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Abstract In the paper we focus on self-adjoint noncommutative martingales. We
provide an extension of the notion of differential subordination, which is due to
Burkholder in the commutative case. Then we show that there is a noncommuta-
tive analogue of the Burkholder method of proving martingale inequalities, which
allows us to establish the weak type (1, 1) inequality for differentially subordinated
martingales. Moreover, a related sharp maximal weak type (1, 1) inequality is proved.
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1 Introduction

The theory of noncommutative martingales has been rapidly developed in recent years.
Indeed, many of inequalities in the classical martingale theory have been successfully
transferred into the noncommutative setting. Essentially, this direction of research star-
ted with the fundamental paper of Pisier and Xu [10], where the noncommutative mar-
tingale Hardy spaces were introduced and the right analogue of the Burkholder–Gundy
inequalities was proved. Since then, several articles on this subject have appeared in
the literature. The Burkholder–Gundy inequalities were further studied by Randria-
nantoanina in [12,13]. A noncommutative analogue of Doob’s maximal inequality was
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554 A. Osȩkowski

proved by Junge in [4], noncommutative versions of Burkholder/Rosenthal inequalities
and their extensions were established by Junge and Xu in [6] and Randrianantoanina in
[14]. Noncommutative BMO-spaces were studied by Pisier and Xu in [10] and Musat
in [7]. The classical John–Nirenberg inequalities were proved recently by Junge and
Musat in [5]. The inequalities for martingale transforms appear in the papers by Pisier
and Xu [10], Randrianantoanina [11] and Parcet and Randrianantoanina [8]. We also
refer the reader to a survey by Xu [16] for more information on the subject.

In this paper we continue this line of research and present a new method of pro-
ving noncommutative martingale inequalities. We investigate the noncommutative
analogue of differential subordination, introduced by Burkholder in the case of clas-
sical martingales. Let us briefly describe the problem in the commutative setting. Let
(�,F , P) be a classical probability space equipped with a discrete filtration (Fn). Let
x = (xn), y = (yn) be two real-valued (Fn)-martingales, with difference sequences
(dxn), (dyn), respectively. In [1], Burkholder proved the weak type (1, 1) inequality
for commutative martingale transforms: there exists an absolute constant C such that
if dxn = ξndyn , n = 0, 1, 2, . . . , for some predictable process (ξn) satisfying the
condition supn |ξn| ≤ 1, then for any n = 0, 1, 2, . . . , and any λ > 0,

λP(|xn| ≥ λ) ≤ CE|yn|. (1)

Then Burkholder [2] introduced the notion of differentially subordinated martingales,
which generalized the martingale transforms: the martingale x is differentially subor-
dinated to y, if, almost surely,

|dxn| ≤ |dyn|, n = 0, 1, 2, . . . .

For such martingales Burkholder established the weak type (1, 1) inequality (1) with
an optimal constant C = 2.

The question about the weak type (1, 1) inequality for noncommutative martin-
gale transforms was raised by Pisier and Xu [10] and was answered positively by
Randrianantoanina [11] under an additional assumption, that for any n, ξn commutes
with Mn . Later, Parcet and Randrianantoanina [8] gave another proof of this result,
using the noncommutative version of Gundy’s decomposition of a martingale.

A natural problem is whether there is any noncommutative analogue of differential
subordination. And if it is the case, the next task is to determine, if the weak type (1, 1)

inequality holds in this setting. The aim of the paper is to answer positively these two
questions.

The paper is organized as follows. In the next section we set some preliminary
background on noncommutative spaces and martingale theory. In Sect. 3 we introduce
the noncommutative differential subordination and prove it generalizes the martingale
transforms. The main results of the paper are stated in Sect. 4. In Sect. 5 we explain our
approach and its relation with Burkholder’s original ideas, while Sect. 6 is completely
devoted to the proofs of our main results.
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Weak type inequality for noncommutative differentially subordinated martingales 555

2 Preliminary definitions

Let M be a finite von Neumann algebra equipped with a normal faithful normalized
tracial state τ . Throughout, H will denote a Hilbert space, with M ⊆ B(H), B(H)

being the space of bounded linear operators on H . The identity element of M will
be denoted by I . For any self-adjoint operator T , let T = ∫ ∞

−∞ λdeT
λ be its spectral

decomposition. Then for any Borel subset B ⊆ R, let IB(T ) stand for the spectral
projection

∫ ∞
−∞ χB(λ)deT

λ . The modulus of an operator x ∈ M is defined as |x | =
(x∗x)1/2.

