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Abstract. Let f = (fn)n≥0 be a nonnegative submartingale starting from x
and let g = (gn)n≥0 be a sequence starting from y and satisfying

|dgn| ≤ |dfn|, |E(dgn|Fn−1)| ≤ E(dfn|Fn−1)

for n ≥ 1. We determine the best universal constant U(x, y) such that

P(sup
n
gn ≥ 0) ≤ ||f ||1 + U(x, y).

As an application, we deduce a sharp weak type (1, 1) inequality for the one-
sided maximal function of g and determine, for any t ∈ [0, 1] and β ∈ R, the

number

L(x, y, t) = inf{||f ||1 : P(g∗ ≥ β) ≥ t}.
The results extend some earlier work of Burkholder and Choi in the martingale
setting.

1. Introduction

The purpose of this paper is to study some new sharp estimates for submartin-
gales and their differential subordinates. Let us start with introducing the necessary
background and notation. Suppose that (Ω,F ,P) is a non-atomic probability space,
filtered by a nondecreasing family (Fn)n≥0 of sub-σ-fields of F . Let f = (fn)n≥0

be an adapted sequence of integrable variables. Then df = (dfn)n≥0, the difference
sequence of f , is given by

df0 = f0, and dfn = fn − fn−1 for n ≥ 1.

Assume that g = (gn)n≥0 is another adapted integrable sequence, satisfying

(1.1) |dgn| ≤ |dfn| and |E(dgn|Fn−1)| ≤ |E(dfn|Fn−1)|, n ≥ 1.

Following Burkholder [5], we say that g is strongly differentially subordinate to f ,
if |dg0| ≤ |df0| and the condition (1.1) holds. For example, this is the case when
g is a transform of f by a predictable sequence v = (vn)n≥0, bounded in absolute
value by 1. That is, we have dgn = vndfn for n ≥ 0 and by predictability we mean
that for each n the variable vn is measurable with respect to F(n−1)∨0. Let us
also mention that if f is a martingale, then the strong differential subordination is
equivalent to saying that g is a martingale satisfying |dgn| ≤ |dfn| for all n ≥ 0.

Let |g|∗ = supn |gn|, g∗ = supn gn denote the maximal function of g and the one-
sided maximal function of g, respectively. We will also use the notation ||f ||p =
supn ||fn||p for the p-th norm of the sequence f , p ≥ 1.

2000 Mathematics Subject Classification. Primary: 60G42. Secondary: 60G44.
Key words and phrases. Martingale, square bracket, differential subordination.

Partially supported by MNiSW Grant N N201 397437.

1



2 ADAM OSȨKOWSKI

The problem of a sharp comparison of the sizes of f and g under various as-
sumptions on f has been studied extensively by many authors. The literature on
the subject is very rich, we refer the interested reader to the papers [3]–[9], [11]–[16]
and references therein for more information on the subject, and [1], [2], [10] for ap-
plications to Riesz systems and the Beurling-Ahlfors transform. We only mention
here a few classical estimates, related to the problem investigated in the paper. In
the martingale setting, Burkholder [3] proved the following weak-type inequality.

Theorem 1.1. Suppose that f is a martingale and g is strongly differentially sub-
ordinate to f . Then for any λ > 0,

(1.2) λP(|g|∗ ≥ λ) ≤ 2||f ||1,
and the constant 2 is the best possible.

A natural question about the optimal constant above for nonnegative submartin-
gales f was answered by Burkholder in [5].

Theorem 1.2. Suppose that f is a nonnegative submartingale and g is strongly
differentially subordinate to f . Then for any λ > 0,

(1.3) λP(|g|∗ ≥ λ) ≤ 3||f ||1
and the constant 3 is the best possible.

The two results above have been extended and generalized in many directions,
see e.g. [3], [6], [9], [11], [12], [15] and [16]. We take the line of research related
to the following question, raised by Burkholder in [3]. Suppose that g, a strong
differential subordinate to f , has at least probability t of exceeding β; how small
can ||f ||1 be? In the particular case when t = 1 and f is a martingale, the answer
is the following (cf. [3]).

