
Weak type inequality for the square funtionof a nonnegative submartingaleAdam Os�ekowskiMay 18, 2009AbstratLet f be a nonnegative submartingale and S(f) denote its squarefuntion. We show that for any λ > 0,
λP(S(f) ≥ λ) ≤ π

2
||f ||1,and the onstant π/2 is the best possible. The inequality is stritprovided ||f ||1 6= 0.1 IntrodutionLet (Ω,F , P) be a probability spae, �ltered by (Fn)∞n=0, a nonde-reasing sequene of sub-σ-algebras of F . Assume f = (fn)∞n=0 is anadapted sequene of integrable real-valued random variables. The dif-ferene sequene df = (dfn)∞n=0 of f is given by the equations df0 = f0and dfn = fn − fn−1, n = 1, 2, . . .. We de�ne the square funtion of fby

S(f) =

(

∞
∑

k=0

|dfk|2
)1/2

.We will also use the notation
Sn(f) =

(

n
∑

k=0

|dfk|2
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and write ||f ||p = supn ||fn||p for p ≥ 1.In the present paper we deal with the weak type inequalities for thesquare funtion. As shown by Burkholder in [2℄, if f is a martingaleor nonnegative submartingale, then
λP(S(f) ≥ λ) ≤ 3||f ||1. (1.1)Then it was shown by Cox in [5℄ that the best onstant in the aboveinequality for real-valued martingales f equals √

e (it is worth men-tioning that in the earlier paper [1℄ Bollobás onjetures that this isthe right hoie). The purpose of this note is to determine the opti-mal onstant in (1.1) under the assumption that f is a nonnegativesubmartingale.Theorem 1. If f is a nonnegative submartingale, then for any λ > 0,
λP(S(f) ≥ λ) ≤ π

2
||f ||1, (1.2)and the onstant π/2 is the best possible. Furthermore, the inequalityis strit unless ||f ||1 = 0.A few words about the organization of the paper. The proof of theinequality (1.2) is based on Burkholder's method, whih translates theproblem of proving a given (sub-)martingale inequality to the problemof �nding a ertain speial funtion (for the desription of the method,see e.g. [4℄ or [6℄). We onstrut the funtion and thus establish (1.2)in Setion 2. In the last setion we show that the onstant π

2 an notbe replaed by a smaller one and that (1.2) is strit in all nontrivialases.2 The proof of the inequality (1.2)Let us start with the following auxiliary result.Lemma 1. For any x ∈ (0, 1) and d > −x suh that (x+ d)2 + d2 < 1we have
√

1 − x2 −
√

1 − (x + d)2 − d2

x + d
+arcsin x−arcsin

x + d√
1 − d2

≤ 0. (2.1)Proof. Denote the left hand side of (2.1) by F (x, d). If we �x d anddi�erentiate with respet to x, we obtain
Fx(x, d)(x + d)2 =

√

1 − (x + d)2 − d2 −
√

1 − x2 +
d(x + d)√

1 − x2

=
√

1 − x2 − 2d(x + d) −
√

1 − x2 − −2d(x + d)

2
√

1 − x2
,2



whih is nonnegative, due to the onavity of the funtion t 7→
√

t.Therefore the inequality F (x, d) ≤ 0 will be established one we haveshown that F (−d+, d) ≤ 0 for d < 0 and F (0+, d) ≤ 0 for d ≥ 0.Suppose �rst that d < 0. Then
F (−d+, d) =

d√
1 − d2

+ arcsin(−d) =

∫ −d

0

1√
1 − s2

− 1√
1 − d2

ds < 0.If d = 0, then F (x, d) = 0 for any x. Finally, if d > 0, then
F (0+, d) =

1 −
√

1 − 2d2

d
− arcsin

d√
1 − d2

=

∫ d

0

√
1 − 2s2 − 1

(1 − s2)(1 +
√

1 − 2s2)
ds < 0.