Let S, T be two projections belonging to M. Then S∨T (resp., S∧T ) will stand for
the projection onto the sum S(H)∪ T (H) (resp., onto the intersection S(H)∩ T (H)).
We say that S and T are equivalent (and denote it by S ∼ T ), if there exists a partial
isometry u ∈ M such that u∗u = S and uu∗ = T . We will need the following fact
(cf. [15]).

Lemma 1 Let S, T be two projections of M. Then

S − S ∧ T ∼ S ∨ T − T .

Furthermore, we say that S is subequivalent to T (and write S ≺ T ), if S is equivalent
to a subprojection of T . Obviously, S ≺ T implies τ(S) ≤ τ(T ).

Let us now introduce noncommutative L p spaces associated with (M, τ ). For fixed
1 ≤ p < ∞ and x ∈ M, we set

||x ||p = [τ(|x |p)]1/p

and define the L p = L p(M, τ ) as completion of (M, || · ||p). For p = ∞, we set
L∞ = L∞(M, τ ) = M with its usual operator norm. Then the trace τ extends to a
positive linear functional on L p(M, τ ), 1 ≤ p ≤ ∞. Furthermore, for 1 ≤ p, q ≤ ∞
such that 1/p + 1/q = 1/r ≤ 1, a product of x ∈ L p and y ∈ Lq is in Lr and the
tracial property τ(xy) = τ(yx) holds. This will be used very frequently in the paper,
usually with p = 1 and q = ∞.

We will recall the general setup for martingales. Let N be a von Neumann subal-
gebra of M. The restriction of τ to N is a normal faithful normalized trace on N and
it is clear that the natural embedding j : L1(N , τ ) → L1(M, τ ) is isometric. The
conditional expectation of M onto N is defined as the dual map E = j∗ : M → N .
It satisfies

E(axb) = aE(x)b

for any a, b∈N and x ∈M. Furthermore, it preserves the trace, i.e. τ(E(x))=τ(x) for
any x ∈ M and extends to a contractive projection from L p(M, τ ) onto L p(N , τ )

for all 1 ≤ p ≤ ∞.
Let (Mn), n = 0, 1, 2, . . . be a filtration, i.e., an increasing sequence of von

Neumann subalgebras of M whose union is weak∗ dense in the algebra M. For each
n = 0, 1, 2, . . . , let En be the conditional expectation from M onto Mn . A sequence
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x = (xn)n≥0 in L1(M, τ ) is called a martingale with respect to (Mn) (or (Mn)-
martingale), if

xn = En(xn+1), n = 0, 1, 2, . . . .

For any (Mn)-martingales x = (xn), y = (yn), the difference sequences of these
martingales will be denoted by (dxn), (dyn), respectively, i.e.,

dx0 = x0, dxn = xn − xn−1, n = 1, 2, . . . .

dy0 = y0, dyn = yn − yn−1, n = 1, 2, . . . .

3 Differential subordination

The following is the crucial notion of this paper.

Definition 1 Let x = (xn)n≥0, y = (yn)n≥0 be two self-adjoint martingales. We
will say that x is differentially subordinated to y, if for any fixed n = 0, 1, 2, . . . the
following two conditions hold.

(a) For any projection S ∈ Mn ,

τ(Sdyn Sdyn S − Sdxn Sdxn S) ≥ 0.

(b) For any two projections S, T ∈ Mn , such that ST = 0 and S + T ∈ Mn−1,

τ(SdynT dyn − SdxnT dxn) ≥ 0.

Both traces may be infinite.

Remark 1 Note that in the commutative setting we obtain the usual differential subor-
dination: indeed, the property (b) is always satisfied, while (a) reduces to E((|dyn|2 −
|dxn|2)χA) ≥ 0 for any χA ∈ Mn , n = 0, 1, 2, . . . , which implies |dxn| ≤ |dyn|
almost surely, for n = 0, 1, 2, . . ..

Remark 2 The differential subordination is preserved if we multiply the dominated
martingale x by a constant α, |α| ≤ 1 and/or multiply the dominating martingale y by
a constant β, |β| ≥ 1.

In the commutative setting the following property is valid. Suppose x is diffe-
rentially subordinated to y. Then for any n, the inequality dxn + dyn > 0 implies
−dxn + dyn ≥ 0 (note that the first inequality is strict and the second one is not). The
noncommutative analogue of this property is established in the following.

