Weak type inequality for the square function of a nonnegative submartingale

Adam Osȩkowski

May 18, 2009

Abstract

Let f be a nonnegative submartingale and $S(f)$ denote its square function. We show that for any $\lambda>0$, $$
\lambda \mathbb{P}(S(f) \geq \lambda) \leq \frac{\pi}{2}\|f\|_{1}
$$ and the constant $\pi / 2$ is the best possible. The inequality is strict provided $\|f\|_{1} \neq 0$.

1 Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by $\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$, a nondecreasing sequence of sub- σ-algebras of \mathcal{F}. Assume $f=\left(f_{n}\right)_{n=0}^{\infty}$ is an adapted sequence of integrable real-valued random variables. The difference sequence $d f=\left(d f_{n}\right)_{n=0}^{\infty}$ of f is given by the equations $d f_{0}=f_{0}$ and $d f_{n}=f_{n}-f_{n-1}, n=1,2, \ldots$ We define the square function of f by

$$
S(f)=\left(\sum_{k=0}^{\infty}\left|d f_{k}\right|^{2}\right)^{1 / 2}
$$

We will also use the notation

$$
S_{n}(f)=\left(\sum_{k=0}^{n}\left|d f_{k}\right|^{2}\right)^{1 / 2}
$$

Research supported by Foudation for Polish Science.
AMS 2000 Subject Classification: Primary: 60G42; Secondary: 60G46.
Keywords and phrases: submartingale, square function, weak type inequality Discipline of the article: Probability Theory
and write $\|f\|_{p}=\sup _{n}\left\|f_{n}\right\|_{p}$ for $p \geq 1$.
In the present paper we deal with the weak type inequalities for the square function. As shown by Burkholder in [2], if f is a martingale or nonnegative submartingale, then

$$
\begin{equation*}
\lambda \mathbb{P}(S(f) \geq \lambda) \leq 3\|f\|_{1} \tag{1.1}
\end{equation*}
$$

Then it was shown by Cox in [5] that the best constant in the above inequality for real-valued martingales f equals \sqrt{e} (it is worth mentioning that in the earlier paper [1] Bollobás conjectures that this is the right choice). The purpose of this note is to determine the optimal constant in (1.1) under the assumption that f is a nonnegative submartingale.

Theorem 1. If f is a nonnegative submartingale, then for any $\lambda>0$,

$$
\begin{equation*}
\lambda \mathbb{P}(S(f) \geq \lambda) \leq \frac{\pi}{2}\|f\|_{1} \tag{1.2}
\end{equation*}
$$

and the constant $\pi / 2$ is the best possible. Furthermore, the inequality is strict unless $\|f\|_{1}=0$.

A few words about the organization of the paper. The proof of the inequality (1.2) is based on Burkholder's method, which translates the problem of proving a given (sub-)martingale inequality to the problem of finding a certain special function (for the description of the method, see e.g. [4] or [6]). We construct the function and thus establish (1.2) in Section 2. In the last section we show that the constant $\frac{\pi}{2}$ can not be replaced by a smaller one and that (1.2) is strict in all nontrivial cases.

2 The proof of the inequality (1.2)

Let us start with the following auxiliary result.
Lemma 1. For any $x \in(0,1)$ and $d>-x$ such that $(x+d)^{2}+d^{2}<1$ we have

$$
\begin{equation*}
\frac{\sqrt{1-x^{2}}-\sqrt{1-(x+d)^{2}-d^{2}}}{x+d}+\arcsin x-\arcsin \frac{x+d}{\sqrt{1-d^{2}}} \leq 0 . \tag{2.1}
\end{equation*}
$$

Proof. Denote the left hand side of (2.1) by $F(x, d)$. If we fix d and differentiate with respect to x, we obtain

$$
\begin{aligned}
F_{x}(x, d)(x+d)^{2} & =\sqrt{1-(x+d)^{2}-d^{2}}-\sqrt{1-x^{2}}+\frac{d(x+d)}{\sqrt{1-x^{2}}} \\
& =\sqrt{1-x^{2}-2 d(x+d)}-\sqrt{1-x^{2}}-\frac{-2 d(x+d)}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

