity of G, all we need is to verify that there are appropriate inequalities
between one sided derivatives when (t, y − t) lies at the common boundary of some
Di’s. By the symmetry, we may and do assume that t ≤ 0. If (t, y−t) ∈ ∂D1∩∂D4,
then G′(t−) = c ≥ c − 2y − 2 = G′(t+); if (t, y − t) ∈ ∂D1 ∩ ∂D2, then G′(t−) =
c ≥ c − 2(1 − y)−1 = G′(t+). Next, if (t, y − t) ∈ ∂D1 ∩ D4, then G′(t−) = c and

G′(t+) =
c2

2
(1 − y) − c ≤ c − c = 0,

since y ≥ 1− 2/c (which follows from the assumption on (t, y − t)). The remaining
cases (i.e., (t, y− t) ∈ ∂D2∩∂D3 and (t, y− t) ∈ ∂D3∩∂D4) are studied in a similar
manner; we leave the details to the reader.

Finally, we turn our attention to 1◦. We have equality for |x| + |y| ≥ 1 and
bc(0, |y|) ≥ 0 for y ∈ (−1, 1). All we need is to combine this with the fact that on
the left and on the right halfplane, the function Vc is linear, while bc is diagonally
concave. This gives the majorization, and hence bc = b0

c .

Remark 3.3. As in the preceding settings, the function bc can be identified with
the use of the iterative approach described in Remark (d) in §2.1 (the recurrence
stabilizes after three steps). The calculations are not very difficult, but there are
several cases to be considered and one may find this path a little tedious.
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Now we come back to the problem of identifying B0 defined in (3.13). For any
(f, g) ∈ M(x, y) satisfying E|f∞| ≤ t we have

P(|gn| ≥ 1) ≤ b0
c(x, y) + cE|fn| ≤ b0

c(x, y) + ct

and hence B0(x, y, t) ≤ minc≥0

{

b0
c(x, y) + ct

}

. Let us denote the right hand side
by B and let us derive its explicit formula. Assume first that |x| + |y| ≥ 1. Then
bc(x, y) = 1 − c|x| and bc(x, y) + ct = 1 + c(t − |x|). Thus we must take c = 0 and
we get B(x, y, t) = 1. Next, suppose that |x| + |y| < 1, but |x| ≥ |y|. Then

b0
c(x, y) + ct =

{

c
2 (y2 − x2) + 1 − c

2 + ct if c ≤ 2,

y2 − x2 + 2|x| − c|x| + ct if c > 2.

If we compute the derivative with respect to c, we get

d

dc

[

b0
c(x, y) + ct

]

=

{

t − 1+x2−y2

2 if c < 2,

t − |x| if c > 2.

So, we have two possibilities. If t ≥ (1+x2−y2)/2, then the derivative is nonnegative
on (0, 2) ∪ (2,∞), so the minimum is attained for c = 0: this gives B(x, y, t) = 1.
On the other hand, if t < (1 + x2 − y2)/2, then the derivative is negative on (0, 2)
and positive on (2,∞), so

B(x, y) = b0
2(x, y) + 2t = y2 − x2 + 2t.

Next, assume that |x| + |y| < 1 and |y| > |x|. Put α = 1 − 2/c; then

b0
c(x, y) + ct =











c
2 (y2 − x2) + 1 − c

2 + ct if c ≤ 2,

1 − c(1 − |y|) + c2

4

(

(|y| − 1)2 − x2
)

+ ct if c > 2, |y| − |x| > α,
2|x|

1+|x|−|y| − c|x| + ct if c > 2, |y| − |x| ≤ α

=











c
2 (y2 − x2) + 1 − c

2 + ct if c ≤ 2,

1 − c(1 − |y|) + c2

4

(

(|y| − 1)2 − x2
)

+ ct if c ∈ (2, 2
1−|y|+|x|),

2|x|
1+|x|−|y| − c|x| + ct if c ≥ 2

1−|y|+|x| .

Therefore,

d

dc

[

b0
c(x, y) + ct

]

=











t − 1+x2−y2

2 if c < 2,

t + |y| − 1 + c
2

(

(|y| − 1)2 − x2
)

if c ∈ (2, 2
1−|y|+|x|),

t − |x| if c > 2
1−|y|+|x| .

This time we have three possibilities. If t ≥ (x2 − y2 + 1)/2, then for c > 2,

t + |y| − 1 +
c

2

(

(|y| − 1)2 − x2
)

≥ t + |y| − 1 + (|y| − 1)2 − x2

≥
−x2 + (|y| − 1)2

2
> 0,

so the minimum defining B is attained for c = 0. Therefore, B(x, y, t) = 1 in this
case. Suppose then that t < (x2 − y2 + 1)/2, but

t + |y| − 1 + (|y| − 1)2 − x2 = t − x2 + y2 − |y| ≥ 0.

Then the choice c = 2 is optimal: B(x, y, t) = b0
2(x, y) + 2t = y2 − x2 + 2t. Finally,

if t < (x2 − y2 + 1)/2 and t− x2 + y2 − |y| < 0, then the above derivative vanishes
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for c = 2(1 − |y| − t)/((|y| − 1)2 − x2), and then

B(x, y, t) = b0
c(x, y) + ct = 1 −

(1 − |y| − t)2

(y − 1)2 − x2
.

Thus, we end up with the function (3.16). So, we have shown that B0 ≤ B, and
the proof of the reverse bound rests on the construction of appropriate examples.
For an alternative argument, see Approach 1 or consult [36].

4. Weak type (p, p) estimates for martingale transforms, p > 1

Now we will study the versions of the above weak-type bounds in the case p > 1.
Precisely, we will determine the best constants Cp such that

(4.1) P(|gn| ≥ 1) ≤ Cp
pE|fn|

p, n = 0, 1, 2, . . . .

These best constants were originally identified by Burkholder in [8] for 1 < p ≤ 2,
and by Suh [44] for remaining values of p. Our considerations below will strengthen
the results from those papers. Quite unexpectedly, the arguments presented in
the cases 1 < p ≤ 2 and p > 2 are entirely different. The two situations will be
considered separately.