Lemma 2 Suppose x, y are two self-adjoint (Mn)-martingales such that x is diffe-
rentially subordinated to y. Fix a nonnegative integer n and a projection S ∈ Mn. If
S = I(0,∞)(S(dxn + dyn)S), then the operator S(−dxn + dyn)S is nonnegative.
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Weak type inequality for noncommutative differentially subordinated martingales 557

Remark 3 In virtue of this Lemma and Remark 2, we have analogous statements for
pairs x , −y; −x , y; −x , −y of martingales.

Proof of the Lemma 2 Fix any negative number K and consider the projection

T = I(K ,0)(S(−dxn + dyn)S).

Obviously, the projection T belongs to Mn and T ≤ S. By definition, the operator
T (−dxn + dyn)T is bounded and nonpositive and, since T is a subprojection of S,
T (dxn + dyn)T is nonnegative (and clearly belongs to L1). However,

τ(T (dxn + dyn)T (−dxn + dyn)T ) = τ(T (−dxn + dyn)T (dxn + dyn)T )

= 1

2

{
τ(T (dxn + dyn)T (−dxn + dyn)T )

+τ(T (−dxn + dyn)T (dxn + dyn)T )
}

= τ(T dynT dynT − T dxnT dxnT )

is nonnegative by differential subordination. This clearly gives T = 0, since in the de-
finition of T we took the spectral projection corresponding to interval not containing 0.
Now it suffices to take K → −∞. ��

The following Lemma shows that differential subordination generalizes martingale
transforms.

Lemma 3 Suppose a sequence (ξn), predictable with respect to the filtration (Mn),
satisfies supn ||ξn|| ≤ 1 and for any fixed n, ξn commutes with Mn. Suppose y is any
self-adjoint square integrable martingale and x, defined by dxn = ξndyn, n = 1, 2, . . .

is also self-adjoint. Then x is differentially subordinated to y.

Proof Fix a nonnegative integer n. The operator ξ∗
n commutes with Mn as well and

ξndyn = (ξndyn)∗ = dynξ∗
n .

Now for any S ∈ Mn , using the tracial property, we obtain

τ(Sdyn Sdyn S − Sdxn Sdxn S) = τ(Sdyn Sdyn S − Sdynξ∗
n Sξndyn S)

= τ((I − |ξn|2)Sdyn Sdyn S) ≥ 0,

as the operators I − |ξn|2 and Sdyn Sdyn S are nonnegative. The argument to establish
the property (b) is exactly the same. ��

4 The main results

For any two self-adjoint (Mn)-martingales x , y, let

sn = xn + yn, dn = −xn + yn, n = 0, 1, 2, . . . .
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Obviously, (sn), (dn) are again self-adjoint (Mn)-martingales. Now we may introduce
the key families of projections: for a fixed λ > 0, let Rλ−1 = I ,

Qλ
n = I(−2λ,0)(Rλ

n−1(sn − λI )Rλ
n−1),

Rλ
n = I(−2λ,0)(Qλ

n(dn − λI )Qλ
n), n = 0, 1, 2, . . . .

Note that the projection Rλ
n , in the commutative setting, is the indicator function of the

set {maxk≤n(|xk | + |yk |) < λ}. One could ask why we use such a strange expression
for Qλ

n , Rλ
n instead of simple

Qλ
n = I(−λ,λ)(Rλ

n−1sn Rλ
n−1) (2)

and similarly for the projection Rλ
n . The point is that we want to obtain a monotone

(nonincreasing) chain of projections (see the Lemma 4 below) and this condition fails
if we take the latter, “more natural” definition (2). However, note that an alternative
way to define Qλ

n , Rλ
n is

Qλ
n = Rλ

n−1 I(−λ,λ)(Rλ
n−1sn Rλ

n−1),

Rλ
n = Qλ

n I(−λ,λ)(Qλ
ndn Qλ

n), n = 0, 1, 2, . . . .

We may now state the main results of the paper. The first theorem is a maximal weak
type (1, 1) inequality.

Theorem 1 Let x, y be two self-adjoint square integrable (Mn)-martingales such
that x is differentially subordinated to y. Then for any nonnegative integer n and any
λ > 0 we have

λτ(I − Rλ
n ) ≤ 2τ(|yn|). (3)

The constant 2 is best possible.

The second theorem concerns the weak type (1, 1) inequality.

Theorem 2 Let x, y be two self-adjoint square integrable (Mn)-martingales such
that x is differentially subordinated to y. Then for any nonnegative integer n and any
λ > 0 we have

λτ(I[λ,∞)(|xn|)) ≤ 4τ(|yn|).