which is nonnegative, due to the concavity of the function $t \mapsto \sqrt{t}$. Therefore the inequality $F(x, d) \leq 0$ will be established once we have shown that $F(-d+, d) \leq 0$ for $d<0$ and $F(0+, d) \leq 0$ for $d \geq 0$. Suppose first that $d<0$. Then
$F(-d+, d)=\frac{d}{\sqrt{1-d^{2}}}+\arcsin (-d)=\int_{0}^{-d} \frac{1}{\sqrt{1-s^{2}}}-\frac{1}{\sqrt{1-d^{2}}} d s<0$.
If $d=0$, then $F(x, d)=0$ for any x. Finally, if $d>0$, then

$$
\begin{align*}
F(0+, d) & =\frac{1-\sqrt{1-2 d^{2}}}{d}-\arcsin \frac{d}{\sqrt{1-d^{2}}} \\
& =\int_{0}^{d} \frac{\sqrt{1-2 s^{2}}-1}{\left(1-s^{2}\right)\left(1+\sqrt{1-2 s^{2}}\right)} d s<0 . \tag{2.2}
\end{align*}
$$

The proof is complete.
The crucial role in the paper is played by the functions U, V : $[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$, given by

$$
U(x, y)= \begin{cases}1-\sqrt{1-x^{2}-y^{2}}-x \arcsin \frac{x}{\sqrt{1-y^{2}}} & \text { if } x^{2}+y^{2}<1, \\ 1-\frac{\pi}{2} x & \text { if } x^{2}+y^{2} \geq 1\end{cases}
$$

and $V(x, y)=I_{\{y \geq 1\}}-\frac{\pi}{2} x$.
The key properties of these functions are listed in the lemma below.
Lemma 2. The functions U, V enjoy the following.
(i) U is of class C^{1} on $(0, \infty) \times(0, \infty)$.
(ii) For any $x \geq 0, y \geq 0$, we have

$$
\begin{equation*}
U_{x}(x, y) \leq 0 \tag{2.3}
\end{equation*}
$$

(if $x=0$, then we understand $U_{x}(0, y)$ as the limit $U_{x}(0+, y)$).
(iii) For any $x \geq 0, y \geq 0$,

$$
\begin{equation*}
U(x, y) \geq V(x, y) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
U(x, y) \leq 1-\frac{\pi}{2} x . \tag{2.5}
\end{equation*}
$$

(iv) For any $x \geq 0, y \geq 0$ and $d \geq-x$ we have

$$
\begin{equation*}
U\left(x+d, \sqrt{y^{2}+d^{2}}\right) \leq U(x, y)+U_{x}(x, y) d \tag{2.6}
\end{equation*}
$$

(again, if $x=0$, then the partial derivative is understood as the limit).
(v) We have, for any $x \geq 0$,

$$
\begin{equation*}
U(x, x) \leq 0 . \tag{2.7}
\end{equation*}
$$

Furthermore, the inequality is strict if $x>0$.

Proof. (i) A direct computation shows that

$$
U_{x}(x, y)= \begin{cases}-\arcsin \frac{x}{\sqrt{1-y^{2}}} & \text { if } x^{2}+y^{2}<1 \tag{2.8}\\ -\frac{\pi}{2} & \text { if } x^{2}+y^{2} \geq 1\end{cases}
$$

and

$$
U_{y}(x, y)= \begin{cases}\frac{y \sqrt{1-x^{2}-y^{2}}}{1-y^{2}} & \text { if } x^{2}+y^{2}<1 \\ 0 & \text { if } x^{2}+y^{2} \geq 1\end{cases}
$$

Now it can be easily verified that both derivatives are continuous on $(0, \infty) \times(0, \infty)$.
(ii) This follows immediately from the formula for U_{x} above.
(iii) Clearly, it suffices to show the inequalities on the set $\{(x, y)$: $\left.x>0, y>0, x^{2}+y^{2}<1\right\}$. By (2.8) we have, for (x, y) lying in this set,

$$
\frac{\partial}{\partial x}\left(U(x, y)+\frac{\pi}{2} x\right)=\frac{\pi}{2}-\arcsin \frac{x}{\sqrt{1-y^{2}}} \geq 0 .
$$

Hence

$$
U(x, y)-V(x, y) \geq U(0, y)-V(0, y)=1-\sqrt{1-y^{2}} \geq 0
$$

and

$$
U(x, y)+\frac{\pi}{2} x \leq U\left(\sqrt{1-y^{2}}, y\right)+\frac{\pi}{2} \sqrt{1-y^{2}}=1 .
$$