4.1. The case 1 < p ≤ 2. We proceed according to the methodology described in
§2.1 and write down the formula (2.1):

B0(x, y) = sup
{

EVβ(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

.

Here β ≥ 0 and Vβ(x, y) = 1{|y|≥1}−β|x|p. The function B0 satisfies the symmetry
condition

(4.2) B0(x, y) = B0(−x, y) = B0(x,−y) for all x, y ∈ R,

so it suffices to determine it in the first quadrant [0,∞) × [0,∞).

Step 1. The case y ≥ 1. For these y we have

(4.3) B0(x, y) = 1 − βxp.

Indeed, for all f, g as above we may write P(|gn| ≥ 1) ≤ 1 and E|fn|p ≥ xp, where
the latter follows from Jensen’s inequality. This gives the estimate in one direction,
and the choice of constant f and g yields the reverse.

Step 2. Two key assumptions. Now we will impose two conditions on the candi-
date B for the Bellman function. The first of them concerns regularity on the set
R× [−1, 1], while the second indicates the foliation on [0,∞)× [0, 1]. Precisely, the
first assumption reads

(A1) B is continuous on {(x, y) : |y| ≤ 1} and of class C1 in the interior of this
set,

while the second is

(A2) On [0,∞) × [0, 1], the function B is linear along the line segments of slope
−1.

The latter condition comes out when one considers appropriate exemplary martin-
gale pairs. Suppose, for instance, that x > 0, y ∈ (0, 1) with x + y > 1 and assume
we are interested in identifying (f, g) ∈ M(x, y) for which B0(x, y) is (almost) at-
tained. Intuitively speaking, we want to make P(|gn| ≥ 1) large, with keeping
E|fn|p relatively small. Since the second derivative of t 7→ tp goes to 0 as t → ∞,
the difference E|fn+1|

p − E|fn|
p is insignificant, at least when fn is large. Thus, it
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is reasonable to consider the pair (f, g) ∈ M(x, y) which satisfies the following. Fix
a small positive δ and assume that (f0, g0) ≡ (x, y),

(i) df1 = −dg1 is a centered random variable with values in {y − 1, y}.
(ii) if (f, g) = (x + y + 2kδ, 0) for some nonnegative integer k, then at the next

step (f, g) moves to (x + y + 2kδ − 1,−1) or to (x + y + (2k + 1)δ, δ).
(iii) if (f, g) = (x + y + (2k + 1)δ, δ) for some nonnegative integer k, then at the

next step (f, g) moves to (x+y+(2k+2)δ−1, 1) or to (x+y+(2k+2)δ, 0).

Note that P(|gn| ≥ 1) → 1 as n → ∞; furthermore, we “push” the evolution of fn

towards infinity, thus making the increase of the p-th moment smaller and smaller.
The properties (i)-(iii) mean that on [0,∞) × [0, 1], (f, g) moves along the lines of
slope −1, while on [0,∞) × [−1, 0], along the lines of slope 1. This is where (A2)
originates from. For convenience, denote a(t) = B(t, 1) = 1 − βtp, b(t) = B(t, 0)
and c(t) = B(0, t). Then (A2) means that

B(x, y) = ya(x + y − 1) + (1 − y)b(x + y) if x + y ≥ 1 ≥ y ≥ 0,

B(x, y) =
y

x + y
c(x + y) +

x

x + y
b(x + y) if x, y ≥ 0, x + y < 1.

(4.4)

Step 3. Derivation of a candidate. Now we will see that the above conditions
(A1) and (A2) determine uniquely the candidate B. The symmetry condition (4.2)
implies

(4.5) Bx(0, y) = By(x, 0) = 0 for x ∈ R and y ∈ (−1, 1).

Using this and (4.4), we obtain the differential equations

(4.6) c′(y) =
c(y) − b(y)

y
for y ∈ [0, 1),

(4.7) b′(x) =
b(x) − c(x)

x
for x ∈ [0, 1),

and

(4.8) b′(x) = b(x) − a(x − 1) for x ≥ 1.

By (4.6) and (4.7) and the condition b(0) = c(0) = B(0, 0) we have that b(x)+c(x) =
2c(0) on [0, 1]. Plugging this into (4.6) yields c(y) = c(0) + αy2 for all y ∈ [0, 1]
and some fixed α ∈ R. Since c(1) = a(0) = 1, we see that α = 1 − c(0), so
b(x) = c(0)− (1 − c(0))x2 and c(y) = c(0) + (1 − c(0))y2 for x, y ∈ [0, 1]. Applying
the second equality in (4.4), we get that

B(x, y) = c(0) + (1 − c(0))(y2 − x2) if |x| + |y| ≤ 1.

Similarly, solving (4.8) (recall that a(t) = 1 − βtp) gives

b(x) = 1 − βex

∫ ∞

x

e−t(t − 1)pdt + γex

for x > 1 and some γ ∈ R. Note that −βxp ≤ b(x) ≤ 1 − βxp, directly from the
definition of b and B0; this implies γ = 0, simply by letting x → ∞ above. By
continuity of b at 1, we derive that

1 − βe

∫ ∞

1

e−t(t − 1)pdt = 2c(0) − 1,
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or

β =
2 − 2c(0)

Γ(p + 1)
.

By the first equation in (4.4), for |x| + |y| > 1 we have

B(x, y) = 1 − |y|β(|x| + |y| − 1)p − β(1 − |y|)e|x|+|y|−1

∫ ∞

|x|+|y|−1

e−sspds.

Now it can be checked that if c(0) ∈ [0, 1], then the above function B satisfies 1◦

and 2◦, so B0 = B. Thus, we have successfully identified the Bellman function
for β ≤ 2/Γ(p + 1). How is it related to (4.1)? To answer this, we need to look
at the condition 3◦: one easily proves that B(x,±x) ≤ c(0), and hence the above
reasoning yields the sharp bound

P(|gn| ≥ 1) ≤
2 − 2c(0)

Γ(p + 1)
E|fn|

p + c(0), n = 0, 1, 2, . . . ,

for an arbitrary c(0) ∈ [0, 1]. In particular, taking c(0) = 0, we obtain that the best
choice for Cp is (2/Γ(p + 1))1/p.

Question 1: What is the formula for B when β > 2/Γ(p + 1)?