Remark 4 Note that we impose an extra condition on the integrability of the martin-
gales. We believe, however, that it is not really necessary. Most of the statements in
the paper, as well as the methodology, are valid without this assumption.

Obviously, it suffices to prove the theorems above for λ = 1. Therefore, from
now on, we assume this. For convenience, we will write Rn , Qn instead of R1

n , Q1
n ,

respectively.
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5 The noncommutative Burkholder operators for the weak type inequality

The plan is to study carefully Burkholder’s proof and try to extend it to the noncom-
mutative setting; in order to obtain the weak type (1, 1) inequality for differentially
subordinated commutative martingales, Burkholder invented the function

u(x, y) = (|y|2 − |x |2)χ{|x |+|y|<1} + (2|y| − 1)χ{|x |+|y|≥1}, (4)

enjoying the following properties: for any martingales x , y such that x is differentially
subordinated to y,

1◦
Eu(x0, y0) ≥ 0,

2◦
Eu(xn, yn) ≤ 2E|yn| − P(|xn| + |yn| ≥ 1),

3◦ the sequence (Eu(xn, yn)) is nondecreasing

(in fact he proved, that the process (u(xn, yn)) is a submartingale, satisfying u(xn, yn)

≤ 2|yn| − χ{|xn |+|yn |≥1} almost surely). Obviously these conditions imply

2E|yn| − P(|xn| + |yn| > 1) ≥ Eu(x0, y0) ≥ 0

and the weak type (1, 1) inequality. However, the process (u(xn, yn)) can not effecti-
vely be extended to the noncommutative setting and a certain modification is needed.
As noted by Burkholder, much more can be extracted from the function u: consider a
stopping time

σ = inf{n : |xn| + |yn| ≥ 1}

and martingales x ′ = (x ′
n) = (xmin(σ,n)), y′ = (y′

n) = (ymin(σ,n)). It can be easily
checked that

dx ′
n = dxnχ{σ>n−1} and dy′

n = dynχ{σ>n−1},

which immediately implies that x ′ is differentially subordinated to y′. Therefore we
may apply the preceding procedure to this new pair of martingales. Before we do it,
let us note, that by the definition of the stopping time σ , we have

{

max
k≤n

(|xk | + |yk |) < 1

}

= {σ > n} = {|x ′
n| + |y′

n| < 1}. (5)

Now we use Burkholder’s argument: consider the process

u(x ′
n, y′

n) = (|y′
n|2 − |x ′

n|2)χ{|x ′
n |+|y′

n |<1} + (2|y′
n| − 1)χ{|x ′

n |+|y′
n |≥1}

= (|yn|2 − |xn|2)χ{|x ′
n |+|y′

n |<1} + (2|y′
n| − 1)χ{|x ′

n |+|y′
n |≥1}, (6)

where the last equality holds due to (5). This process leads to the inequality

P(|x ′
n| + |y′

n| ≥ 1) ≤ 2E|y′
n| ≤ 2E|yn|, n = 0, 1, 2, . . . ,

123



560 A. Osȩkowski

or, in virtue of (5),

P(max
k≤n

(|xk | + |yk |) ≥ 1) ≤ 2E|yn|, n = 0, 1, 2, . . . . (7)

It turns out that the process (6) has a natural extension (un) to a noncommutative setting,
which can be used to prove the noncommutative maximal weak type inequality (3). To
define it, we will need certain additional projections. For convenience of the reader,
let us recall the projections (Qn), (Rn) (recall we assume λ = 1): R−1 = I ,

Qn = I(−2,0)(Rn−1(sn − I )Rn−1),

Rn = I(−2,0)(Qn(dn − I )Qn), n = 0, 1, 2, . . .

and, for n = 0, 1, 2, . . . , define

Un = I(−∞,−1](Rn−1sn Rn−1),

Dn = I[1,∞)(Rn−1sn Rn−1),

Nn = I(−∞,−1](Qndn Qn),

Pn = I[1,∞)(Qndn Qn).

Now we may introduce the Burkholder operators. It can be done as follows: let

un = Rnsn Rn−1dn + vn, n = 0, 1, 2, . . . , (8)

where

vn =
n∑

k=0

(Uk + Nk)(−sk − dk − I ) + (Dk + Pk)(sk + dk − I )

=
n∑

k=0

(Uk + Nk)(−2yk − I ) + (Dk + Pk)(2yk − I ). (9)

It can be checked, that in the commutative setting, the operator un is just the random
variable (6).

