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Abstract

We study stability estimates for the almost extremal functions associated with
the Lp-bound for the real and imaginary parts of the Beurling-Ahlfors operator.
The proof exploits probabilistic methods and rests on analogous results for differ-
entially subordinate martingales which are of independent interest. This allows us
to obtain stability inequalities for a larger class of Fourier multipliers.

Résumé
Nous donnons des estimées pour la stabilité des fonctions quasi-extrêmales

associés aux bornes Lp des parties réelle et imaginaire d’opérateur de Beurling-
Ahlfors. La démonstration utilise des méthodes probabilistes et se base sur des
résultats analogues concernant des martingales subordonnées de maniére différen-
tielle. Ces résultats ont leur intérêt propre, et nous permettent d’obtenir des iné-
galités de stabilité pour une grande classe de multiplicateurs de Fourier.
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1. Introduction and statements of stability for Fourier multipliers

Sharp inequalities in analysis and geometry have been of interest for many
years and many have been investigated from different points of view where not
only their sharpness is proved but the extremal quantities (those that make the in-
equality an equality) are identified. Once the extremals are known it is natural to
ask about the stability of such inequalities. More specifically, the aim in the inves-
tigation of stability inequalities is to measure, in terms of an appropriate distance
from the extremals, how far an admissible quantity is from attaining equality. For
various examples of such stability results in geometry and spectral theory, we re-
fer the reader to the work by Brasco and Philippis [14]. For a sample of stability
inequalities in analysis, see Bianchi and Egnell [11], Chen, Frank and Weth [20],
Christ [21], Dolbeault and Toscani [26], Fathi, Indrei and Ledoux [27], and the
very recent paper of Carlen [19], to list just a few.

On the probability side, there has been considerable interest in obtaining sharp
inequalities for martingales (for many examples and further references, see the
monograph [41]). Many of these results have had important applications in anal-
ysis; we shall see some examples below and relate them to some results from the
literature. It is interesting to note that in the case of many of the classical martin-
gale inequalities, unlike the inequalities in analysis referenced above, equality is
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never attained. That is, extremals do not exist. This is the case, for example, in
Doob’s maximal inequality, in the classical Burkholder-Davis-Gundy inequalities
for martingales with continuous paths (Davis [24]), and in Burkholder’s martin-
gale inequalities under the assumption of differential subordination, which include
his celebrated sharp martingale transforms inequalities [15]. In this paper we in-
vestigate the stability of Burkholder’s inequalities and apply this to obtain similar
results for a class of Fourier multipliers that includes the real and imaginary parts
of the Beurling-Ahlfors operator, the two dimensional Hilbert transform, which
has been extensively investigated in the literature. We also obtain the correspond-
ing result for first order Riesz transforms on Rd, d ≥ 1. The latter is new even for
the Hilbert transform, the case when d = 1.

Our results are motivated from the recent paper [37] by Melas concerning
the structure of almost extremal functions associated with the Lp-estimate for the
dyadic maximal operatorM on [0, 1]d, a version of Doob’s maximal inequality.
It is well-known thatM is a bounded operator on Lp([0, 1]d), 1 < p < ∞, and
its norm equals p/(p − 1). Although this norm is never attained, there is a very
interesting property of the functions which are almost extremal. A careful in-
spection of the paper [36] reveals that for any ε > 0 there is f ∈ Lp for which
the pointwise identity Mf =

(
p
p−1 − ε

)
f holds true and therefore this family

of functions, corresponding to different ε, can be regarded as an “approximate
eigenfunction” ofM associated with the eigenvalue p/(p − 1). One of the main
results of [37] makes this observation more precise. It is proved that if 2 < p <∞
is a fixed exponent, ε > 0 is a small number and f is any nonnegative function
satisfying

||Mf ||Lp([0,1]d) ≥
(

p

p− 1
− ε
)
||f ||Lp([0,1]d),

then ∣∣∣∣∣∣∣∣Mf − p

p− 1
f

∣∣∣∣∣∣∣∣
Lp([0,1]d)

≤ cpε
1/p||f ||Lp([0,1]d)

for some constant cp depending only on p. In other words, if f is almost extremal
for the Lp-estimate, then it is close, in the Lp-sense, to being an eigenfunction of
M corresponding to the eigenvalue p/(p− 1).

A careful analysis reveals a similar phenomenon for Beurling-Ahlfors operator
B on the plane C. Recall that this operator is a Fourier multiplier with the symbol
m(ξ) = ξ/ξ, ξ ∈ C. Alternatively, it can be defined by the singular integral
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operator

Bf(z) = − 1

π
p.v.

∫
C

f(w)

(z − w)2
dw.