(iv) The inequality is easy if $x^{2}+y^{2} \geq 1$; indeed, we have

$$
U(x, y)+U_{x}(x, y) d=1-\frac{\pi}{2}(x+d) \geq U\left(x+d, \sqrt{y^{2}+d^{2}}\right)
$$

the latter estimate being a consequence of (2.5). Suppose then, that $x^{2}+y^{2}<1$. If $(x+d)^{2}+\left(\sqrt{y^{2}+d^{2}}\right)^{2}<1$, then the inequality (2.6) takes form

$$
\begin{aligned}
-\sqrt{1-(x+d)^{2}-y^{2}-d^{2}} & -(x+d) \arcsin \frac{x+d}{\sqrt{1-y^{2}-d^{2}}} \\
& \leq \sqrt{1-x^{2}-y^{2}}-(x+d) \arcsin \frac{x}{\sqrt{1-y^{2}}} .
\end{aligned}
$$

The first observation is that we may assume that $y=0$: indeed, if this is not the case, divide both sides by $\sqrt{1-y^{2}}$ and substitute $x:=x / \sqrt{1-y^{2}}, d:=d / \sqrt{1-y^{2}}$. The second step is to note that, by continuity, we may assume $x+d>0$. Then the desired estimate is precisely (2.1). The only remaining case is that $x^{2}+y^{2}<1$ and $(x+d)^{2}+\left(\sqrt{y^{2}+d^{2}}\right)^{2} \geq 1$; then the inequality (2.6) is equivalent to

$$
\sqrt{1-x^{2}-y^{2}}+(x+d)\left(\frac{\pi}{2}-\arcsin \frac{x}{\sqrt{1-y^{2}}}\right)-1 \geq 0 .
$$

It is clear that it suffices to prove it for the least possible d, i.e., satisfying $d \geq 0$ and $(x+d)^{2}+\left(\sqrt{y^{2}+d^{2}}\right)^{2}=1$. However, then the estimate follows from continuity and already considered case $x^{2}+y^{2}<1$, $(x+d)^{2}+\left(\sqrt{y^{2}+d^{2}}\right)^{2}<1$.
(v) This is a consequence of (iv): let $x=y=0$ to obtain $U(d, d) \leq$ $U(0,0)+U_{x}(0+, 0) d=U(0,0)=0$. Furthermore, for $d>0$ the inequality is strict: this is precisely (2.2).

Now we are ready to prove the main estimate of the paper.
Proof of (1.2). Let f be any nonnegative submartingale. By homogeneity, it suffices to show (1.2) for $\lambda=1$ only. First we will show that the process $\left(U\left(f_{n}, S_{n}(f)\right)\right)_{n=0}^{\infty}$ is a supermartingale. To this end, fix $n \geq 1$ and observe that, by (2.6),

$$
\begin{aligned}
U\left(f_{n}, S_{n}(f)\right) & =U\left(f_{n-1}+d f_{n}, \sqrt{S_{n-1}(f)+\left|d f_{n}\right|^{2}}\right) \\
& \leq U\left(f_{n-1}, S_{n-1}(f)\right)+U_{x}\left(f_{n-1}, S_{n-1}(f)\right) d f_{n}
\end{aligned}
$$

Both sides are integrable: indeed, one easily checks that $|U(x, y)| \leq$ $K+\frac{\pi}{2} x$ for some absolute constant K; furthermore, $U_{x}(x, y)$ is bounded, in view of (2.8). Therefore, applying the conditional expectation with respect to \mathcal{F}_{n-1} and using (2.3) together with the submartingale property yields

$$
\begin{aligned}
\mathbb{E}\left[U\left(f_{n}, S_{n}(f)\right) \mid \mathcal{F}_{n-1}\right] \leq & U\left(f_{n-1}, S_{n-1}(f)\right) \\
& +U_{x}\left(f_{n-1}, S_{n-1}(f)\right) \mathbb{E}\left(d f_{n} \mid \mathcal{F}_{n-1}\right) \\
\leq & U\left(f_{n-1}, S_{n-1}(f)\right)
\end{aligned}
$$