4.2. The case p > 2. As previously, we will study the more general setting in which
the constant Cp

p in (4.1) is replaced by an arbitrary β ≥ 0. That is, introduce the
Bellman function

(4.9) B0(x, y) = sup
{

EVβ(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

,

where, as above, Vβ(x, y) = 1{|y|≥1} − β|x|p. In analogy with the preceding case,

we will denote by B the candidate for B0, which will be obtained after a number
of assumptions. Actually, we will manage to find the Bellman function only for
β ≥ 2p−1/p. The analysis in the case 0 < β < 2p−1/p has eluded us.

Step 1. The case |y| ≥ 1. The same argument as previously yields B0(x, y) =
1 − β|x|p.

Step 2. A special curve. The following intuitive observation is a key part of the
construction. Let x be a large real number and let y ∈ (−1, 1). Suppose that we
are interested in determining B0(x, y). To do this, loosely speaking, we need to
find such f , g and n, for which P(|gn| ≥ 1) is large and E|fn|p is relatively small.
However, the “gain” we can get from the first term is at most 1. This may not
be enough to compensate the “loss” coming from the growth of the p-th moment
of f (at least if |x| is sufficiently large). This is the consequence of the fact that
the second derivative of x 7→ xp grows to infinity as x → ∞: this is where the
condition p > 2 plays the role. In other words, if y ∈ (−1, 1) and |x| is large, it is
natural to conjecture that the best pair (f, g) ∈ M(x, y) is the constant one: hence
B0(x, y) = −β|x|p. This suggests that the following assumption:

(A1) There is c ≥ 0 and an nondecreasing function γ : [c,∞) → [0, 1] of class C1

such that if |y| ≤ γ(|x|), then B(x, y) = −β|x|p.

As we shall see, the condition β ≥ 2p−1/p enforces c to be not too large: c ≤ 1/2.
Thus, we will restrict ourselves to these values of this parameter. Now, what can
be said about the value of γ(c)? Extending the function γ “as far as possible” leads
to the following assumption:

(A2) We have c = 0 or γ(c) = 0.
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See Figures 3, 4 and 5 below, which illustrate the possibilities that can occur.

Step 3. Further assumptions. So, it remains to determine B on the set J =
{(x, y) : x > 0, γ(x) < y < 1}. Let a(y) = B(0, y) and b(x) = B(x, 0) for x, y ∈ R.
It seems reasonable to impose the following regularity condition on B.

(A3) The function B is continuous on R × [−1, 1] and of class C1 in the interior
of this set.

By symmetry of Vβ , we may restrict ourselves to the functions satisfying

(4.10) B(x, y) = B(−x, y) = B(x,−y) for all x, y ∈ R.

By (A3), this gives

(4.11) Bx(0, y) = 0 and By(x, 0) = 0 for x, y ≥ 0.

Now we will introduce an important structural condition on B. Instead of examples,
we will just indicate the foliation along which they evolve (compare the assumption
(A2) in the previous case, and the discussion following it). Suppose first that c = 0.
Then the condition reads

(A4) There is y∗ ∈ [0, 1] such that for (x, y) ∈ J ,

(4.12) B(x, y) =
x

x + t
B(x + t, y − t) +

t

x + t
a(x + y) if x + y ≤ y∗,

where t = t(x, y) is the unique positive number satisfying y − t = γ(x + t),
and

(4.13) B(x, y) =
x

x + 1 − y
B(x+1−y, 1)+

1 − y

x + 1 − y
a(y−x) if −x+y ≥ y∗.

The condition (A4) enforces B to be linear along line segments of slope −1 contained
in D4 and line segments of slope 1 contained in D5 (the regions D4 and D5 are as
on Figure 3 and will be formally defined below).

In the case c ∈ (0, 1/2], the assumption is slightly different:

(A4) There is y∗ ∈ [0, 1] such that for (x, y) ∈ J ,

(4.14) B(x, y) =
x

x + t
B(x + t, y − t) +

t

x + t
a(x + y) if c ≤ x + y ≤ y∗,

where t = t(x, y) is the unique positive number satisfying y − t = γ(x + t).
If (x, y) ∈ J and x + y < c, then

(4.15) B(x, y) =
x

x + y
b(x + y) +

y

x + y
a(x + y).

Finally,

(4.16) B(x, y) =
x

x + 1 − y
B(x+1−y, 1)+

1 − y

x + 1 − y
a(y−x) if −x+y ≥ y∗.

Take a look at the Figures 3-5 below and compare the cases c = 0, c > 0.

Step 4. A special case. From now on, until we say otherwise, we assume that
c = γ(c) = 0; the function corresponding to this choice of parameters will play a
distinguished role in the considerations below (and will lead to the special func-
tions of remaining cases via some simple transformations). Pick a nonnegative x
satisfying x + γ(x) ≤ y∗ and let t ∈ [0, x]. By (A3) and (A4) we have

B(x − t, γ(x) + t) = B(x, γ(x)) + (−Bx(x, γ(x)) + By(x, γ(x)))t,
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Figure 3. Bellman function for the weak-type (p, p) estimate in
the case c = γ(c) = 0.

so, by (A1),

(4.17) B(x − t, γ(x) + t) = −βxp + pβxp−1t.

Take t = x and differentiate both sides over x. We get

By(0, γ(x) + x)(γ′(x) + 1) = p(p − 1)βxp−1.

On the other hand, differentiate in (4.17) over t, then let t = x and use (4.11) to
obtain

By(0, γ(x) + x) = pβxp−1.

The two equations above give γ′(x) = p − 2, and hence γ(x) = (p − 2)x provided
x + γ(x) ≤ y∗.

By (4.12) and (4.13), the function B is linear on the line segments I± of slope
±1 such that (0, y∗) ∈ I± ⊂ J . Combining this with the symmetry condition
B(x, y) = B(−x, y), we get that the function

F (t) := B

(

y∗
p − 1

− t,
(p − 2)y∗

p − 1
+ t

)

is linear on [0, 1 − (p− 2)y∗/(p− 1)]. Indeed, for t lying in this interval, the points
(

y∗
p − 1

− t,
(p − 2)y∗

p − 1
+ t

)

fill out the line segment of slope −1, passing through (0, y∗), with one endpoint
lying on the line y = 1, and the other being the endpoint of the found linear piece
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Figure 4. Bellman function for the weak-type (p, p) estimate in
the case c = 0 < γ(c).