Theorem 1.3. Suppose that f is a martingale starting from x and g is strongly
differentially subordinate to f . If g satisfies the one-sided bound

P(g∗ ≥ β) = 1,

then
||f ||1 ≥ |x| ∨ (β − x)

and the expression on the right is the best possible.

This result was generalized by Choi [9] to the case when t ∈ [0, 1] is arbitrary.
Precisely, we have the following.

Theorem 1.4. Suppose that f is a martingale starting from x and g is strongly
differentially subordinate to f . If g satisfies the one-sided bound

P(g∗ ≥ β) ≥ t,
where t ∈ [0, 1] is a fixed number, then

||f ||1 ≥ |x| ∨
{
β − x− [β+(β − 2x)+(1− t)]1/2

}
.

Again, the bound on the right is the best possible.

Our contribution will be, among other things, to establish a submartingale ver-
sion of the theorem above. We turn to the formulation of the main results of the
paper. Throughout, the function U : [0,∞)× R→ R is given by (2.1) below.
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Theorem 1.5. Let f be a nonnegative submartingale starting from x ≥ 0 and let
g be a sequence starting from y ∈ R such that the condition (1.1) is satisfied. Then

(1.4) P(g∗ ≥ 0) ≤ ||f ||1 + U(x, y)

and the inequality is sharp.

This will be proved in Sections 2 and 3 below. As an application, we will obtain
in Section 4 the following extension of Theorem 1.4. Throughout the paper, the
function L : [0,∞)× R× [0, 1]→ R is given by (4.4) below.

Theorem 1.6. Let f be a nonnegative submartingale starting from x ≥ 0 and let
g start from y ∈ R. Suppose that (1.1) holds. If g satisfies the one-sided estimate

(1.5) P(g∗ ≥ β) ≥ t,
where t ∈ [0, 1] is a fixed number, then

(1.6) ||f ||1 ≥ L(x, y − β, t)
and the bound is the best possible. In particular, if g is strongly differentially sub-
ordinate to f , then we have a sharp inequality

(1.7) ||f ||1 ≥ L(x, x− β, t).

Finally, Theorem 1.5 leads to another interesting variation of the inequality (1.3),
to be proved in Section 4.

Theorem 1.7. Assume that f is a nonnegative submartingale and g is strongly
differentially subordinate to f . Then for any λ > 0 we have

λP(g∗ ≥ λ) ≤ 8
3
||f ||1

and the constant 8/3 is the best possible.

2. A special function

Consider the following subsets of [0,∞)× R:

D0 ={(x, y) : x+ y ≥ 0},
D1 ={(x, y) : (x− 8)/3 ≤ y < −x},
D2 ={(x, y) : x− 4 < y < (x− 8)/3},
D3 =

(
[0,∞)× R

)
\ (D0 ∪D1 ∪D2)

and let U : [0,∞)× R→ R be given by

(2.1) U(x, y) =


1− x if (x, y) ∈ D0,
1
16 (3x+ 3y + 8)1/3(−5x+ 3y + 8) if (x, y) ∈ D1,

− 1
4x(6x− 6y − 16)1/3 if (x, y) ∈ D2,

2x
x−y − x if (x, y) ∈ D3.

We also introduce the functions φ, ψ : [0,∞)× R→ R by

φ(x, y) =


−1 if (x, y) ∈ D0,
1
4 (3x+ 3y + 8)−2/3(−5x− 3y − 8) if (x, y) ∈ D1,
1
2 (6x− 6y − 16)−2/3(−4x+ 3y + 8) if (x, y) ∈ D2,

− 2y
(x−y)2 − 1 if (x, y) ∈ D3
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and

ψ(x, y) =


0 if (x, y) ∈ D0,
1
4 (3x+ 3y + 8)−2/3(x+ 3y + 8) if (x, y) ∈ D1,
1
2x(6x− 6y − 16)−2/3 if (x, y) ∈ D2,

2x
(x−y)2 if (x, y) ∈ D3.