(2.2)The proof is omplete.The ruial role in the paper is played by the funtions U, V :
[0,∞) × [0,∞) → R, given by

U(x, y) =







1 −
√

1 − x2 − y2 − x arcsin x√
1−y2

if x2 + y2 < 1,

1 − π
2 x if x2 + y2 ≥ 1and V (x, y) = I{y≥1} − π

2x.The key properties of these funtions are listed in the lemma below.Lemma 2. The funtions U , V enjoy the following.(i) U is of lass C1 on (0,∞) × (0,∞).(ii) For any x ≥ 0, y ≥ 0, we have
Ux(x, y) ≤ 0 (2.3)(if x = 0, then we understand Ux(0, y) as the limit Ux(0+, y)).(iii) For any x ≥ 0, y ≥ 0,

U(x, y) ≥ V (x, y) (2.4)and
U(x, y) ≤ 1 − π

2
x. (2.5)(iv) For any x ≥ 0, y ≥ 0 and d ≥ −x we have

U(x + d,
√

y2 + d2) ≤ U(x, y) + Ux(x, y)d (2.6)(again, if x = 0, then the partial derivative is understood as the limit).(v) We have, for any x ≥ 0,
U(x, x) ≤ 0. (2.7)Furthermore, the inequality is strit if x > 0.3



Proof. (i) A diret omputation shows that
Ux(x, y) =







− arcsin x√
1−y2

if x2 + y2 < 1,

−π
2 if x2 + y2 ≥ 1

(2.8)and
Uy(x, y) =







y
√

1−x2−y2

1−y2 if x2 + y2 < 1,

0 if x2 + y2 ≥ 1.Now it an be easily veri�ed that both derivatives are ontinuous on
(0,∞) × (0,∞).(ii) This follows immediately from the formula for Ux above.(iii) Clearly, it su�es to show the inequalities on the set {(x, y) :
x > 0, y > 0, x2 + y2 < 1}. By (2.8) we have, for (x, y) lying in thisset,

∂

∂x

(

U(x, y) +
π

2
x
)

=
π

2
− arcsin

x
√

1 − y2
≥ 0.Hene

U(x, y) − V (x, y) ≥ U(0, y) − V (0, y) = 1 −
√

1 − y2 ≥ 0and
U(x, y) +

π

2
x ≤ U(

√

1 − y2, y) +
π

2

√

1 − y2 = 1.(iv) The inequality is easy if x2 + y2 ≥ 1; indeed, we have
U(x, y) + Ux(x, y)d = 1 − π

2
(x + d) ≥ U(x + d,

√

y2 + d2),the latter estimate being a onsequene of (2.5). Suppose then, that
x2 + y2 < 1. If (x + d)2 + (

√

y2 + d2)2 < 1, then the inequality (2.6)takes form
−
√

1 − (x + d)2 − y2 − d2 − (x + d) arcsin
x + d

√

1 − y2 − d2

≤
√

1 − x2 − y2 − (x + d) arcsin
x

√

1 − y2
.The �rst observation is that we may assume that y = 0: indeed,if this is not the ase, divide both sides by √1 − y2 and substitute

x := x/
√

1 − y2, d := d/
√

1 − y2. The seond step is to note that,by ontinuity, we may assume x + d > 0. Then the desired estimateis preisely (2.1). The only remaining ase is that x2 + y2 < 1 and
(x + d)2 + (

√

y2 + d2)2 ≥ 1; then the inequality (2.6) is equivalent to
√

1 − x2 − y2 + (x + d)

(

π

2
− arcsin

x
√

1 − y2

)

− 1 ≥ 0.4



It is lear that it su�es to prove it for the least possible d, i.e., satis-fying d ≥ 0 and (x + d)2 + (
√

y2 + d2)2 = 1. However, then the esti-mate follows from ontinuity and already onsidered ase x2 + y2 < 1,
(x + d)2 + (

√

y2 + d2)2 < 1.(v) This is a onsequene of (iv): let x = y = 0 to obtain U(d, d) ≤
U(0, 0) + Ux(0+, 0)d = U(0, 0) = 0. Furthermore, for d > 0 theinequality is strit: this is preisely (2.2).Now we are ready to prove the main estimate of the paper.Proof of (1.2). Let f be any nonnegative submartingale. By homo-geneity, it su�es to show (1.2) for λ = 1 only. First we will showthat the proess (U(fn, Sn(f)))∞n=0 is a supermartingale. To this end,�x n ≥ 1 and observe that, by (2.6),

U(fn, Sn(f)) = U(fn−1 + dfn,
√

Sn−1(f) + |dfn|2)
≤ U(fn−1, Sn−1(f)) + Ux(fn−1, Sn−1(f))dfnBoth sides are integrable: indeed, one easily heks that |U(x, y)| ≤

K+π
2x for some absolute onstant K; furthermore, Ux(x, y) is bounded,in view of (2.8). Therefore, applying the onditional expetation withrespet to Fn−1 and using (2.3) together with the submartingale prop-erty yields