Figure 5. Bellman function for the weak-type (p, p) estimate in
the case γ(c) = 0 < c.
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of γ. Thus, we see that

B(y∗ − 1, 1) = F

(

1 −
(p − 2)y∗

p − 1

)

= F (0) + F ′(0)

(

1 −
(p − 2)y∗

p − 1

)

.

However, by the assumptions (A1), (A3) and the fact that (y∗/(p−1), (p−2)y∗/(p−
1)) lies on the linear piece of γ, we know what F (0) and F ′(0) are. Namely,
F (0) = −β (y∗/(p − 1))

p
and

F ′(0) = −Bx

(

y∗
p − 1

,
(p − 2)y∗

p − 1

)

+ By

(

y∗
p − 1

,
(p − 2)y∗

p − 1

)

= pβ

(

y∗
p − 1

)p−1

.

Therefore, the preceding equality can be rewritten in the form

β =
[

(1 − y∗)p − yp
∗(p − 1)2−p + pyp−1

∗ (p − 1)1−p
]−1

.

Now, if we replace y∗ by a certain number y (close to y∗), a similar argument yields

(4.18) β ≥
[

(1 − y)p − yp(p − 1)2−p + pyp−1(p − 1)1−p
]−1

.

Indeed, this inequality is equivalent to saying that the line, tangent to the curve t 7→

Vβ( y
p−1 − t, (p−2)y

p−1 + t) at the point t = 0, must majorize t 7→ Bβ( y
p−1 − t, (p−2)y

p−1 + t)

for t = 1 − (p − 2)y/(p − 1). Thus, we see that the derivative of the expression in
the square brackets of (4.18) must vanish for y = y∗. This equality is equivalent to

(1 − y∗)

(

(

1 − y∗
y∗

)p−2

− (p − 1)2−p

)

= 0,

and hence y∗ = 1 − p−1. This, in turn, implies β = pp−1/2.
Step 5. A final assumption. We still work under the condition c = γ(c) = 0.

Observe that the segments I+ and I−, introduced in the previous step (see also
Figure 3), have the same length. This suggests the final assumption (A5) below, to
formulate which we need some notation. Introduce the curve

κ =

{(

x −
1 − γ(x)

2
, γ(x) +

1 − γ(x)

2

)

: x ≥ p−1

}

(for the better understanding of κ, see the geometric properties of I+(z) and I−(z)
below). Let D1 ⊂ J be the closed set bounded by the lines y = 1, −x + y = y∗
and the curve κ; let D2 ⊂ J be the closed set bounded by the line x + y = y∗, the
curve κ and the graph of γ (see Figure 3). Note that D1 and D2 have the following
property. Take any z ∈ κ and let I+(z) ⊂ D1 (respectively, I−(z) ⊂ D2) denote
the maximal line segment of slope 1 (respectively, −1), which contains z as one of
its endpoints. Then I+(z) and I−(z) have the same length; so, in a sense, κ divides
the set

{(x, y) : y∗ − x ≤ y ≤ y∗ + x, γ(x) ≤ y ≤ 1}

into two halves. The assumption can be stated as follows.

(A5) We assume that

(4.19) B is linear on each I+(z), z ∈ κ

and

(4.20) B is linear on each I−(z), z ∈ κ.
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Step 6. A formula for γ in the case c = γ(c) = 0. So far, we have derived that

γ(x) = (p − 2)x for x ∈ [0, p−1]

and we need to determine this function on the remaining part of the positive halfline.
By (A3) and (4.20), the equation (4.17) is valid for all x ≥ p−1 and t ∈ [0, (1 −
γ(x))/2]. This enables us to derive Bx(z) + By(z) for any z ∈ κ: if z = (x − (1 −
γ(x))/2, γ(x) + (1 − γ(x))/2), then

Bx(z) + By(z) = −pβxp−1 +
p(p − 1)βxp−2(1 − γ(x))

1 + γ′(x)
.

On the other hand, by (A3) and (4.19), this must be equal to

B(x, 1) − B(z)
1−γ(x)

2

.

After some easy manipulations, this yields

(4.21) γ′(x) + 1 =
pp(p − 1)

4
xp−2(1 − γ(x))2.

Standard argumentation (cf. [44]) give the existence of a unique γ : (p−1,∞) →
[0, 1] satisfying γ(p−1+) = 1− 2/p; then γ′(p−1+) = p− 2. Thus we have obtained
the desired function γ.

Step 7. The formula for B, the case c = γ(c) = 0. We put all the things
together: the equations (4.12), (4.13), (4.19) and (4.20) yield the candidate B, the
one invented by Suh. Let D0 = {(x, y) : x > 0, y ≥ 1} and recall D1 and D2

introduced in Step 5. Moreover, let

D3 = {(x, y) : x ≥ 0, 0 ≤ y ≤ γ(x)},

D4 = {(x, y) : x ≥ 0, γ(x) ≤ y ≤ −x + y∗},

D5 = {(x, y) : R+ × R+ \ (D0 ∪ D1 ∪ D2 ∪ D3 ∪ D4)

(see Figure 3). Suppose that G is the inverse to the function x 7→ x + γ(x). Then

(4.22) B(x, y) =



























































1 − pp−1

2 xp on D0,

1 − 2(1−y)
1−γ(x−y+1)

− 1
2pp−1(x − y + 1)p−1

(

x − (p − 1)(1 − y)
)

on D1,
pp−1

2 (G(x + y))p−1 ((p − 1)G(x + y) − px) on D2,

− pp−1

2 xp on D3,

1
2

(

p
p−1

)p−1

(x + y)p−1(y − (p − 1)x) on D4,

pp−1

2 (1 + x − y)p−1
(

1−y
p−1 − x

)

− p2(1−y)
2(p−1) + 1 on D5.

The description of B is completed by the condition (4.10). One can now check that
the function satisfies the conditions 1◦, 2◦ as well as 3◦: B(x,±x) ≤ 0 for x ∈ R.
However, this requires a large amount of work and patience; for details, see [44].