Remark 5 For a better understanding of the term vn in (9) we urge the reader to
look at Lemma 4 below. Then it becomes clear that it provides a noncommutative
generalization of the last term in (6). Indeed, the projections Uk , Nk, Dk, Pk are disjoint
and the sum Uk +Nk + Dk + Pk corresponds to {σ = k} (or χ{σ=k}) in the commutative
case. Thus we have to see that

2|yk | =
{

−(sk + dk) in Uk + Nk,

+(sk + dk) in Dk + Pk .

Since Nk , Pk are subprojections of Qk , in the commutative case we have

Nk ⊂ {|sk | < 1, dk ≤ −1} and Pk ⊂ {|sk | < 1, dk ≥ 1}.
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Weak type inequality for noncommutative differentially subordinated martingales 561

Therefore, the assertion is clear in Nk and Pk . The situation for Uk and Dk is a bit
more involved. Namely, to be in Uk means that sk ≤ −1 and that we are in Rk−1. In
other words, we have the following characterization of Uk in the commutative case

Uk = {sk ≤ −1, |s j |, |d j | < 1, 1 ≤ j ≤ k − 1}.

From this we can not deduce that |dk | < 1 (as we did above), but we can prove that
sk +dk is negative. Indeed, we have sk +dk = sk +dk−1+dyk −dxk < −1+1+dyk −
dxk . Now we want to see that dyk ≤ dxk , but we know that sk ≤ −1 and |sk−1| < 1.
This automatically gives that dyk +dxk ≤ 0. Moreover, by differential subordination,
|dxk | ≤ |dyk | so that dyk ≤ 0. The last two inequalities imply dyk ≤ dxk . The
argument for Dk is similar.

In order to prove the weak type inequality, we will show the Burkholder operators
satisfy noncommutative analogues of the conditions 1◦, 2◦ and 3◦.

6 The proofs

The first statement describes the basic properties of the projections defined above.

Lemma 4 Let x, y be two self-adjoint (Mn)-martingales. For any n = 0, 1, 2, . . . ,

(i) the projections Un, Dn, Qn are subprojections of Rn−1,
(ii) the projections Nn, Pn, Rn are subprojections of Qn,

(iii) we have
Un + Dn + Qn = Rn−1, Nn + Pn + Rn = Qn (10)

(iv) for any α ∈ R, the projections Qn, Un, Dn commute with Rn−1(sn +α I )Rn−1,
(v) for any α ∈ R, the projections Rn, Nn, Pn commute with Qn(dn + α I )Qn.

(vi) we have

−Rn ≤ Rn xn Rn ≤ Rn, −Rn ≤ Rn yn Rn ≤ Rn .

Proof We will only show the property (vi). All the other properties are clear. By the
definition of Qn , we have

−Qn ≤ Qn(xn + yn)Qn ≤ Qn,

which implies

−Rn ≤ Rn(xn + yn)Rn ≤ Rn .

But by the definition of Rn , we have

−Rn ≤ Rn(−xn + yn)Rn ≤ Rn .

It suffices to combine the two inequalities above to obtain the claim. ��
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The next lemma is of great importance for the further analysis of the sequence
(τ (un)).

Lemma 5 Let x, y be two self-adjoint (Mn)-martingales. For n = 0, 1, 2, . . . , we
have

τ(Rnsn Rn−1dn) = τ(Rnsn Rndn). (11)

Proof Combining the properties (i), (ii), (iv) and (v) from Lemma 4 with the tracial
property, we may write

τ(Rnsn Rn−1dn) = τ(Rn Qn Rn−1sn Rn−1dn)

= τ(Rn Rn−1sn Rn−1 Qndn) = τ(Rnsn Qndn) = τ(Qn Rnsn Qndn)

= τ(Rnsn Qndn Qn) = τ(Rnsn Qndn Qn Rn) = τ(Rnsn Rn Qndn Qn)

= τ(Rnsn Rndn).

��
Now we are ready to establish the noncommutative conditions 1◦ and 2◦.

Lemma 6 Let x, y be two self-adjoint (Mn)-martingales such that x is differentially
subordinated to y. Then the trace τ(u0) is nonnegative.

Proof As s0 = dx0 + dy0 and d0 = −dx0 + dy0, the first term in (8) has positive
trace due to the differential subordination. Let us now turn to τ(v0). Since U0(dx0 +
dy0)U0 ≤ −U0, we have U0 = I(−∞,0)(U0(dx0 + dy0)U0), so Lemma 2 yields
U0(−dx0 + dy0)U0 ≤ 0. Combining the last two inequalities we obtain

U0(−2y0 − I )U0 ≥ 0 and τ(U0(−2y0 − I )U0) ≥ 0.

