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Abstract. Let b < B be two real numbers. Suppose that f = (fn)n≥0 and
g = (gn)n≥0 are two Hilbert-space-valued martingales satisfying∣∣∣∣dgn − B + b

2
dfn

∣∣∣∣ ≤ ∣∣∣∣B − b

2
dfn

∣∣∣∣ , n = 0, 1, 2, . . . .

The paper contains the proof of the sharp weak-type inequality

‖g‖W (Ω) ≤ 2max (−b, B)‖f‖L∞ ,

where W is the weak-L∞ space introduced by Bennett, DeVore and Sharpley.
As applications, we obtain related estimates for the Haar system and harmonic
functions on Euclidean domains.

1. Introduction

Let (Ω,F ,P) be a non-atomic probability space, �ltered by (Fn)n≥0, a non-
decreasing family of sub-σ-�elds of F . Assume that f = (fn)n≥0, g = (gn)n≥0

are two martingales taking values in some separable Hilbert space (H, | · |). Let
df = (dfn)n≥0, dg = (dgn)n≥0 denote the di�erence sequences of f and g, given by

df0 = f0 and dfn = fn − fn−1, n = 1, 2, . . . ,

with a similar de�nition for dg. Then g is the transform of f by a predictable
real-valued sequence v = (vn)n≥0, if for any n we have the identity dgn = vndfn
almost surely. (Here by predictability of v we mean that for any n, the term
vn is measurable with respect to F(n−1)∨0.) A celebrated result of Burkholder
[4, 5], asserts that if v is bounded in absolute value by 1, then we have the sharp
strong-type inequality

‖g‖p ≤ max{p− 1, (p− 1)−1}‖f‖p, 1 < p <∞. (1.1)

Here we have used the notation ‖f‖p = supn ‖fn‖p for the p-th norm of f . In the
boundary case p = 1 the above moment inequality does not hold with any �nite
constant, but we have the corresponding sharp weak-type bound

‖g‖1,∞ ≤ 2‖f‖1, (1.2)

where ‖g‖1,∞ = supn≥0 ‖gn‖1,∞ = supn≥0 supλ>0 λP(|gn| ≥ λ). These estimates
were motivated by various questions concerning the properties of the Haar system
(hn)n≥0, an important basis of Lp(0, 1), 1 ≤ p < ∞. Recall that this functional
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sequence is given by h0 = χ[0,1), h1 = χ[0,1/2) − χ[1/2,1), h2 = χ[0,1/4) − χ[1/4,1/2),
h3 = χ[1/2,3/4) − χ[3/4,1), and so on. A celebrated result of Marcinkiewicz asserts
that the Haar basis is unconditional in Lp, 1 < p <∞: there is a �nite constant
cp such that for any a0, a1, a2, . . . ∈ R and any ε0, ε1, ε2, . . . ∈ {−1, 1} we have∥∥∥∥∥

∞∑
n=0

εnanhn

∥∥∥∥∥
Lp(0,1)

≤ cp

∥∥∥∥∥
∞∑
n=0

anhn

∥∥∥∥∥
Lp(0,1)

.

Furthermore, in the boundary case p = 1 we have the weak-type bound∥∥∥∥∥
∞∑
n=0

εnanhn

∥∥∥∥∥
L1,∞(0,1)

≤ c1

∥∥∥∥∥
∞∑
n=0

anhn

∥∥∥∥∥
L1(0,1)

.