E
[

U(fn, Sn(f))|Fn−1

]

≤ U(fn−1, Sn−1(f))

+ Ux(fn−1, Sn−1(f))E(dfn|Fn−1)

≤ U(fn−1, Sn−1(f)).Combined with (2.4), this will imply the inequality (1.2) for the sub-martingales f of �nite length (that is, satisfying P(dfn = dfn+1 = . . . =
0) = 1 for some n). Namely, for any n = 0, 1, 2, . . ., we write

P(Sn(f) ≥ 1) − π

2
Efn = EV (fn, Sn(f))

≤ EU(fn, Sn(f)) ≤ EU(f0, S0(f)) ≤ 0,
(2.9)where in the last passage we have used the equality f0 = S0(f) andthe inequality (2.7). The �nal step is to let n → ∞: for any ε > 0, wehave, by (2.9) applied to the submartingale f/(1 − ε),

P(S(f) ≥ 1) ≤ lim
n→∞

P(Sn(f) ≥ 1 − ε)

≤ lim
n→∞

π

2(1 − ε)
Efn ≤ π

2(1 − ε)
||f ||1.

(2.10)Now let ε → 0 to omplete the proof.5



3 Stritness and sharpness3.1 StritnessSuppose ||f ||1 > 0 and observe that if this is the ase, then with noloss of generality we may assume that P(f0 > 0) > 0. Arguing as in(2.9) and (2.10), we obtain
P(S(f) ≥ 1) ≤ π

2
||f ||1 + EU(f0, S0(f)).It su�es to note that sine f0 = S0(f) almost surely, we have that

EU(f0, S0(f)) < 0, by the property (v) in Lemma 2. This yields thelaim.3.2 SharpnessThroughout this subsetion we assume that the underlying probabil-ity spae is the interval [0, 1] equipped with its Borel subsets andLebesgue's measure. We will show that the onstant is optimal evenif we restrit ourselves to the submartingales f satisfying S(f) ≥ 1almost surely. One ould show this by giving appropriate examples;however, we take the opportunity here to provide a di�erent proof.Reall that the proess f is alled simple if it is of �nite length(hene its limit f∞ exists almost surely) and for any n the variable
fn takes only a �nite number of values. For any (x, y), let Z(x, y) bethe lass whih onsists of all nonnegative simple submartingales f , forwhih f0 = x and y2−x2+S2(f) ≥ 1 almost surely. Here the �ltrationis no longer �xed - it may be di�erent for di�erent submartingales.Lemma 3. Let the funtion W : [0,∞) × [0,∞) → R be given by

W (x, y) = inf
f∈Z(x,y)

Ef∞.The funtion W has the following properties:(i) For all x ≥ 0, y ∈ [0, 1),
W (x, y) =

√

1 − y2W (x/
√

1 − y2, 0) (3.1)(ii) For all x, y, d ≥ 0,
W (x + d,

√

y2 + d2) ≥ W (x, y). (3.2)(iii) For all x, y ≥ 0, α ∈ (0, 1) and any d1, d2 ≥ −x satisfying
αd1 + (1 − α)d2 = 0,
αW (x+d1,

√

y2 + d2
1)+(1−α)W (x+d2,

√

y2 + d2
2) ≥ W (x, y). (3.3)6



Proof. (i) Suppose f is a simple nonnegative submartingale. Then
f lies in Z(x, y) if and only if f ′ = f/

√

1 − y2 belongs to the lass
Z(x/

√

1 − y2, 0); indeed, we have that f0 = x is equivalent to f ′
0 =

x/
√

1 − y2 and, furthermore,
y2 − x2 + S2(f) ≥ 1is equivalent to

− x2

1 − y2
+ S2(f ′) ≥ 1.This implies

W (x, y) = inf
f∈Z(x,y)

Ef∞ = inf
f ′∈Z(x/

√
1−y2,0)

E

√

1 − y2f ′
∞

=
√

1 − y2W (x/
√

1 − y2, 0).(ii) Suppose f ∈ Z(x + d,
√

y2 + d2) and onsider a sequene f ′suh that, with probability 1, f ′
0 = x, df ′

1 = d and df ′
n+1 = dfn for

n = 1, 2, . . .. Sine d ≥ 0, f ′ is a simple submartingale (with respetto its natural �ltration) and
y2−x2 +S2(f ′) = y2 +d2 +