This gives us the Bellman function (4.9) for β = pp−1/2. Furthermore, we have
obtained that the best Cp in (4.1) equals (pp−1/2)1/p.

Step 8. The formula for B0 for β > pp−1/2. There is a very natural modification
of Suh’s function (4.22), which can be obtained by appropriate scaling. This object
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will correspond to β > pp−1/2 and the case c = 0, γ(c) > 0. Namely, for any
α ∈ (0, 1), consider the function

Bα(x, y) =

{

B (|x|/α, (|y| − 1 + α)/α) if |y| ≥ 1 − α,

− pp−1|x|p

2αp if |y| < 1 − α.

Obviously, this function is of class C1 and diagonally concave (the rescaling factor
α−1 occurs on both coordinates in the definition of Bα). Furthermore, we easily
check that Bα majorizes Vβ corresponding to β = pp−1/(2αp), and hence B0 ≤ Bα.
However, it is also evident that the reverse holds true: if the function B0 was strictly
smaller at some point (x, y), then the appropriate improvement of B would also be
possible.

Step 9. The formula for B0 for β < pp−1/2. In this case, the Bellman function is
also closely related to Suh’s function (4.22), but there is a little more to do. Again,
the candidate comes into one’s mind after taking a closer look at the picture: see
Figure 5. Namely, consider the following scaling of B. Let α ∈ (2/p, 1) be a fixed
parameter and, for any x, y ∈ R put

Bα(x, y) = B (α|x|, α|y| + 1 − α) .

It follows at once from the majorization property of B that Bα(x, y) ≥ 1{|y|≥1} −
αppp−1|x|p/2. Unfortunately, this function does not work, as the diagonal concavity
fails to hold: for |x| < 1−α

(p−2)α , the function ξ(t) = Bα(x + t, t) satisfies ξ′(0−) <

ξ′(0+). To overcome this problem, we modify Bα on the square
{

(x, y) ∈ R
2 : |x| + |y| ≤

1 − α

(p − 2)α

}

,

putting Bα(x, y) = κ1(y2 − x2) + κ2 there. The parameters κ1, κ2 depend only on
p and α, and we determine them by requiring that Bα is continuous. We obtain

κ1 =
pp(1 − α)p−2α2

4(p − 2)p−2
and κ2 =

pp−1(1 − α)p

4(p − 2)p−1
.

It turns out that if α ≥ 2/p, then the modified Bα has the required concavity (one
easily verifies that the partial derivatives match appropriately at the boundary
of the square). Thus Bα majorizes the Bellman function (4.9) corresponding to
β = αppp−1/2. However, it is clear that we actually have equality (for instance, by
considering appropriate examples). Let us also mention that, as a by-product, we
get the sharp inequality

P(|gn| ≥ 1) ≤
1

2
αppp−1

E|fn|
p +

pp−1(1 − α)p

4(p − 2)p−1
,

valid for α ∈ [2p−1, 1]. Now it is also clear that c must not exceed 1/2; otherwise,
the line segments I± would not fit into the picture: see Figure 5.

Question 2: What is the formula for B0 for β < 2p−1/p?

4.3. One sided bound, p > 2. We turn our attention to the one-sided version of
(4.9). Consider the function

B0(x, y) = sup
{

EV (fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

,
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where V (x, y) = 1{y≥0} − |x|p. It is more convenient to study first the situation
when p is large; then the special function can be easily deduced from Suh’s function,
with the use of appropriate scaling. Namely, put

(4.23) b(x, y) =







B

(

(

2
pp−1

)1/p

x,
(

2
pp−1

)1/p

y + 1

)

if y ≥ −(pp−1/2)1/p,

−|x|p if y < −(pp−1/2)1/p,

where B is given by (4.22). We easily check that b is of class C1 on R × (−∞, 0)
and hence, by the properties of B, it is diagonally concave. Furthermore, b(x, y) ≥
V (x, y) for all (x, y) ∈ R

2: this is obvious for y < −(pp−1/2)1/p, and for remaining
points it follows immediately from the corresponding majorization for B. Thus, we
have B0 ≤ b. On the other hand, if we had a strict inequality at some point (x, y),
then necessarily we would have y > −(pp−1/2)1/p, and then the function B would
not be the Bellman function for (4.9).

Clearly, the above arguments, combined with appropriate translation and ho-
mogenization, give the formula for the “shifted” function

(x, y) 7→ sup
{

P(|gn| ≥ 1) − cE|fn|
p : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}

,

for any fixed c. Now it is easy to see that this new function satisfies 3◦ if and only
if c ≥ pp−1/2, and thus we obtain the sharp one-sided bound

P(gn ≥ 1) ≤
pp−1

2
E|fn|

p, n = 0, 1, 2, . . . ,

valid for all martingales f and their ±1-transforms g.

4.4. One sided bound, 1 < p ≤ 2. Now we deal with the more interesting case
of small p. The discovery of the corresponding Bellman function is not difficult,
especially in the light of the above considerations. Namely, a closer inspection of
the arguments from the case p = 1 and p > 2 suggests the appropriate candidate.
We will require the following auxiliary result, see [33] for the proof.

Theorem 4.1. Let 1 < p < 2. There is a continuous function H = Hp : [0,∞) →
[0,∞) satisfying the differential equation

(4.24) H ′(x) =
p(p − 1)

2
xp−2(H(x) − x)2

for x > 0 and such that

(4.25) H(0) =

(

2p
p−1

)1/p

Γ
(

p+1
p

)

Γ
(

p−1
p

) .

We proceed as in the previous subsection: the desired Bellman function B0 is
defined by the same formula. To define the candidate b, let us first distinguish
certain subsets of R × R. Here H = Hp is the function studied in the preceding
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theorem and h = hp stands for its inverse.

D0 = {(x, y) : y ≥ 0},

D1 = {(x, y) : h(|x| − y) − y < |x|, −|x| ≤ y < 0},

D2 = {(x, y) : h(|x| − y) < |x| ≤ h(|x| − y) − y, y − |x| ≤ −H(0)},

D3 = {(x, y) : |x| − H(0) < y < −|x|},

D4 = {(x, y) : |x| ≤ h(|x| − y)}.