Later on, we will need the following properties of these objects.

Lemma 2.1. (i) The function U is continuous on the whole domain and is of class
C1 on the set E = {(x, y) : x > 0, x + y 6= 0}. Furthermore, φ = Ux and ψ = Uy
on E.

(ii) There is an absolute constant A such that

|U(x, y)| ≤ A+A|x|, |φ(x, y)| ≤ A, |ψ(x, y)| ≤ A
for all x ≥ 0 and y ∈ R.

(iii) We have

(2.2) U(x, y) ≥ 1{y≥0} − x
for all x ≥ 0 and y ∈ R.

(iv) For any x ≥ 0 and y ∈ R,

(2.3) φ(x, y) ≤ −|ψ(x, y)|.

Proof. (i) This is straightforward and reduces to tedious verification that the func-
tion U and its partial derivatives match appropriately at the common boundaries
of the sets D0 −D3. We omit the details.

(ii) This follows immediately from the formulas for U , φ and ψ above (in fact
A = 1 suffices, but we will not need this).

(iii) For a fixed x, we easily check that the function y 7→ U(x, y) is nondecreasing
(see (i) and the definition of ψ). It suffices to note that limy→−∞ U(x, y) = −x and
U(x, 0) = 1− x.

(iv) Since ψ ≥ 0, the desired estimate reduces to φ+ ψ ≤ 0. However, we have

φ(x, y) + ψ(x, y) =


−1 if (x, y) ∈ D0,

−x(3x+ 3y + 8)−2/3 if (x, y) ∈ D1,

− 1
4 (6x− 6y − 16)1/3 if (x, y) ∈ D2,

2(x− y)−1 − 1 if (x, y) ∈ D3

and it is evident that all the expressions are nonpositive. �

Lemma 2.2. (i) For any x ≥ 0, y ∈ R and h, k ∈ R satisfying |h| ≥ |k| and
x+ h ≥ 0 we have

(2.4) U(x+ h, y + k) ≤ U(x, y) + φ(x, y)h+ ψ(x, y)k.

Proof. There is a well-known procedure to establish such an estimate (see e.g. [4]):
fix x ≥ 0, y ∈ R, a ∈ [−1, 1] and consider a function G = Gx,y,a : [−x,∞) → R
given by G(t) = U(x + t, y + at). Then the condition (2.4) is equivalent to saying
that G is concave. Since U is of class C1 on the set E (in virtue of part (i) of
Lemma 2.1), the concavity is the consequence of the two conditions, which will be
proved below:

(a) G′′(t) ≤ 0 for those t, for which (x + t, y + at) lies in the interior of one of
the sets Di, i = 0, 1, 2, 3,
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(b) G′(t−) ≥ G′(t+) for t satisfying x+ t > 0 and (x+ t, y + at) /∈ E.

By the translation property Gx,y,a(t + s) = Gx+t,y+at,a(s), valid for all t ≥ −x
and s ≥ −t− x, it suffices to establish (a) and (b) for t = 0. Let us verify the first
condition. If (x, y) lies in Do

0, the interior of D0, then G′′(0) = 0. For (x, y) ∈ Do
1,

a little calculation yields

G′′(0) =
1
4

(3x+ 3y + 8)−5/3(a+ 1)
[
(a− 3)(−x+ 3y + 8) + 8(a− 1)x

]
,

which is nonpositive: this follows from |a| ≤ 1 and −x + 3y + 8 ≥ 0, coming from
the definition of D1. If (x, y) ∈ Do

2, then

G′′(0) = 2(1− a)(6x− 6y − 16)−5/3
[
− x(a+ 1) + (−x+ 3y + 8)

]
≤ 0,

since −x + 3y + 8 ≤ 0, by the definition of D2. Finally, if (x, y) belongs to the
interior of D3, we have

G′′(0) = 4(1− a)(x− y)−3
[
− (a+ 1)x+ (x+ y)

]
≤ 0,

because x + y ≤ 0. It remains to check (b). The condition x > 0, (x, y) /∈ E is
equivalent to x > 0 and x + y = 0. If (x, y) ∈ ∂D0 ∩ ∂D1 (so y = −x ∈ [−2, 0)),
then after some straightforward computations,

G′(0−) =
1
8

[(a+ 1)y + 4a− 4] ≥ 1
4

(a+ 1)− 1 ≥ −1 = G′(0+).