Now, note that (anhn)n≥0, treated as a collection of random variables on the
probability space ([0, 1),B(0, 1), | · |) with the dyadic �ltration, becomes a mar-
tingale di�erence sequence and hence the above two estimates follow immedi-
ately from (1.1) and (1.2). Actually, as Burkholder proved in [5], the constants
max{p− 1, (p− 1)−1} and 2 remain optimal in the context of the Haar system.
The inequalities (1.1) and (1.2) have been extended in many directions and ap-

plied in various contexts of probability and harmonic analysis. The literature on
this subject is very large, so we will only discuss a few results closely related to the
contribution of this paper. First, the estimates were generalized to martingales
satisfying the less restrictive condition of di�erential subordination, the de�nition
of which we now recall. Following Burkholder [5], we say that g is di�erentially
subordinate to f , if for any n ≥ 0 we have the almost sure bound |dgn| ≤ |dfn|.
Clearly, this condition is satis�ed if g is the transform of f by some predictable
sequence with values in [−1, 1], but there are other important examples which, in
turn, lead to deep results in the theory of Fourier multipliers (cf. [2]). Another
extension of (1.1) and (1.2) concerns the case in which the transforming sequence
(vn)n≥0 takes values in some �xed interval [b, B] (cf. [2, 6, 9]). There is a corre-
sponding less restrictive non-symmetric version of the di�erential subordination,
which reads ∣∣∣∣dgn − B + b

2
dfn

∣∣∣∣ ≤ ∣∣∣∣B − b2
dfn

∣∣∣∣ , n = 0, 1, 2, . . . . (1.3)

(That is, g− B+b
2
f is di�erentially subordinate to B−b

2
f). If b = 0 and B = 1, the

above condition takes the more transparent form

|dgn|2 ≤ dfn · dgn, n = 0, 1, 2, . . . .

The sharp versions of (1.1) and (1.2) under the domination (1.3) can be found in
[2, 6, 9, 10].
Our purpose is to study another limiting case of the moment inequality (1.1),

namely, an appropriate weak-type estimate for p =∞, under the non-symmetric
di�erential subordination. To describe the result precisely, we need to recall the
notion of a weak-L∞ space W , originally introduced by Bennett, DeVore and
Sharpley in [3]. For a measurable function h on some measure space (M,G, µ),
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let h∗ : (0, µ(M))→ [0,∞) stand for its decreasing rearrangement, de�ned by

h∗(t) = inf{λ ≥ 0 : µ(|h| > λ) ≤ t}, t > 0.

Then h∗∗, the maximal function of h∗, is given by

h∗∗(t) =
1

t

∫ t

0

h∗(s) ds , t ∈ (0, µ(M)).

It is not di�cult to show that h∗∗ can be alternatively de�ned by

h∗∗(t) = sup

{
1

µ(E)

∫
E

|h| dµ : E ∈ G, µ(E) = t

}
.

Now we introduce the weak-L∞ space W = W (M,G, µ) by

W =

{
h : ‖h‖W (M,G,µ) = sup

t∈(0,µ(M)

(h∗∗(t)− h∗(t)) <∞

}
.

This space has several important properties which explain why it can be regarded
as a weak version of L∞. First, note that the classical de�nition of the Lorentz
space Lp,∞ does not extend to the case p = ∞ (in the function spaces theory,
one sets L∞,∞ = L∞) and hence there seem to be no Marcinkiewicz interpolation
theorem between L1 and L∞ for operators which are unbounded on L∞. The
introduction of the space W enables to �ll this gap. Namely, we have L∞ ⊂ W ,
and if an operator A is bounded from L1 to L1,∞ and from L∞ to W , then for
any 1 < p < ∞ it has an extension bounded on Lp. There are further close
connections between W and the space BMO. For more detailed discussion on W
and its interplay with the interpolation theory, see [3].
Equipped with the above de�nition, we return to the martingale setup and state

the appropriate weak-L∞ bound. It was proved in [11] that if g is di�erentially
subordinate to f , then we have

‖g‖W ≤ 2‖f‖∞
and the constant 2 cannot be improved. Our contribution is the extension of this
estimate to the context of the non-symmetric di�erential subordination.