In a similar manner we show

τ(N0(−2y0 − I )N0) ≥ 0, τ (D0(2y0 − I )D0) ≥ 0, τ (P0(2y0 − I )P0) ≥ 0.

It suffices to add the last four inequalities to obtain τ(v0) ≥ 0. The proof is complete.
��

Lemma 7 Let x, y be two self-adjoint (Mn)-martingales. Then for any positive
integer n,

τ(un) ≤ 2τ(|yn|) − τ(I − Rn). (12)

Proof Let

T +
n =

n∑

k=1

(Dk + Pk), T −
n =

n∑

k=1

(Uk + Nk).

Note that by property (iii) from Lemma 4, we have T +
n + T −

n = I − Rn . Hence, using
the martingale property, we may write

τ(vn) = τ(T +
n (2yn − I ) + T −

n (−2yn − I )) = τ(2(T +
n − T −

n )yn − (I − Rn)).
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Weak type inequality for noncommutative differentially subordinated martingales 563

Furthermore, using Lemma 5, we have

τ(Rnsn Rn−1dn) = τ(Rn(yn + xn)Rn(yn − xn))

= τ(Rn yn Rn yn − Rn xn Rn xn) + τ(−Rn yn Rn xn + Rn xn Rn yn)

= τ(Rn yn Rn yn − Rn xn Rn xn).

Indeed, here we used the tracial property: the operators Rn xn Rn and Rn yn Rn are
bounded (Lemma 4 (vi)), so Rn xn Rn yn, Rn yn Rn xn belong to L1 and

τ(Rn xn Rn yn) = τ(Rn Rn xn Rn yn) = τ(Rn xn Rn yn Rn)

= τ(Rn xn Rn Rn yn Rn) = τ(Rn yn Rn Rn xn Rn) = τ(Rn yn Rn xn).

Similarly, one shows that

τ(Rn xn Rn xn) = τ(Rn xn Rn xn Rn), τ (Rn yn Rn yn) = τ(Rn yn Rn yn Rn).

Therefore the inequality (12) is equivalent to

τ(Rn yn Rn yn Rn − Rn xn Rn xn Rn + 2(T +
n − T −

n )yn − (I − Rn))

≤ 2τ(|yn|) − τ(I − Rn).

The operator Rn xn Rn xn Rn is nonnegative, so it suffices to prove

τ(Rn yn Rn yn + 2(T +
n − T −

n )yn) ≤ 2τ(|yn|).

We have yn = yn I(0,∞)(yn) − yn I(−∞,0)(yn) = y+
n − y−

n and

τ((I − Rn)|yn|) − τ(T +
n yn − T −

n yn) = 2τ(T −
n y+

n + T +
n y−

n ) ≥ 0. (13)

Again using the property (vi) in Lemma 4, along with the tracial property, we get

τ(Rn yn Rn yn) = τ(Rn yn Rn(y+
n − y−

n )) ≤ 2τ(Rn(y+
n + y−

n )) = 2τ(Rn|yn|). (14)

Combining (13) with (14) completes the proof. ��
The proof of the condition 3◦ is more involved. We split it into several lemmas.

Lemma 8 Let x, y be two self-adjoint (Mn)-martingales. For any nonnegative inte-
ger n, the following inequalities hold.

τ(Nn+1(sn+1 + I )Rn(dn+1 + I )) ≤ 0, (15)

τ(Pn+1(sn+1 − I )Rn(dn+1 − I )) ≤ 0, (16)

τ [Un+1(sn+1 + I )Un+1(dn + I )Rn] ≤ 0, (17)

τ [Dn+1(sn+1 − I )Dn+1(dn − I )Rn] ≤ 0. (18)
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Proof The operator Qn+1 Rn(sn+1 + I )Rn is nonnegative and bounded, while Qn+1
(dn+1 + I )Qn+1 Nn+1 is nonpositive. Hence, using Lemma 4 and the tracial property,
we obtain

τ(Nn+1(sn+1 + I )Rn(dn+1 + I ))

= τ(Qn+1 Nn+1 Qn+1 Rn(sn+1 + I )Rn(dn+1 + I ))

= τ(Qn+1 Rn(sn+1 + I )Rn Qn+1(dn+1 + I )Qn+1 Nn+1) ≤ 0.