On the other hand, if (x, y) ∈ ∂D3 ∩ ∂D0 and x > 2, then

G′(0−) =
a+ 1

8x
− 1 ≥ −1 = G′(0+)

and we are done. �

Remark 2.3. By (2.3) and the proof of the above lemma, we have that for any y
the function t 7→ U(t, y + t), t ≥ 0, is nonincreasing.

Now we turn to the proof of Theorem 1.5.

Proof of (1.4). We will prove that for any nonnegative integer n we have

(2.5) P(gn ≥ 0)− ||fn||1 ≤ U(x, y).

This will yield the claim: to see this, fix ε > 0 and introduce the stopping time
τ = inf{n : gn ≥ −ε}. Note that

{g∗ ≥ 0} ⊆ {gn ≥ −ε for some n} =
∞⋃
n=0

{gτ∧n + ε ≥ 0}.

Obviously, the family ({gτ∧n + ε ≥ 0})n≥0 is nondecreasing. In addition, the
modified pair (f, g′) = (fn, gτ∧n+ε)n≥0 still satisfies the domination relation (1.1):
this follows from the identity dg′n = 1{τ≥n}dgn, valid for all n ≥ 1. Hence, applying
(2.5) to this pair yields

P(g′n ≥ 0) ≤ ||fn||1 + U(x, y + ε) ≤ ||f ||1 + U(x, y + ε)

and, in consequence, P(g∗ ≥ 0) ≤ limn→∞ P(g′n ≥ 0) ≤ ||f ||1 + U(x, y + ε). It
suffices to let ε→ 0 to get (1.4).
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Thus it remains to establish (2.5). The key observation is that the sequence
(U(fn, gn))∞n=0 is an (Fn)-supermartingale. Indeed, by (2.4), applied to x = fn,
y = gn, h = dfn+1 and k = dgn+1, we get

U(fn+1, gn+1) ≤ U(fn, gn) + φ(fn, gn)dfn+1 + ψ(fn, gn)dgn+1.

By part (ii) of Lemma 2.1, both sides above are integrable. Apply the conditional
expectation with respect to Fn to obtain that

E(U(fn+1, gn+1)|Fn) ≤ U(fn, gn) + φ(fn, gn)E(dfn+1|Fn) + ψ(fn, gn)E(dgn+1|Fn).

By (1.1) and (2.3), we have φ(fn, gn)E(dfn+1|Fn) ≤ −|ψ(fn, gn)E(dgn+1|Fn)|,
which gives the supermartingale property. Now use the majorization (2.2) to get

P(gn ≥ 0)− E|fn| ≤ EU(fn, gn) ≤ EU(f0, g0) = U(x, y),

which completes the proof. �

3. Sharpness of (1.4)

Let δ > 0 be a fixed small number, to be specified later. Consider a Markov
family (fn, gn) on [0,∞)× R, with the transities described as follows.

(i) The states {(x, y) : y ≥ 0} and {(0, y) : y ≤ −8/3} are absorbing.
(ii) For −x ≤ y < 0, the state (x, y) leads to (x + y, 0) or to (x − y, 2y), with

probabilities 1/2.
(iii) The state (x, y) ∈ D1, x > 0, leads to (0, y+x) or to ( 3x+3y

4 +2+δ, x+y
4 −2−δ),

with probabilities p1 and 1− p1, where p1 = (−x+ 3y+ 8 + 4δ)/(3x+ 3y+ 8 + 4δ).
(iv) The state (x, y) ∈ D2, x > 0, leads to (0, y − x) or to ( 3x−3y

2 − 4, x−y2 − 4),
with probabilities p2 and 1− p2, where p2 = (x− 3y − 8)/(3x− 3y − 8).