See Figure 4.4 below. What is the reason for such regions and what can be said

Figure 6. The regions D0–D4, intersected with {(x, y) : x ≥ 0}.

about B? Arguing as above, we immediately get that b(x, y) = 1 − |x|p for y ≥ 0
(this gives the justification for D0). Let us describe the idea behind the shape
of D4. To compute B0(x, y), we need pairs (f, g) for which P(gn ≥ 0) is large,
while E|fn|p is small. For a given x, if y is sufficiently small, then the best pair
is the constant one; for any other pair, the increase of the p-th moment of f is
not compensated by the gain coming from pushing g on or above the x-axis. Thus
we expect B0(x, y) = −|x|p for small y. On the other hand, fix such a y and
start increasing x. Since p is smaller than 2, the second derivative of x 7→ xp

goes to 0; consequently, the p-th moment E|fn|p grows slower and slower. This
means that for sufficiently large x, some nontrivial pairs (f, g) should be taken
into consideration. Summarizing, the above reasoning suggests the existence of a
certain nonincreasing function γ : [0,∞) → (−∞, 0), such that B0(x, y) = −|x|p for
y ≤ γ(x) and B0(x, y) > −|x|p for y > γ(x). To get the description of γ, we impose
the following geometrical property on the sets D1 and D2 (see Figure 4.4). Pick
a point (x, y) ∈ ∂D1 ∩ D2, with x > 0, and consider the maximal line segment of
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slope −1 (respectively, +1) contained in D1 (respectively, D2) and having (x, y) as
one of its endpoints. The requirement is that both these segments have the same
length. Assuming that the Bellman function is continuous on R

2 and of class C1

on R × (−∞, 0), we obtain a differential equation for γ:

1 − γ′(x) =
p(p − 1)

2
xp−2γ(x)2,

which should be compared to its counterpart (4.21) in the case p ≥ 2. The substi-
tution H(x) = x− γ(x) transfers this equation to (4.24), and hence the function γ
does exist. Furthermore, the solution satisfies

γ(0) =

(

2p
p−1

)1/p

Γ
(

p+1
p

)

Γ
(

p−1
p

) ,

see (4.25). Where does this equality come from? It is a consequence of the fact
that we want γ to be defined on the whole halfline [0,∞) and to satisfy γ′(t) → 0
as t → ∞ (all the other solutions γ, corresponding to different initial conditions,
violate one of these two properties).

We come back to the search for the candidate b. It is clear what foliation we
should use. On D1 ∩ {(x, y) : x > 0}, the function should be concave along the
lines of slope −1. The set D2 ∩ {(x, y) : x > 0} should be split into segments of
slope 1. Finally, on D3 we expect linearity along line of both slopes ±1 (i.e., Bell-
man function should be quadratic there). A little calculation reveals the following
candidate. Put H(x) = x − γ(x) for x > 0, and let h be the inverse function to H .
Then

(4.26) b(x, y) =































1 − xp if (x, y) ∈ D0,

1 + (x + y)p−1((p − 1)y − x) + 2y
H(x+y)−x−y if (x, y) ∈ D1,

[h(x − y)]p−1[(p − 1)h(x − y) − px] if (x, y) ∈ D2,

[(y + H(0))
2 − x2](H(0))−2 if (x, y) ∈ D3,

−xp if (x, y) ∈ D4.

Some lengthy calculations (cf. [33]) show that this function enjoys the conditions
1◦ and 2◦, so it coincides with B0. As in the case p > 2, by appropriate translation
and homogenization, we obtain the sharp one-sided bound

P(gn ≥ 1) ≤

(

2p
p−1

)1/p

Γ
(

p+1
p

)

Γ
(

p−1
p

) E|fn|
p, n = 0, 1, 2, . . . ,

valid for all 1 < p < 2 and all martingale pairs (f, g) such that g is a ±1-transform
of f .

4.5. More exact information on weak-type bounds. The final part of this
section concerns the Bellman functions

B0(x, y, t) = sup

{

P(gn ≥ 1) : (f, g) ∈ M(x, y), E|f∞|p ≤ t, n = 0, 1, 2, . . .

}
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and the two-sided version

B0(x, y, t)

= sup

{

P(|gn| ≥ 1) : (f, g) ∈ M(x, y), E|f∞|p ≤ t, n = 0, 1, 2, . . .

}

.
(4.27)

We will be brief. The first of these functions can be easily extracted from the analy-
sis of the above one-sided bounds. We simply repeat the translation/homogenization
arguments from the case p = 1. Unfortunately, the formula we obtain is compli-
cated and non-explicit, so we have decided not to include it here. The function
(4.27) could be handled similarly, but, unfortunately, in both cases 1 < p < 2,
p > 2 the analysis of (4.9) is incomplete (there are some values of β for which the
function has not been found) and this disables the identification of (4.27).

We omit the further details in this direction, and leave them to the reader.

5. Strong-type inequalities for martingale transforms

We turn to Burkholder’s celebrated Lp-estimates for martingale transforms:

(5.1) ||gn||p ≤ (p∗ − 1)||fn||p, 1 < p < ∞, n = 0, 1, 2, . . . ,

where p∗ = max{p, p/(p− 1)}. Thus,

p∗ − 1 =

{

(p − 1)−1 if 1 < p ≤ 2,

p − 1 if p ≥ 2.

The primary goal of this section is to determine the explicit formula for the associ-
ated Bellman function

(5.2) B0(x, y, t) = sup

{

E|gn|
p : (f, g) ∈ M(x, y), E|f∞|p ≤ t, n = 0, 1, 2, . . .

}

,

originally invented by Burkholder in [8]. The reasoning we will present is a combina-
tion of probabilistic and analytic arguments. For an alternative, analytic approach
which exploits the Monge-Ampère equation and the method of characteristics, see
the recent work of Vasyunin and Volberg [50].