The inequalities (16), (17) can be proved in the same manner; for instance, for
(16), we repeat the above arguments, replacing Nn+1 with Pn+1, +I with −I and thus
obtain

τ(Pn+1(sn+1 − I )Rn(dn+1 − I ))

= τ(Qn+1 Rn(sn+1 − I )Rn Qn+1(dn+1 − I )Qn+1 Pn+1) ≤ 0,

as under the trace we have a product of two operators: a nonpositive and bounded
Qn+1 Rn(sn+1 − I )Rn and a nonnegative Qn+1(dn+1 − I ))Qn+1 Pn+1. The proof is
complete. ��
Lemma 9 Let x, y be two self-adjoint (Mn)-martingales such that x is differentially
subordinated to y. For any nonnegative integer n, we have

τ [Un+1(sn + I )Un+1(−dxn+1 + dyn+1)Rn] ≤ 0. (19)

Moreover,

τ
[
Un+1(sn+1 + I )Rn(dn+1 + I )Rn

−Un+1(dxn+1 + dyn+1)Un+1(−dxn+1 + dyn+1)Rn
] ≤ 0 (20)

and

τ
[
Dn+1(sn+1 − I )Rn(dn+1 − I )Rn

−Dn+1(dxn+1 + dyn+1)Dn+1(−dxn+1 + dyn+1)Rn
] ≤ 0. (21)

Proof Note that

Un+1(sn + I )Un+1 = Un+1 Rn(sn + I )RnUn+1

is nonnegative and bounded and write

τ [Un+1(sn + I )Un+1(−dxn+1 + dyn+1)Rn]
= τ [Un+1(sn + I )Un+1(−dxn+1 + dyn+1)Un+1]. (22)

We have

Rn = I(0,∞)(Rn(sn + I )Rn),
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which clearly gives

Un+1 = I(0,∞)(Un+1(sn + I )Un+1).

Moreover, by the definition of Un+1, we have

0 ≥ Un+1(sn+1 + I )Un+1

= Un+1(sn + I )Un+1 + Un+1(dxn+1 + dyn+1)Un+1,

which combined with the preceding equality implies

Un+1 = I(−∞,0)(Un+1(dxn+1 + dyn+1)Un+1).

Now, by Lemma 2 and Remark following it, we obtain Un+1(−dxn+1+dyn+1)Un+1 ≤
0, which, together with (22), immediately yields (19). It suffices to add inequalities
(17) and (19) to obtain (20). Exactly the same argumentation (along with (18)) leads
to (21). ��
Lemma 10 Suppose self-adjoint martingales x, y are square integrable and x is
differentially subordinated to y. Then

τ
[
Un+1(dxn+1 + dyn+1)Un+1(−dxn+1 + dyn+1)Rn

+Dn+1(dxn+1 + dyn+1)Dn+1(−dxn+1 + dyn+1)Rn

−Rn(dxn+1 + dyn+1)Rn(−dxn+1 + dyn+1)Rn
] ≤ 0.

Remark 6 This is the heart of the matter. The lemma concerns the only inequality,
where the condition (b) from the differential subordination is used. Furthermore, in
fact, the square integrability of the martingales is imposed only for the sake of this
lemma. One could just define that x is differentially subordinated to y if the property (a)
and the inequality above hold; then we would not need any integrability assumptions,
all the arguments can be transferred to this more general setting.

Proof of the Lemma 10 We open the brackets and use the tracial property, thus obtai-
ning

τ
[ − Un+1dxn+1Un+1dxn+1 + Un+1dyn+1Un+1dyn+1

−Dn+1dxn+1 Dn+1dxn+1 + Dn+1dyn+1 Dn+1dyn+1

−Rndxn+1 Rndxn+1 + Rndyn+1 Rndyn+1
] ≤ 0.

The property (b) from differential subordination gives the inequalities

τ((Rn − Un+1)dyn+1Un+1dyn+1 − (Rn − Un+1)dxn+1Un+1dxn+1) ≥ 0,

τ ((Rn − Dn+1)dyn+1 Dn+1dyn+1 − (Rn − Dn+1)dxn+1 Dn+1dxn+1) ≥ 0,
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as, clearly, Rn −Un+1, Un+1 and Rn − Dn+1, Dn+1 are pairs of orthogonal projections.
Again by the property (b), since Un+1 + Dn+1 is a subprojection of Rn ,

τ((Rn − Un+1 − Dn+1)dyn+1(Un+1 + Dn+1)dyn+1

−(Rn − Un+1 − Dn+1)dxn+1(Un+1 + Dn+1)dxn+1) ≥ 0.

Finally, noting that Rn − Un+1 − Dn+1 = Qn+1 (by (10)), the property (a) yields

τ(Qn+1dyn+1 Qn+1dyn+1 − Qn+1dxn+1 Qn+1dxn+1) ≥ 0.