(v) The state (x, y) ∈ D3, x > 0, leads to (0, y − x) or to (x−y2 , y−x2 ), with
probabilities p3 and 1− p3, where p3 = −(x+ y)/(x− y).

(vi) The state (0, y), y ∈ (−8/3, 0), leads to (0 + 2δ, y + 2δ).
Let x ≥ 0 and y ∈ R. It is not difficult to check that under the probability

measure Px,y = P(·|(f0, g0) = (x, y)), the sequence f is a nonnegative submartingale
and g satisfies dgn = ±dfn for n ≥ 1 (so (1.1) is satisfied). In fact, the steps
described in (i)–(v) are martingale moves in the sense that

Ex,y
(
(fn+1, gn+1)|(fn, gn) = (x′, y′)

)
= (x′, y′),

provided the conditioning event has nonzero probability and (x′, y′) belongs to one
of the sets from (i)–(v). Set

(3.1) P δ(x, y) = Px,y(g∗ ≥ 0), M δ(x, y) = lim
n→∞

Ex,yfn.

Usually we will skip the upper index and write P , M instead of P δ, Mδ, but it
should be kept in mind that these functions do depend on δ. We will prove that if
this parameter is sufficiently small, then

(3.2) P (x, y)−M(x, y) is arbitrarily close to U(x, y).

This will clearly yield the claim. It is convenient to split the remaining part of the
proof into a few steps.

1◦. The case y ≥ 0. Here (3.2) is trivial: P (x, y) = 1, M(x, y) = x for all δ, and
U(x, y) = 1− x.

2◦. The case x = 0, y ≤ −8/3. Again, (3.2) is obvious: P (x, y) = M(x, y) = 0
for all δ, and U(x, y) = 0.
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3◦. The case −x ≤ y < 0. For any δ > 0 and n ≥ 1, it is easy to see that
Px,y(gn ≥ 0) = 1 − 2−n and Ex,yfn = x. Letting n → ∞, we get P (x, y) = 1 and
M(x, y) = x, which yields (3.2), since U(x, y) = 1− x.

4◦. The case {(x, y) : y = x/3− 8/3, x ∈ (0, 2)} ∪ {(x, y) : x = 0, y ∈ (−8/3, 0)}.
This is the most technical part. Let us first deal with

A(x) := P (x, x/3− 8/3), and B(x) := P (0, 4x/3− 8/3)

for 0 < x < 2. We will prove that

(3.3) lim
δ→0

A(x) =
2
3

(x
2

)1/3

+
1
3

(x
2

)4/3

, lim
δ→0

B(x) =
4
3

(x
2

)1/3

− 1
3

(x
2

)4/3

.

This will be done by showing that

(3.4) lim
δ→0

[
A(x) +B(x)

]
= 2(x/2)1/3, lim

δ→0
[2A(x)−B(x)] = (x/2)4/3.

To get the first statement above, note that by (iii) and Markov property, we have

P

(
x,
x

3
− 8

3

)
=

x

x+ δ
P

(
x+ δ,

x

3
− 8

3
− δ
)

+
δ

x+ δ
P

(
0,

4
3
x− 8

3

)
,

which can be rewritten in the form

(3.5) A(x) =
x

x+ δ
P

(
x+ δ,

x

3
− 8

3
− δ
)

+
δ

x+ δ
B(x).

Similarly, using (iv) and Markov property, we get

P

(
x+ δ,

x

3
− 8

3
− δ
)

=
x+ δ

x+ 3δ
A(x+ 3δ) +

2δ
x+ 3δ

P

(
0,−2

3
x− 8

3
− 2δ

)
=

x+ δ

x+ 3δ
A(x+ 3δ),

where in the last passage we have used 2◦. Plugging this into (3.5) yields

(3.6) A(x) =
x

x+ 3δ
A(x+ 3δ) +

δ

x+ δ
B(x).

Analogous argumentation, with the use of (iii), (vi) and Markov property, leads to
the equation

(3.7) B(x) =
2δ

x+ 3δ
A(x+ 3δ) +

x+ δ

x+ 3δ
B(x+ 3δ).