Theorem 1.1. Let b < B be �xed real numbers. Then for any Hilbert-space-

valued martingales f , g satisfying (1.3) we have the estimate

‖g‖W (Ω) ≤ 2 max (−b, B)‖f‖L∞ . (1.4)

If b < 0 < B, then the constant is optimal, already in the context of the Haar

system: for any c < 2 max (−b, B) there is a sequence a0, a1, a2, . . . of real

numbers and a sequence ε0, ε1, ε2, . . . with values in {b, B} such that∥∥∥∥∥
∞∑
n=0

εnanhn

∥∥∥∥∥
W (0,1)

> c

∥∥∥∥∥
∞∑
n=0

anhn

∥∥∥∥∥
L∞(0,1)

.

This result will be established in the next section. The �nal part of the paper
contains some applications to harmonic functions on Euclidean domains.
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2. Proof of Theorem 1.1

For the sake of clarity, we split the contents of this section into two parts.

2.1. Special functions and their properties. Let M = max (−b, B) and dis-
tinguish the strip

S = {(x, y) ∈ H ×H : |x| ≤ 1}.

For any λ ≥ 0, consider the functions Vλ and Uλ : S → R given by

Vλ(x, y) =

(
|y|
M
− λ− 2

)
χ{ |y|M

>λ}

and

Uλ(x, y)

=

[
M

B − b

(∣∣∣∣ yM − B + b

2M
x

∣∣∣∣− λ− 1

)2

− B − b
4M

|x|2
]
χ{

B−b
2M
|x|+| yM−B+b

2M
x|>λ+1

}.
In the two lemmas below, we study certain crucial properties of Uλ and Vλ.

Lemma 2.1. For any λ ≥ 0 we have the majorization

Uλ ≥ Vλ. (2.1)

Proof. We consider three cases. First, if |y|
M
≤ λ, then B−b

2M
|x| +

∣∣ y
M
− B+b

2M
x
∣∣ ≤

λ + 1, so Uλ(x, y) = Vλ(x, y) = 0. The next case is described by the conditions
|y|
M

> λ and B−b
2M
|x| +

∣∣ y
M
− B+b

2M
x
∣∣ ≤ λ + 1: then we have Uλ(x, y) = 0 and

Vλ(x, y) = |y|
M
− λ− 2 ≤ 0, so the majorization is also satis�ed. Finally, suppose

that |y|
M
> λ and B−b

2M
|x|+

∣∣ y
M
− B+b

2M
x
∣∣ > λ+ 1. Then

Uλ(x, y)− Vλ(x, y) ≥ M

B − b

(∣∣∣∣ yM − B + b

2M
x

∣∣∣∣− λ− 1− B − b
2M

)2

≥ 0,

and the proof is complete. �

To study further properties of Uλ, we need to introduce auxiliary functions
Φλ : S → R and Aλ, Bλ : S → H given by

Φλ(x, y) =

[
1

2
(|y| − λ− 1)2 − 1

2
|x|2
]
χ{|x|+|y|>λ+1},

Aλ(x, y) = −xχ{|x|+|y|>λ+1},

Bλ(x, y) =

[
y − (λ+ 1)

y

|y|

]
χ{|x|+|y|>λ+1}.

Lemma 2.2. For any x, y, h, k ∈ S with |k| ≤ |h|, we have

Φλ(x+ h, y + k) ≤ Φλ(x, y) + Aλ(x, y) · h+Bλ(x, y) · k. (2.2)
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Proof. First, notice that Φλ(x, y) ≤ 1
2
(|y|−λ−1)2− 1

2
|x|2. Therefore, if |x|+ |y| >

λ+ 1, then

Φλ(x+ h, y + k)

≤ 1

2
(|y + k| − λ− 1)2 − 1

2
|x+ h|2

=
1

2
(|y| − λ− 1)2 − 1

2
|x|2 −

[
− y · k + (λ+ 1)|y + k|+ x · h− (λ+ 1)|y|

]
+

1

2
|k|2 − 1

2
|h|2

≤ Φλ(x, y) + Aλ(x, y) · h+Bλ(x, y) · k.