Now we combine the four inequalities above and that completes the proof. ��
We are ready to deal with the condition 3◦.

Lemma 11 Suppose self-adjoint martingales x, y are square integrable and x is
differentially subordinated to y. Then the sequence (τ (un)) is nondecreasing.

Proof Fix a nonnegative integer n. We have

τ(un) − τ(un+1) = τ(Rnsn Rn−1dn + vn) − τ(Rn+1sn+1 Rndn+1 + vn+1)

= A + B, (23)

where

A = τ(Rnsn Rn−1dn − Rn+1sn+1 Rndn+1), B = τ(vn − vn+1).

By the definition of vn , the second summand is equal to

B = τ
[
(Un+1+Nn+1)(sn+1+dn+1+ I )+(Dn+1+Pn+1)(−sn+1−dn+1+ I )

]
. (24)

Let us now deal with A. By Lemma 5 and the martingale property,

τ(Rnsn Rn−1dn) = τ(Rnsn Rndn)

= τ
[
Rnsn+1 Rndn+1 − Rn(dxn+1 + dyn+1)Rn(dyn+1 − dxn+1)

]
,

(25)

so we may proceed as follows

A = τ
[
Rnsn+1 Rndn+1 − Rn(dxn+1 + dyn+1)Rn(dyn+1 − dxn+1)

−Rn+1sn+1 Rndn+1
]

= τ
[
(Rn − Rn+1)sn+1 Rndn+1 − Rn(dxn+1 + dyn+1)Rn(dyn+1 − dxn+1)

]

= τ
[
(Un+1 + Nn+1 + Dn+1 + Pn+1)sn+1 Rndn+1

−Rn(dxn+1 + dyn+1)Rn(dyn+1 − dxn+1)
]
.
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Now it can be easily checked, that

A + B = τ
[
(Un+1 + Nn+1)(sn+1 + I )Rn(dn+1 + I )

+(Dn+1 + Pn+1)(sn+1 − I )Rn(dn+1 − I )

−Rn(dxn+1 + dyn+1)Rn(−dxn+1 + dyn+1)
]
.

We want to prove that A + B is nonpositive. By Lemma 8 it suffices to show

τ
[
Un+1(sn+1 + I )Rn(dn+1 + I ) + Dn+1(sn+1 − I )Rn(dn+1 − I )

−Rn(dxn+1 + dyn+1)Rn(−dxn+1 + dyn+1)
] ≤ 0. (26)

We may multiply the operator in the square bracket by Rn from the left and by the
tracial property, (26) is equivalent to

τ
[
Un+1(sn+1 + I )Rn(dn+1 + I )Rn + Dn+1(sn+1 − I )Rn(dn+1 − I )Rn

−Rn(dxn+1 + dyn+1)Rn(−dxn+1 + dyn+1)Rn
] ≤ 0. (27)

By Lemma 9, we are left to show that

τ
[
Un+1(dxn+1 + dyn+1)Un+1(−dxn+1 + dyn+1)Rn

+ Dn+1(dxn+1 + dyn+1)Dn+1(−dxn+1 + dyn+1)Rn

− Rn(dxn+1 + dyn+1)Rn(−dxn+1 + dyn+1)Rn
] ≤ 0.

Now it suffices to use Lemma 10; this is the only place where we need the square
integrability. The proof is complete. ��

Finally we proceed to the proofs of the main results of the paper.

Proof of the Theorem 1 As noted above, the inequality (3) follows immediately from
the conditions 1◦, 2◦ and 3◦ (Lemmas 6, 7 and 11); indeed,

2τ(|yn|) − τ(I − Rn) ≥ τ(un) ≥ τ(u0) ≥ 0.

The constant 2 is best possible even in the commutative case; see Burkholder [2]. ��
Proof of the Theorem 2 We will use some properties of subequivalent projections.
The reader is referred to [3] for similar arguments. We will prove that I[1,∞)(xn)

and I(−∞,−1](xn) are subequivalent to the projection I − Rn . This will immediately
complete the proof.

To this end, denote I[1,∞)(xn) by f , and note that by Lemma 4, Rn xn Rn ≤ Rn .

Hence, it is clear (the spectral projections in Qn and Rn are taken with respect to open
intervals) that this implies f ∧ Rn = 0. By Lemma 1,

f = f − f ∧ Rn ∼ f ∨ Rn − Rn ≤ I − Rn .

The same arguments give I(−∞,−1](xn) ≺ I − Rn . ��
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