Adding (3.6) to (3.7) gives

(3.8) A(x) +
x

x+ δ
B(x) =

x+ 2δ
x+ 3δ

[
A(x+ 3δ) +

x+ 3δ
x+ 4δ

B(x+ 3δ)
]

+ c(x, δ) · δ2,

where

c(x, δ) = − 2B(x+ 3δ)
(x+ 3δ)(x+ 4δ)

,

which can be bounded in absolute value by 2/x2. Now we use (3.8) several times:
if N is the largest integer such that x+ 3Nδ < 2, then

A(x) +
x

x+ δ
B(x) =

x+ 2δ
x+ 3δ

· x+ 5δ
x+ 6δ

· . . . · x+ 3Nδ − δ
x+ 3Nδ

×

×
[
A(x+ 3Nδ) +

x+ 3Nδ
x+ 3Nδ + δ

B(x+ 3Nδ)
]

+ cNδ2,

(3.9)
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where |c| < 2/x2. Now we will study the limit behavior of the terms on the right
as δ → 0. First, note that for any k = 1, 2, . . . , N ,

x+ 3kδ − δ
x+ 3kδ

= exp
(
− δ

x+ 3kδ

)
· exp(d(k)δ2),

where |d(k)| ≤ 1/x2; consequently,

(3.10)
N∏
k=1

x+ 3kδ − δ
x+ 3kδ

= exp

(
−

N∑
k=1

δ

x+ 3kδ

)
exp(d̃Nδ2),

for some d̃ satisfying |d̃| ≤ 1/x2. Since N = O(1/δ) for small δ, we conclude that
the product in (3.10) converges to exp(− 1

3

∫ 2

x
t−1dt) = (x/2)1/3 as δ → 0.

The next step is to show that the expression in the square brackets in (3.9)
converges to 2 as δ tends to 0. First observe that

B(x+ 3Nδ) = P

(
0, 4x/3 + 4Nδ − 8

3

)
= P

(
2δ, 4x/3 + 4Nδ − 8

3
+ 2δ

)
= 1,

where in the first passage we have used the definition of B, in the second we have
exploited (vi), and the latter is a consequence of 1◦ and 3◦. To show that A(x+3Nδ)
converges to 1, use (3.5), with x replaced by x+ 3Nδ, to get

A(x+ 3Nδ) =
x+ 3Nδ

x+ 3Nδ + 3δ
P

(
x+ 3Nδ + δ,

x+ 3Nδ
3

− 8
3
− δ
)

+
δ

x+ 3Nδ + δ
.

Note that by the definition of N , the point under P lies in D3, and arbitrarily close
to the line y = −x, if δ is sufficiently small. Thus, by (v) and 2◦,

P

(
x+ 3Nδ + δ,

x+ 3Nδ
3

− 8
3
− δ
)

can be made arbitrary close to 1, provided δ is small enough. Summarizing, letting
δ → 0 in (3.9) yields the first limit in (3.4). To get the second one, multiply both
sides of (3.7) by 1/2, subtract it from (3.6) and proceed as previously.

Next we show that C(x) := M(x, x/3 − 8/3), D(x) := M(0, 4x/3 − 8/3), x ∈
(0, 2), satisfy

(3.11) lim
δ→0

C(x) =
2
3

(x
2

)1/3

+
4
3

(x
2

)4/3

, lim
δ→0

D(x) =
4
3

(x
2

)1/3

− 4
3

(x
2

)4/3

.

We proceed exactly in the similar manner: arguing as reviously, C and D satisfy the
same system of equations as A and B, that is, (3.6) and (3.7). The only difference
in the further considerations is that C(x + 3Nδ) → 2 and D(x + 3Nδ) → 0 as
δ → 0.