Combined with (2.4), this will imply the inequality (1.2) for the submartingales f of finite length (that is, satisfying $\mathbb{P}\left(d f_{n}=d f_{n+1}=\ldots=\right.$ $0)=1$ for some n). Namely, for any $n=0,1,2, \ldots$, we write

$$
\begin{align*}
\mathbb{P}\left(S_{n}(f) \geq 1\right)-\frac{\pi}{2} \mathbb{E} f_{n} & =\mathbb{E} V\left(f_{n}, S_{n}(f)\right) \tag{2.9}\\
& \leq \mathbb{E} U\left(f_{n}, S_{n}(f)\right) \leq \mathbb{E} U\left(f_{0}, S_{0}(f)\right) \leq 0
\end{align*}
$$

where in the last passage we have used the equality $f_{0}=S_{0}(f)$ and the inequality (2.7). The final step is to let $n \rightarrow \infty$: for any $\varepsilon>0$, we have, by (2.9) applied to the submartingale $f /(1-\varepsilon)$,

$$
\begin{align*}
\mathbb{P}(S(f) \geq 1) & \leq \lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}(f) \geq 1-\varepsilon\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{\pi}{2(1-\varepsilon)} \mathbb{E} f_{n} \leq \frac{\pi}{2(1-\varepsilon)}\|f\|_{1} \tag{2.10}
\end{align*}
$$

Now let $\varepsilon \rightarrow 0$ to complete the proof.

3 Strictness and sharpness

3.1 Strictness

Suppose $\|f\|_{1}>0$ and observe that if this is the case, then with no loss of generality we may assume that $\mathbb{P}\left(f_{0}>0\right)>0$. Arguing as in (2.9) and (2.10), we obtain

$$
\mathbb{P}(S(f) \geq 1) \leq \frac{\pi}{2}\|f\|_{1}+\mathbb{E} U\left(f_{0}, S_{0}(f)\right)
$$

It suffices to note that since $f_{0}=S_{0}(f)$ almost surely, we have that $\mathbb{E} U\left(f_{0}, S_{0}(f)\right)<0$, by the property (v) in Lemma 2. This yields the claim.

3.2 Sharpness

Throughout this subsection we assume that the underlying probability space is the interval $[0,1]$ equipped with its Borel subsets and Lebesgue's measure. We will show that the constant is optimal even if we restrict ourselves to the submartingales f satisfying $S(f) \geq 1$ almost surely. One could show this by giving appropriate examples; however, we take the opportunity here to provide a different proof.

Recall that the process f is called simple if it is of finite length (hence its limit f_{∞} exists almost surely) and for any n the variable f_{n} takes only a finite number of values. For any (x, y), let $Z(x, y)$ be the class which consists of all nonnegative simple submartingales f, for which $f_{0}=x$ and $y^{2}-x^{2}+S^{2}(f) \geq 1$ almost surely. Here the filtration is no longer fixed - it may be different for different submartingales.

Lemma 3. Let the function $W:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ be given by

$$
W(x, y)=\inf _{f \in Z(x, y)} \mathbb{E} f_{\infty} .
$$

The function W has the following properties:
(i) For all $x \geq 0, y \in[0,1)$,

$$
\begin{equation*}
W(x, y)=\sqrt{1-y^{2}} W\left(x / \sqrt{1-y^{2}}, 0\right) \tag{3.1}
\end{equation*}
$$

(ii) For all $x, y, d \geq 0$,

$$
\begin{equation*}
W\left(x+d, \sqrt{y^{2}+d^{2}}\right) \geq W(x, y) . \tag{3.2}
\end{equation*}
$$

(iii) For all $x, y \geq 0, \alpha \in(0,1)$ and any $d_{1}, d_{2} \geq-x$ satisfying $\alpha d_{1}+(1-\alpha) d_{2}=0$,

$$
\begin{equation*}
\alpha W\left(x+d_{1}, \sqrt{y^{2}+d_{1}^{2}}\right)+(1-\alpha) W\left(x+d_{2}, \sqrt{y^{2}+d_{2}^{2}}\right) \geq W(x, y) . \tag{3.3}
\end{equation*}
$$