If |x|+ |y| ≤ λ+ 1 and |x+ h|+ |y + k| ≤ λ+ 1, then (2.2) is obvious since both
sides are equal to 0. Finally, if |x| + |y| ≤ λ + 1 and |x + h| + |y + k| > λ + 1,
we distinguish two cases. If |y + k| ≤ λ+ 1, then 0 ≥ |y + k| − λ− 1 > −|x+ h|,
so (|y + k| − λ − 1)2 − |x + h|2 < 0 and (2.2) follows. On the other hand, if
|y + k| > λ+ 1, then |x| < λ+ 1− |y| < −|y|+ |y + k| ≤ |k|, and

(|y + k| − λ− 1)2 ≤ (|y|+ |k| − λ− 1)2 ≤ (|k| − |x|)2 ≤ (|h| − |x|)2 ≤ (|x+ h|)2.

This yields the desired claim. �

Lemma 2.3. Suppose that martingales f , g satisfy the condition (1.3). Then for

any n ≥ 0 we have

EUλ(fn, gn) ≤ 0. (2.3)

Proof. First, notice that

Uλ(x, y) =
2M

B − b
Φλ

(
B − b
2M

x,
y

M
− B + b

2M
x

)
.

Hence, in order to show (2.3), it su�ces to prove that for any n we have

EΦλ

(
B − b
2M

fn,
gn
M
− B + b

2M
fn

)
≤ 0. (2.4)

To get this, we apply (2.2) with x = B−b
2M

fn−1, y = gn−1

M
− B+b

2M
fn−1, h = B−b

2M
dfn

and k = dgn
M
− B+b

2M
dfn to obtain

Φλ

(
B − b
2M

fn,
gn
M
− B + b

2M
fn

)
≤ Φλ

(
B − b
2M

fn−1,
gn−1

M
− B + b

2M
fn−1

)
+ Aλ

(
B − b
2M

fn−1,
gn−1

M
− B + b

2M
fn−1

)
· h

+Bλ

(
B − b
2M

fn−1,
gn−1

M
− B + b

2M
fn−1

)
· k

Both sides are integrable, and taking the conditional expectation with respect to
Fn−1 yields

E
(

Φλ

(
B − b
2M

fn,
gn
M
− B + b

2M
fn

)
|Fn−1

)
≤ Φλ

(
B − b
2M

fn−1,
gn−1

M
− B + b

2M
fn−1

)
.
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This implies

E
(

Φλ

(
B − b
2M

fn,
gn
M
− B + b

2M
fn

))
≤ EΦλ

(
B − b
2M

f0,
g0

M
− B + b

2M
f0

)
≤ 0,

where the latter estimate follows from (2.2) applied to x = y = 0, k = g0
M
− B+b

2M
f0,

and h = B−b
2M

f0. The proof is complete. �

Observe that the combination of (2.1) and (2.3) gives the estimate

E
(
|gn|
M
− λ− 2

)
χ{ |gn|M

>λ} ≤ 0 (2.5)

for all nonnegative integers n.

2.2. Proof of the main result. We turn to Theorem 1.1. We will �rst establish
the weak type estimate, and then show its sharpness in the context of the Haar
system.

Proof of (1.4). By homogeneity, we may assume that ‖f‖L∞ ≤ 1. Pick an ar-
bitrary nonnegative integer n, a parameter t ∈ (0, 1] and recall the alternative
de�nition of

(
gn
M

)∗∗
:( gn

M

)∗∗
(t) = sup

{
1

P(E)

∫
E

|gn|
M

dP : E ∈ F , P(E) = t

}
.

In particular, we see that( gn
M

)∗∗
(t)−

( gn
M

)∗
(t) = sup

{
1

P(E)
E
(
|gn|
M
−
( gn
M

)∗
(t)

)
χE : P(E) = t

}
.