∞
∑

n=2

|df ′
n|2 = y2 +d2− (x+d)2 +S2(f) ≥ 1.Hene f ′ ∈ Z(x, y) and sine f ′

n = fn−1 for n = 1, 2, . . ., we have
W (x, y) ≤ Ef ′

∞ = Ef∞.As f ∈ Z(x + d,
√

y2 + d2) was arbitrary, (3.2) follows.(iii) We will use so alled "spliing" argument: see e.g. [3℄ fordetails. Let f (1), f (2) be two submartingales belonging to Z(x +
d1,
√

y2 + d2
1), Z(x + d2,

√

y2 + d2
2), respetively. Consider the pro-ess f , suh that (reall that Ω = [0, 1])

f0 = xI[0,1], df1 = d1I[0,α] + d2I(α,1]and, for ω ∈ Ω,
dfn(ω) = df

(1)
n−1(ω/α)I[0,α](ω) + df

(2)
n−1((ω − α)/(1 − α))I(α,1](ω),for n = 2, 3, . . .. It an be veri�ed easily that f is a simple nonnegativesubmartingale suh that y2 − x2 + S2(f)(ω) equals

[

y2 + d2
1 − (x + d1)

2 + S2(f (1))(ω/α)
]

I[0,α](ω)

+
[

y2 + d2
2 − (x + d2)

2 + S2(f (2)) ((ω − α)/(1 − α))
]

I(α,1](ω) ≥ 1.7



Thus f ∈ Z(x, y). Moreover, by the onstrution, we have
f∞(ω) = f (1)

∞ (ω/α) + f (2)
∞ ((ω − α)/(1 − α)),so

W (x, y) ≤ Ef∞ = αEf (1)
∞ + (1 − α)Ef (2)

∞ ,and sine f (1), f (2) were arbitrary, the inequality (3.3) is satis�ed.The lemma above is the tool to show that π/2 in (1.2) is the bestpossible.Sharpness of (1.2). In terms of the funtion W , the proof will be om-plete if we show that W (0, 0) ≤ 2/π. Let N be a �xed (large) integerand δ = 1/(N +1). By (3.2), applied to x = y = 0 and d = δ, we have
W (0, 0) ≤ W (δ, δ). (3.4)Now, for n ∈ {1, 2, . . . , N}, use (3.3) with x = nδ, y =

√
nδ, d1 =

−nδ, d2 = δ and α = 1/(n + 1) to obtain
W (nδ,

√
nδ) ≤ W (0,

√
nδ2 + n2δ2)

n + 1
+

nW ((n + 1)δ,
√

n + 1δ)

n + 1

=

√
1 − nδ2 − n2δ2

n + 1
W (0, 0) +

nW ((n + 1)δ,
√

n + 1δ)

n + 1
,where in the last passage we have exploited (2.4). This inequalityyields

W (nδ,
√

nδ)

n
− W ((n + 1)δ,

√
n + 1δ)

n + 1
≤

√
1 − n2δ2

n(n + 1)
W (0, 0)and, ombining this with (3.4), we get

W (0, 0) ≤ W ((N + 1)δ,
√

N + 1δ)

N + 1
+ W (0, 0)

N
∑

n=1

√
1 − n2δ2

n(n + 1)
. (3.5)Now we make two observations. First, we have W ((N+1)δ,

√
N + 1δ) =

W (1,
√

δ) = 1. To see this, observe that for any submartingale f ∈
Z(1,

√
δ) we have Ef∞ ≥ Ef0 = 1, so W (1,

√
δ) ≥ 1. On the otherhand, the martingale f starting from 1 suh that df1 = −I[0,1/2) +

I[1/2,1] and dfn = 0 for n ≥ 2, belongs to Z(1,
√

δ) and satis�es Ef∞ =

Ef0 = 1. The seond observation is that ∑N
n=1

1
n(n+1) = 1 − 1

N+1 .Therefore, (3.5) an be rewritten in the form
W (0, 0) ≤ 1 + W (0, 0) ·

N
∑

n=1

δ

√
1 − n2δ2 − 1

nδ(n + 1)δ
.Now if we let N → ∞ (so δ → 0), then the sum above onvergesto ∫ 1

0 (
√

1 − x2 − 1)x−2dx = 1 − π
2 and then the inequality beomes

W (0, 0) ≤ 2/π. This ompletes the proof.8
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