The final step is to combine (3.3) and (3.11). We get

lim
δ→0

[
A(x)− C(x)

]
= U (x, x/3− 8/3) , lim

δ→0

[
B(x)−D(x)

]
= U (0, 4x/3− 8/3) ,

as desired.
5◦. The remaining (x, y)’s. Now (3.2) is easily deduced from the previous cases

using Markov property: the point (x, y) leads, in at most two steps, to the state for
which we have already calculated the (limiting) values of P and M . For example,
if (x, y) ∈ D3, we have

P (x, y) = p3P (0, y − x) + (1− p3)P
(
x− y

2
,
y − x

2

)
= 1− p3 =

2x
x− y

,
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M(x, y) = p3M(0, y − x) + (1− p3)M
(
x− y

2
,
y − x

2

)
= x,

in view of 1◦ and 3◦. Since U(x, y) = P (x, y) −M(x, y), (3.2) follows. The other
states are checked similarly. The proof of the sharpness is complete.

We conclude this section with an observation which follows immediately from
the above considerations. It will be needed later in the proof of Theorem 1.6.

Remark 3.1. The function Q : [0,∞)×R→ [0, 1], given by Q(x, y) = limδ→0 P (x, y),
is continuous.

4. Applications

We start with the following auxiliary fact.

Lemma 4.1. (i) Suppose that

(4.1) y < −x < 0 and
(

4x
x− 3y

)1/3 2x− 2y
x− 3y

< t < 1.

Then there is a unique positive number C0 = C0(x, y, t) satisfying C0 ≤ 8/(x− 3y)
(equivalently, (C0x,C0y) ∈ D1) and

(4.2)
1
16
C2

0 (x+ y)(5x− 3y) + C0(x+ y) + 4 = t(3C0(x+ y) + 8)2/3.

(ii) Suppose that

(4.3) y < −x < 0 and
2x
x− y

< t ≤
(

4x
x− 3y

)1/3 2x− 2y
x− 3y

.

Then there is a unique positive number C1 = C1(x, y, t) such that 8/(x − 3y) ≤
C1 ≤ 4/(x− y) (equivalently, (C1x,C1y) ∈ D2) and

C2
1x(x− y) = 2t(6C1(x− y)− 16)2/3.

Proof. We will only prove (i), the second part can be established essentially in the
same manner. Let

F (C) =
1
16
C2(x+ y)(5x− 3y) + C(x+ y) + 4− t(3C(x+ y) + 8)2/3.

It can be verified readily that F ′ is convex and satisfies F ′(0+) = (x+y)(1−t) < 0:
thus F is either decreasing on (0, 8/(x−3y)), or decreasing on (0, x0) and increasing
on (x0, 8/(x−3y) for some x0 from (0, 8/(x−3y)). To complete the proof, it suffices
to note that F (0) = 4− 4t > 0 and

F

(
8

x− 3y

)
= 4

(
4x

x− 3y

)2/3
[(

4x
x− 3y

)1/3 2x− 2y
x− 3y

− t

]
< 0. �

Let L : [0,∞)× R× [0, 1]→ R be given by

(4.4) L(x, y, t) =


(x− y)/2 if t = 1,
t
C0
− (3C0(x+ y) + 8)1/3(−5x+3y

16 + 1
2C0

) if (4.1) holds,
t
C1

+ C1x
4

(
x(x−y)

2t

)1/2

if (4.3) holds,

x if t ≤ 2x
x−y .
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Proof of (1.6) and (1.7). Clearly, it suffices to prove the inequality for β = 0, re-
placing (f, g) by (f, g − β), if necessary. Let C > 0 be an arbitrary constant. Ap-
plication of (1.4) to the sequences Cf , Cg yields P(g∗ ≥ 0)−C||f ||1 ≤ U(Cx,Cy),
which, by (1.5), leads to the bound

(4.5) ||f ||1 ≥
t− U(Cx,Cy)

C
.

If one maximizes the right-hand side over C, one gets precisely L(x, y, t). This
follows from a straightforward but lengthy analysis of the derivative with an aid of
the previous lemma. We omit the details. To get (1.7), note that for fixed x and
t, the function L(x, ·, t) is nonincreasing. This follows immediately from (4.5) and
the fact that U(x, ·) is nondecreasing, which we have already exploited. �

Sharpness of (1.6). As previously, we may restrict ourselves to β = 0. Fix x ≥ 0,
y ∈ R and t ∈ [0, 1]. If x + y ≥ 0, then the examples studied in 1◦ and 3◦ in
the preceding section give equality in (1.6). Hence we may and do assume that
x+ y < 0. Consider three cases.