By the de�nition of the decreasing rearrangement, we have P (|gn|/M > λ) > t
if λ < (gn/M)∗ (t), and P (|gn|/M > λ) ≤ t if λ > (gn/M)∗ (t). Therefore, we
obtain the double estimate

P
(
|gn|
M
≥
( gn
M

)∗
(t)

)
≥ t ≥ P

(
|gn|
M

>
( gn
M

)∗
(t)

)
.

Consequently, for any event E of probability t we get

1

P(E)
E
(
|gn|
M
−
( gn
M

)∗
(t)

)
χE

≤ 1

P
(
|gn|
M

>
(
gn
M

)∗
(t)
)E( |gn|

M
−
( gn
M

)∗
(t)

)
χ{ |gn|M

>( gn
M )
∗
(t)},

which, by (2.5) applied to λ =
(
gn
M

)∗
(t), does not exceed 2. Taking the supremum

over all E as above, we get ‖g/M‖W ≤ 2‖f‖L∞ , which is the desired estimate. �

Sharpness for the Haar system. Fix b < 0 < B. We consider separately two
possibilities.

Case 1: max(−b, B) = −b. Introduce the function f : [0, 1) → {−1, 1} given
by f = −χ[0,(1−a)/2) + χ[(1−a)/2,1), where a = −b/(B − b). Note that

∫ 1

0
f = a.

Furthermore, f belongs to L1, so it can be expanded into Haar series: there
exist a1, a2, . . . ∈ R such that f = ah0 + a1h1 + a2h2 + . . . . Let g = Bah0 +
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ba1h1 + ba2h2 + . . . = Ba + (f − a)b: it is a transform of f by a sequence
with values in {b, B}. It is easy to check that g = −2bχ[0,(1−a)/2), by the above
choice of the parameter a, and hence we have g∗(t) = −2bχ[0,(1−a)/2) and g

∗∗(t) =

−2bχ[0,(1−a)/2] − b(1−a)
t

χ((1−a)/2,1]. Consequently, we see that

‖g‖W (0,1) ≥ lim
t↓(1−a)/2

(g∗∗(t)− g∗(t)) = −2b = −2b‖f‖L∞ .

Case 2: max(−b, B) = B. Here the argumentation is similar to that above.
We let a = −B/(B − b) and consider the function f = χ[0,(1−a)/2) − χ[(1−a)/2,1) of
integral a and its transform g = bah0 +Ba1h1 +Ba2h2 + . . . = ba+ (f − a)B by
a sequence with values in {b, B}. One easily veri�es that g = 2Bχ[0,(1−a)/2),

g∗(t) = 2Bχ[0,(1−a)/2) and g∗∗(t) = 2Bχ[0,(1−a)/2] + B(1−a)
t

χ((1−a)/2,1]. Thus we
obtain

‖g‖W (0,1) ≥ lim
t↓(1−a)/2

(g∗∗(t)− g∗(t)) = 2B = 2B‖f‖L∞ .

This establishes the desired sharpness. A di�erent proof will be presented in
the next section. �

3. Inequalities for harmonic functions

Now we will prove a version of Theorem 1.1 in the context of harmonic functions
on Euclidean domains. Suppose that n is a positive integer and let D be an open
connected subset of Rn. Fix a base point ξ belonging to D and let b < B be �xed
real numbers. Assume further that two real-valued harmonic functions u, v on D
satisfy the conditions ∣∣∣∣v(ξ)− B + b

2
u(ξ)

∣∣∣∣ ≤ ∣∣∣∣B − b2
u(ξ)

∣∣∣∣ (3.1)

and ∣∣∣∣∇v(x)− B + b

2
∇u(x)

∣∣∣∣ ≤ ∣∣∣∣B − b2
∇u(x)

∣∣∣∣ for any x ∈ D. (3.2)