5.1. On the search of extremal examples. We start our analysis from some
natural examples, which will be helpful later. Let 1 < p < ∞ be fixed and suppose
that βp ≥ 1 is the best constant in the inequality

(5.3) ||gn||p ≤ βp||fn||p, n = 0, 1, 2, . . . ,

where f is a martingale and g is its ±1-transform. The case p = 2 is trivial: we
have ||gn||2 = ||fn||2 for each n and hence the best constant is equal to 1. Thus,
suppose that p 6= 2. Since βp cannot be improved, there must be martingales f ,
g for which both sides are equal, or asymptotically equal. A natural idea during
the search for f and g is to let n → ∞ and look for sequences which satisfy the
pointwise equality |g∞| ≡ βp|f∞|. The construction of such a pair is not difficult.
Actually, from the viewpoint of our further reasoning, it will be more convenient to
introduce the whole family of Markov martingales. Fix a small δ > 0 (eventually,
we will let it go to 0), and consider the following transition function:

(i) The states lying in the set {(x, y) : |y| ≥ βp|x|} are absorbing.

(ii) The state (x, y) with 0 < y < βpx, leads to (x + y, 0) or to
(

x+y
βp+1 ,

βp(x+y)
βp+1

)

(the move along the line of slope −1).
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(iii) The state (x, 0) with x > 0 leads to (x + δx, δx) or to
(

x
βp+1 ,−

βpx
βp+1

)

(the

move along the line of slope 1).
(iv) The remaining states (x, y) behave in a symmetrical way when compared

to (ii) and (iii).

Now if we assume that the pair (f, g) starts from (1, 1) and moves according to
(i)-(iv), then indeed |g∞| = βp|f∞|. At the first glance, this seems to show that the
Lp bound does not hold with any βp, since the ratio |g∞|/|f∞| can be arbitrarily
large. However, this is not the case: the above martingales are bounded in Lp if
and only if βp < (p − 1)−1, and we have

lim
βp↑(p−1)−1

||f∞||p = ∞

(cf. pages 55-56 in [33], or modify slightly the reasoning on pages 669-670 in [8]).
That is, if the constant is at least (p − 1)−1, then both sides of (5.3) are infinite
and hence the estimate holds true. On the other hand, the above example shows
the lower bound βp ≥ (p − 1)−1. This is of value only for 1 < p < 2, for p > 2, the
stronger bound βp ≥ 1 is given for free. How to modify the example when p > 2?
A good idea is to reflect the above transition function with respect to the diagonal
y = x, that is, let (i)-(iv) describe the evolution of (g, f), not (f, g). Actually, a
small modification is required: without it, the points of the diagonal are absorbing,
so the above recipe would give us constant pairs (g, f) (for which we only have
||g||p/||f ||p = 1). We modify the example as follows: we assume that (f, g) starts
from (x, x) for some x > 0, then make it move to (2x, 0) or to (0, 2x), and then
require that (g, f) moves according to (i)-(iv). Then, as previously: f ∈ Lp if and
only if βp ≥ (p − 1)−1, and hence

lim
βp↓(p−1)−1

||g||p/||f ||p = p − 1.

Thus, the best constant is at least p − 1. Actually, we can consider the above
Markov family for various choices of βp ∈ ((p− 1)−1,∞). As we shall see, they will
also play a role.

5.2. Basic inequality. In order to study the (difficult) Bellman function B0, we
implement our “splitting procedure”: as previously, we move the p-th moment
E|f∞|p from the assumption to the optimized expression and work with an appro-
priate family of estimates. More precisely, we will determine the explicit formula
for the two-dimensional Bellman function

(5.4) b0(x, y) = sup
{

EVβ(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}

,

where Vβ(x, y) = |y|p − βp|x|p and β is a given constant. Then, optimizing over β,
we will obtain the desired function (5.2). Actually, as we shall see in a moment in
§5.3, only the case p 6= 2 is of interest; when p = 2, the Bellman function B0 can
be derived with practically no effort.

We will present the detailed reasoning in the case 1 < p < 2 only. As we have
proved above, only the case β ≥ (p− 1)−1 is of interest; for smaller β, the Bellman
function b0 is infinite. So, assume that β ≥ (p− 1)−1 and suppose that b0 is finite.
This function satisfies 1◦ and 2◦; moreover, directly from (5.4), we have that it is
homogeneous of order p (since V has this property):

b0(λx,±λy) = |λ|pb0(x, y), x, y ∈ R, λ 6= 0.
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Consider the function w : R → R, given by

(5.5) w(x) = b0(x, 1 − x).

It is enough to determine w on [0, 1]; then, by homogeneity, we will obtain b0 on
its whole domain. Note that w is concave and satisfies

(5.6) w(x) = b0(x, 1 − x) = b0(x, x − 1) = (2x − 1)pw

(

x

2x − 1

)

for x > 1.

Furthermore, it majorizes u : R → R given by u(x) = Vβ(x, 1 − x). By the direct
differentiation, we see that

u′′(x) = p(p − 1)
[

(1 − x)p−2 − βpxp−2
]

, x ∈ (0, 1),

and hence u is concave on (0, x0) and convex on (x0, 1) for some x0 ∈ (0, 1). This
suggests to consider the following candidate for w:

w(x) =

{

u(x) if x ∈ (0, x1),

u′(x1)(x − x1) + u(x1) if x ∈ [x1, 1),

where x1 < x0 is a parameter which needs to be specified. To find x1, we compare
the behavior of the left- and the right-hand derivative of w at 1. Namely, note that
(5.6) implies

w(x) − w(1)

x − 1
+ (2x − 1)p−1

w(1) − w
(

x
2x−1

)

1 − x/(2x − 1)
= 2w(1)

(2x − 1)p − 1

(2x − 1) − 1

for x > 1, so letting x ↓ 1, we get w′(1+) + w′(1−) = 2pw(1) and thus

u′(x1) = w′(1−) ≥
w′(1+) + w′(1−)

2
= pw(1) = pu′(x1)(1 − x1) + pu(x1).

Now, it will be convenient to switch to the parameter γ, given by x1 = (1 + γ)−1.
Then the above inequality is equivalent to (p − 1)βp ≥ (2 − p)γp−1 + γp−2. We
assume that we actually have equality here, so,

(5.7) βp =
(2 − p)γp−1 + γp−2

p − 1
.