(i) Suppose that t ≤ 2x/(x− y). Take C > 0 such that (Cx,Cy) ∈ D3 and take
the Markov pair (f, g), with (f0, g0) = (Cx,Cy), from the previous section. Then
the pair (f/C, g/C) gives equality in (1.6) (see 5◦).

(ii) Let 2x(x− y) < t < 1 and take 0 < ε < 1− t. Recall the function Q defined
in Remark 3.1. First we will show that

(4.6) Q(Cx,Cy) = t+ ε for some C = C(ε, t) > 0.

Indeed, for large C we have (Cx,Cy) ∈ D3, so P (Cx,Cy) = 2x/(x− y) regardless
of the value of δ (see 5◦), and, in consequence, Q(Cx,Cy) = 2x/(x− y). Similarly,
P (0, 0) = 1 for any δ, so Q(0, 0) = 1. Thus (4.6) follows from Remark 3.1. Another
observation, to be needed at the end of the proof, is that

(4.7) lim inf
ε→0

C(ε, t) > 0.

Otherwise, we would have a contradiction with (4.6), Remark 3.1 and the equality
Q(0, 0) = 1.

Now fix δ > 0 and consider a Markov pair (f, g), starting from (Cx,Cy), studied
in the previous section. If δ is taken sufficiently small, then the following two
conditions are satisfied: first, by (3.2), we have P(g∗ ≥ 0)− ||f ||1 ≥ U(Cx,Cy)− ε;
second, by the definition of Q, P(g∗ ≥ 0) = P (Cx,Cy) ∈ (t, t+2ε). In other words,
for this choice of δ, the pair (f/C, g/C) starts from (x, y), satisfies (1.1), we have
P((g/C)∗ ≥ 0) ≥ t and

||f/C||1 ≤ (t− U(Cx,Cy) + 3ε)/C ≤ L(x, y, t) + 3ε/C.

To get the claim, it suffices to note that ε was arbitrary and that (4.7) holds.
(iii) Finally, assume that t = 1. Then the following Markov pair (f, g), starting

from (x, y), gives equality in (1.6):
• For y ≥ 0, the state (0, y) is absorbing.
• if x 6= 0, then (x, y) leads to (0, y + x) and (2x, y − x), with probabilities

1/2.
• if y < 0, the state (0, y) leads to (−y/2, y/2).

The analysis is similar to the one presented in the case 3◦ in the previous section.
The details are left to the reader. �
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We turn to the proof of the weak type inequality from Theorem 1.7.

Proof of Theorem 1.7. Fix λ > 0 and apply Theorem 1.5 to martingales 8f/(3λ)
and 8g/(3λ)− 8/3, conditionally on F0. Taking expectation of both sides, we get

P(g∗ ≥ λ) = P
((

8g
3λ
− 8

3

)∗
≥ 0
)
≤
∣∣∣∣∣∣∣∣8f3λ

∣∣∣∣∣∣∣∣
1

+ EU
(

8f0

3λ
,

8g0

3λ
− 8

3

)
.

Thus it suffices to show that for all points (x, y) ∈ [0,∞) × R satisfying |y| ≤ |x|
we have

(4.8) U

(
x, y − 8

3

)
≤ 0

and that the equality holds for at least one such point. This is straightforward: as
already mentioned above, the function y 7→ U(x, y) is nondecreasing, so

U

(
x, y − 8

3

)
≤ U

(
x, x− 8

3

)
≤ U

(
0,−8

3

)
= 0,

where, in the latter inequality, we have used Remark 2.3. �
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[7] C. Choi, A norm inequality for Itô processes, J. Math. Kyoto Univ. 37 Vol. 2 (1997), pp.

229–240.
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