If b = −1 and B = 1, then (3.1) and (3.2) reduce to the di�erential subordination
of harmonic functions introduced by Burkholder [8]. The general case b < B can
be considered as a non-symmetric version of this domination; it should also be
compared with the condition (1.3) above.
Next, let D0 be a bounded domain satisfying ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D and let

µξD0
stand for the harmonic measure on ∂D0 corresponding to ξ. The weak-L∞

norm of the function u is given by

||u||W (D) = sup
D0

sup
t∈(0,1]

(u∗∗D0
(t)− u∗D0

(t)),

where uD0 is the restriction of u to D0, and u
∗
D0
, u∗∗D0

are the decreasing rearrange-
ment and the associated maximal function of uD0 with respect to the measure

µξD0
. The harmonic analogue of Theorem 1.1 is the following.

Theorem 3.1. Let b < B be �xed numbers. If u, v satisfy (3.1) and (3.2), then

||v||W (D) ≤ 2 max{−b, B}||u||L∞(D). (3.3)

If b < 0 < B, then the constant is the best possible.
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Proof. We may assume that ||u||L∞(D) ≤ 1. Let D0 be an arbitrary subdomain
of D as above and let λ > 0 be a �xed parameter. It is easy to check by a direct
di�erentiation that the function Uλ(u, v) is superharmonic and hence, by (2.1),
we obtain ∫

∂D0

(
|v(x)|
M

− λ− 2

)
χ{|v(x)|/M>λ}dµ

ξ
D0
≤ 0,

where, as above, M = max{−b, B}. Now we repeat the argumentation from the

proof of (1.4), replacing Ω , P by ∂D0 and µξD0
, respectively. As the result, we

obtain

sup
t∈(0,1]

(v∗∗D0
(t)− v∗D0

(t)) ≤ 2M ||u||L∞ ,

which is the desired estimate, since D0 was chosen arbitrarily. It remains to show
that the constant 2M is optimal. This will be accomplished by the construction
of an appropriate example on R. We will provide the details only in the case
max{−b, B} = −b, the other possibility is handled similarly. Consider the interval
D = (−b/(B − b)− 1,−b/(B − b) + 1), let ξ = 0 and de�ne u, v : D → R by

u(x) = −x− b

B − b
, v(x) = −bx− Bb

B − b
.

Then u(0) = −b/(B − b) and v(0) = −Bb/(B − b), so equality holds in (3.1).
Furthermore, we have ∇u(x) = −1 and ∇v(x) = −b for all x ∈ D, so both sides
of (3.2) are equal for any x. Furthermore, it is easy to see that ||u||L∞ = 1. To
provide an appropriate lower bound for the weak norm of v, pick a subinterval
D0 = aD, where a ∈ (0, 1) is a �xed parameter. Then the harmonic measure µξD0

on ∂D0 =
{
a
(
− b
B−b − 1

)
, a
(
− b
B−b + 1

)}
= {a−, a+} is given by

µξD0
({a−}) =

1

2

(
1− b

B − b

)
, µξD0

({a+}) =
1

2

(
1 +

b

B − b

)
.

Now, v(a−) = −ba− − Bb
B−b and v(a+) = −ba+ − Bb

B−b > v(a−) > 0, which implies

v∗D0
(t) =

{
v(a+) if t ≤ t0,

v(a−) if t > t0,

where t0 = 1
2

(
1 + b

B−b

)
, and

v∗∗D0
(t) =

{
v(a+) if t ≤ t0,
1
t

(t0v(a+) + v(a−) (t− t0)) if t > t0.

Therefore, we obtain

lim
t↓t0

(
v∗∗D0

(t)− v∗D0
(t)
)

= v(a+)− v(a−) = −b(a+ − a−) = −2ab,

so ||v||W (D)/||u||L∞(D) ≥ −2ab. Since a ∈ (0, 1) was arbitrary, the constant −2b
in (3.3) is indeed the best possible. �
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