Proof. (i) Suppose f is a simple nonnegative submartingale. Then f lies in $Z(x, y)$ if and only if $f^{\prime}=f / \sqrt{1-y^{2}}$ belongs to the class $Z\left(x / \sqrt{1-y^{2}}, 0\right)$; indeed, we have that $f_{0}=x$ is equivalent to $f_{0}^{\prime}=$ $x / \sqrt{1-y^{2}}$ and, furthermore,

$$
y^{2}-x^{2}+S^{2}(f) \geq 1
$$

is equivalent to

$$
-\frac{x^{2}}{1-y^{2}}+S^{2}\left(f^{\prime}\right) \geq 1
$$

This implies

$$
\begin{aligned}
W(x, y)=\inf _{f \in Z(x, y)} \mathbb{E} f_{\infty} & =\inf _{f^{\prime} \in Z\left(x / \sqrt{1-y^{2}}, 0\right)} \mathbb{E} \sqrt{1-y^{2}} f_{\infty}^{\prime} \\
& =\sqrt{1-y^{2}} W\left(x / \sqrt{1-y^{2}}, 0\right)
\end{aligned}
$$

(ii) Suppose $f \in Z\left(x+d, \sqrt{y^{2}+d^{2}}\right)$ and consider a sequence f^{\prime} such that, with probability $1, f_{0}^{\prime}=x, d f_{1}^{\prime}=d$ and $d f_{n+1}^{\prime}=d f_{n}$ for $n=1,2, \ldots$. Since $d \geq 0, f^{\prime}$ is a simple submartingale (with respect to its natural filtration) and
$y^{2}-x^{2}+S^{2}\left(f^{\prime}\right)=y^{2}+d^{2}+\sum_{n=2}^{\infty}\left|d f_{n}^{\prime}\right|^{2}=y^{2}+d^{2}-(x+d)^{2}+S^{2}(f) \geq 1$.
Hence $f^{\prime} \in Z(x, y)$ and since $f_{n}^{\prime}=f_{n-1}$ for $n=1,2, \ldots$, we have

$$
W(x, y) \leq \mathbb{E} f_{\infty}^{\prime}=\mathbb{E} f_{\infty}
$$

As $f \in Z\left(x+d, \sqrt{y^{2}+d^{2}}\right)$ was arbitrary, (3.2) follows.
(iii) We will use so called "splicing" argument: see e.g. [3] for details. Let $f^{(1)}, f^{(2)}$ be two submartingales belonging to $Z(x+$ $\left.d_{1}, \sqrt{y^{2}+d_{1}^{2}}\right), Z\left(x+d_{2}, \sqrt{y^{2}+d_{2}^{2}}\right)$, respectively. Consider the process f, such that (recall that $\Omega=[0,1]$)

$$
f_{0}=x I_{[0,1]}, \quad d f_{1}=d_{1} I_{[0, \alpha]}+d_{2} I_{(\alpha, 1]}
$$

and, for $\omega \in \Omega$,

$$
d f_{n}(\omega)=d f_{n-1}^{(1)}(\omega / \alpha) I_{[0, \alpha]}(\omega)+d f_{n-1}^{(2)}((\omega-\alpha) /(1-\alpha)) I_{(\alpha, 1]}(\omega),
$$

for $n=2,3, \ldots$. It can be verified easily that f is a simple nonnegative submartingale such that $y^{2}-x^{2}+S^{2}(f)(\omega)$ equals

$$
\begin{aligned}
& {\left[y^{2}+d_{1}^{2}-\left(x+d_{1}\right)^{2}+S^{2}\left(f^{(1)}\right)(\omega / \alpha)\right] I_{[0, \alpha]}(\omega)} \\
& \quad+\left[y^{2}+d_{2}^{2}-\left(x+d_{2}\right)^{2}+S^{2}\left(f^{(2)}\right)((\omega-\alpha) /(1-\alpha))\right] I_{(\alpha, 1]}(\omega) \geq 1 .
\end{aligned}
$$

Thus $f \in Z(x, y)$. Moreover, by the construction, we have

$$
f_{\infty}(\omega)=f_{\infty}^{(1)}(\omega / \alpha)+f_{\infty}^{(2)}((\omega-\alpha) /(1-\alpha))
$$

So

$$
W(x, y) \leq \mathbb{E} f_{\infty}=\alpha \mathbb{E} f_{\infty}^{(1)}+(1-\alpha) \mathbb{E} f_{\infty}^{(2)}
$$

and since $f^{(1)}, f^{(2)}$ were arbitrary, the inequality (3.3) is satisfied.
The lemma above is the tool to show that $\pi / 2$ in (1.2) is the best possible.