Note that the expression on the right of (5.7), considered as a function of γ, is
decreasing on (0, (p − 1)−1) and increasing on ((p − 1)−1,∞). Furthermore, its
minimal value equals (p−1)−p. Thus, if β is strictly larger than (p−1)−1, we have
two choices for γ, and in such a case we pick the smaller one, i.e., γ < (p − 1)−1.

Coming back to b0, we obtain the following candidate for the Bellman function:

b(x, y) =











(

γ

γ + 1

)p−2

(|x| + |y|)p−1

(

|y| −
|x|

p − 1

)

if |y| ≤ γ|x|,

|y|p − βp|x|p if |y| > γ|x|.

Now, it is straightforward to check that b satisfies 1◦ (this follows directly from the
homogeneity and the inequality w ≥ u). Furthermore, some tedious calculations
show that the condition 2◦ is also satisfied: see e.g. page 17 in [10]. Therefore,
b0 ≤ b. Actually, we have equality b0(x, y) = b(x, y) for all (x, y), which can be
verified with the use of examples from the previous section, with βp := γ (or just
follows from the above construction). This is the place where we use the fact
that we have chosen smaller γ in (5.7): for the larger choice, the computation of
supn≥0 EV (fn, gn) would not lead to b(x, y), but to a strictly smaller constant. We
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have yet another analytic explanation for the smaller γ’s: the function b corre-
sponding to larger choice would lead to a strict majorant of b0.

In the case p > 2 we proceed similarly; let us briefly describe the main steps
of the analysis. Exploitation of the examples of §5.1 leads us to the inequality
β ≥ p−1. The function u (given by the same formula as above), restricted to [0, 1],
has dual convexity/concavity regions: that is, it is convex for small arguments and
concave for large ones (i.e., close to 1). Thus, it is natural to conjecture that the
restriction w|[0,1] (where w is given by (5.5)) is of the form

w(x) =

{

u′(x1)(x − x1) + u(x1) if x ∈ (0, x1],

u(x) if x ∈ (x1, 1),

for some x1. Passing to γ = 1 − x−1
1 as above and analyzing the behavior of w′ in

the neighborhood of 0, we obtain βp ≥ (p − 1)γp−1/(γ + 2 − p). We assume that
both sides are equal: again, for a given β > p − 1 there are two γ’s which satisfy
the equation, and this time we pick the larger one. Putting all these facts together,
we obtain the candidate

(5.8) b(x, y) =







γp−1(γ + 1)2−p

γ + 2 − p
(|x| + |y|)p−1

(

|y| − (p − 1)|x|
)

if |y| ≥ γ|x|,

|y|p − βp|x|p if |y| < γ|x|,

where γ is the larger positive root of the equation

βp =
(p − 1)γp−1

γ + 2 − p
.

Similar arguments to those above give b = b0, which completes the analysis in the
case p > 2.

5.3. Burkholder’s function. We are ready to compute the formula for the general
Bellman function B0 introduced in (5.2). Pick a point (x, y, t) and a pair (f, g) as
in the definition of B0(x, y, t). In the case p = 2, everything is straightforward: we
have

E|gn|
2 = y2 +

n
∑

k=1

|dgk|
2 = y2 +

n
∑

k=1

|dfk|
2 = y2 − x2 + E|fn|

2 ≤ y2 − x2 + t,

so B0(x, y, t) ≤ y2 − x2 + t. On the other hand, if we pick any simple pair (f, g) ∈
M(x, y) for which E|f∞|2 = t, we get equality. Thus, for p = 2, we have

B0(x, y, t) = |y|2 − |x|2 + t.

Next, let us assume that 1 < p < 2. Directly from the above considerations, we
can write that

B0(x, y, t) ≤ b0(x, y) + βp
pt.

Therefore, in the light of (5.7), B0(x, y, t) does not exceed














(1 + γ−1)2−p(|x| + |y|)p−1

(

|y| −
|x|

p − 1

)

+
(2 − p)γp−1 + γp−2

p − 1
t if |y| ≤ γ|x|,

|y|p +
(2 − p)γp−1 + γp−2

p − 1
(t − |x|p) if |y| > γ|x|.
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Denote this expression by B(x, y, t, γ) and let us minimize it over all γ ≤ (p−1)−1.
If |y| ≥ (p − 1)−1|x|, then

B(x, y, t, γ) = |y|p +
(2 − p)γp−1 + γp−2

p − 1
(t − |x|p)

for all γ. We easily see that

∂B

∂γ
(x, y, t, γ) = (2 − p)(p − 1)−1γp−3(−1 + (p − 1)γ) ≤ 0

and thus the choice γ = (p − 1)−1 is optimal. This calculation also shows that if
|y| < (p − 1)−1|x|, then γ 7→ B(x, y, t, γ) is nonincreasing on (0, |y|/|x|), and hence
the minimum is attained on [|y|/|x|, (p − 1)−1]. A direct differentiation gives that
γ0 which minimizes B is the unique number γ from that interval, satisfying the
equation

(|x| + |y|)p−1

t

(

|y| −
|x|

p − 1

)

− (1 + γ)p +
p

p − 1
(1 + γ)p−1 = 0.

Plugging the above optimal choices of γ into the definition of B, we finally get that

B0(x, y, t) ≤

{

|y|p + (p − 1)−p(t − |x|p) if |y| ≥ (p − 1)−1|x|,

γp
0 t if |y| < (p − 1)−1|x|.

We actually have equality here, which can be verified with the examples considered
in the previous subsection (see also [8]). This gives us the desired formula for B0,
which was originally discovered by Burkholder.

It remains to deal with the case p > 2. We proceed analogously and exploit
the function defined by (5.8). In comparison to the case 1 < p < 2, there are no
additional arguments, so we leave the details to the reader. Let us only write down
the result: having carried out all the computations, we end up with

B0(x, y, t) =

{

|y|p + (p − 1)p(t − |x|p) if |y| ≤ (p − 1)|x|,

γp
0 t if |y| > (p − 1)|x|.

where γ0 is the unique γ ∈ [p − 1,∞) satisfying the equation

(|x| + |y|)p−1

t

(

|y| − (p − 1)|x|
)

+ p(γ + 1)p−1 − (γ + 1)p = 0.

This completes the analysis.
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