Sharpness of (1.2). In terms of the function W, the proof will be complete if we show that $W(0,0) \leq 2 / \pi$. Let N be a fixed (large) integer and $\delta=1 /(N+1)$. By (3.2), applied to $x=y=0$ and $d=\delta$, we have

$$
\begin{equation*}
W(0,0) \leq W(\delta, \delta) \tag{3.4}
\end{equation*}
$$

Now, for $n \in\{1,2, \ldots, N\}$, use (3.3) with $x=n \delta, y=\sqrt{n} \delta, d_{1}=$ $-n \delta, d_{2}=\delta$ and $\alpha=1 /(n+1)$ to obtain

$$
\begin{aligned}
W(n \delta, \sqrt{n} \delta) & \leq \frac{W\left(0, \sqrt{n \delta^{2}+n^{2} \delta^{2}}\right)}{n+1}+\frac{n W((n+1) \delta, \sqrt{n+1} \delta)}{n+1} \\
& =\frac{\sqrt{1-n \delta^{2}-n^{2} \delta^{2}}}{n+1} W(0,0)+\frac{n W((n+1) \delta, \sqrt{n+1} \delta)}{n+1}
\end{aligned}
$$

where in the last passage we have exploited (2.4). This inequality yields

$$
\frac{W(n \delta, \sqrt{n} \delta)}{n}-\frac{W((n+1) \delta, \sqrt{n+1} \delta)}{n+1} \leq \frac{\sqrt{1-n^{2} \delta^{2}}}{n(n+1)} W(0,0)
$$

and, combining this with (3.4), we get

$$
\begin{equation*}
W(0,0) \leq \frac{W((N+1) \delta, \sqrt{N+1} \delta)}{N+1}+W(0,0) \sum_{n=1}^{N} \frac{\sqrt{1-n^{2} \delta^{2}}}{n(n+1)} . \tag{3.5}
\end{equation*}
$$

Now we make two observations. First, we have $W((N+1) \delta, \sqrt{N+1} \delta)=$ $W(1, \sqrt{\delta})=1$. To see this, observe that for any submartingale $f \in$ $Z(1, \sqrt{\delta})$ we have $\mathbb{E} f_{\infty} \geq \mathbb{E} f_{0}=1$, so $W(1, \sqrt{\delta}) \geq 1$. On the other hand, the martingale f starting from 1 such that $d f_{1}=-I_{[0,1 / 2)}+$ $I_{[1 / 2,1]}$ and $d f_{n}=0$ for $n \geq 2$, belongs to $Z(1, \sqrt{\delta})$ and satisfies $\mathbb{E} f_{\infty}=$ $\mathbb{E} f_{0}=1$. The second observation is that $\sum_{n=1}^{N} \frac{1}{n(n+1)}=1-\frac{1}{N+1}$. Therefore, (3.5) can be rewritten in the form

$$
W(0,0) \leq 1+W(0,0) \cdot \sum_{n=1}^{N} \delta \frac{\sqrt{1-n^{2} \delta^{2}}-1}{n \delta(n+1) \delta}
$$

Now if we let $N \rightarrow \infty$ (so $\delta \rightarrow 0$), then the sum above converges to $\int_{0}^{1}\left(\sqrt{1-x^{2}}-1\right) x^{-2} d x=1-\frac{\pi}{2}$ and then the inequality becomes $W(0,0) \leq 2 / \pi$. This completes the proof.

References

[1] B. Bollobás, Martingale inequalities, Math. Proc. Camb. Phil. Soc. 87 (1980), 377-382.
[2] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 Vol. 1 (1973), 19-42.
[3] D. L. Burkholder, Martingale and Fourier analysis in Banach spaces, C.I.M.E. Lectures (Varenna (Como), Italy, 1985), Lecture Notes in Mathematics 1206 (1986), 61-108.
[4] D. L. Burkholder, The best constant in the Davis inequality for the expectation of the martingale square function, Trans. Amer. Soc. 354 (2002), 91-105.
[5] D. Cox, The best constant in Burkholder's weak- L^{1} inequality for the martingale square function, Proc. Amer. Math. Soc. 85 (1982), 427-433.
[6] A. Osȩkowski, Two inequalities for the first moment of a martingale, its square and maximal function, Bull. Polish Acad. Sci. Math. 53 (2005), pp. 441-449.

Adam Osȩkowski
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
E-mail: ados@mimuw.edu.pl