This operator plays a fundamental role in the theory of quasiconformal mappings
in the plane. A convenient reference on the subject is the monograph [2] by Astala,
Iwaniec and Martin. A crucial property ofB is that it changes the complex deriva-
tive ∂ to ∂. More precisely, we have B(∂f) = ∂f for any f in the Sobolev space
W 1,2(C,C) of complex valued locally integrable functions on C whose distribu-
tional first derivatives are in L2 on the plane. A beautiful long-standing open
problem formulated in 1982 by T. Iwaniec [31] asserts that

||B||Lp(C)→Lp(C) = p∗ − 1, 1 < p <∞,

where p∗ = max{p, p/(p − 1)}. It is well-known that the Lp-norm of B cannot
be smaller than p∗ − 1. Curiously, the almost-extremal functions, constructed
by Lehto [35], are also close to being eigenfunctions of B, but up to absolute
value. To state this more precisely, suppose first that 1 < p ≤ 2. For a given
β ∈ (−2/p, 0), let fβ(z) = |z|βχD(z), where D is the unit disc in the plane. Using
the commutation of ∂ and ∂ by B, we have that

Bfβ(z) = B

(
∂̄

(
2|z|β z̄
β + 2

χD +
2z−1

β + 2
χC\D

))
= ∂

(
2|z|β z̄
β + 2

χD +
2z−1

β + 2
χC\D

)
=
β|z|β z̄/z
β + 2

χD −
2z−2

β + 2
χC\D =

βz̄/z

β + 2
fβ −

2z−2

β + 2
χC\D.

Now, if we let β ↓ −2/p, then |β/(β + 2)| → (p− 1)−1 = p∗ − 1. Furthermore,
the Lp-norm of fβ converges to infinity and the “error term” −2z−2

β+2
χC\D becomes

irrelevant, so that ||Bfβ||Lp(C)/||fβ||Lp(C) → p∗ − 1. However, the above formula
shows that, essentially, |Bfβ| ≈ (p∗ − 1)|fβ| pointwise, provided β is close to
−2/p. In other words, fβ is almost an eigenfunction of B with the eigenvalue
p∗ − 1, up to absolute value. In the case p > 2 the calculations are similar and
exploit the functions

fβ(z) =
β|z|βz/z̄
β + 2

χD −
2z̄−2

β + 2
χC\D, β ∈ (−2/p, 0),

for whichBfβ(z) = |z|βχD and |Bfβ| ≈ (p∗−1)|fβ| provided β is close to−2/p.
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Our contribution in this paper is to present a quantitative version of stability
result for a large class of Fourier multipliers which includes the real and imaginary
parts of Beurling-Ahlfors operator and first order Riesz transforms. Consider the
following class of symbols, introduced by in [4]. Assume that µ is a finite non-
negative Borel measure on the unit sphere S of Rd and fix a Borel function ψ on
S which take values in the unit ball of C. We define the associated multiplier
m = mψ,µ on Rd by

m(ξ) =

∫
S〈ξ, θ〉

2ψ(θ)µ(dθ)∫
S〈ξ, θ〉2µ(dθ)

(1.1)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for the
scalar product on Rd. This class is quite large, containing the real and imaginary
parts of the Beurling-Ahlfors operator. To see this, note thatB can be decomposed
as B = R2

2−R2
1− 2iR1R2, where R1, R2 are planar Riesz transforms, that is, the

Fourier multipliers with the symbols −iξ1/|ξ| and −iξ2/|ξ|, respectively (see the
discussion following Theorem 1.1 below). Indeed, we have the identity

ξ

ξ
=
ξ21 − ξ22
ξ21 + ξ22

− i 2ξ1ξ2
ξ21 + ξ22

.

Now both R2
2 − R2

1 and 2R1R2 can be represented as the Fourier multipliers with
the symbols of the form (1.1): the choice d = 2, µ = δ(1,0)+δ(0,1), ψ(1, 0) = −1 =
−ψ(0, 1) leads to Tm = <B, while taking d = 2, µ = δ(1/

√
2,1/
√
2) + δ(1/

√
2,−1/

√
2)

and ψ(1/
√

2, 1/
√

2) = 1 = ψ(1/
√

2,−1/
√

2) yields Tm = −=B.
One of the main results of [4] is that if m is as above, then

||Tm||Lp(Rd)→Lp(Rd) ≤ p∗ − 1. (1.2)

Furthermore, as shown by Geiss, Montgomery-Smith and Saksman [28], equality
holds for the real and imaginary parts of B. We also refer to [7] for other such
examples. (The bound in (1.2) for the real and imaginary parts of B was proved
by Nazarov and Volberg [39], see also [6].) One of our main results concerns the
Lp-stability of such multipliers. Here is the precise statement.

Theorem 1.1. Suppose that m is a symbol from the class (1.1) and Tm is the
associated Fourier multiplier.

(i) Let 1 < p < 2 and ε > 0. If f is such that

||Tmf ||Lp(Rd) ≥ ((p− 1)−1 − ε)||f ||Lp(Rd),
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then ∣∣∣∣|Tmf | − (p− 1)−1|f |
∣∣∣∣
Lp(Rd) ≤ cpε

1/2||f ||Lp(Rd), (1.3)

where

cp =

(
p
p−1

)(3−p)/2
(1− p (1− 1/p)p−1)1/2

.

The order O(ε1/2), as ε → 0, is optimal. Furthermore, the multiplicative factor
cp is of optimal order O((2− p)−1/2), as p ↑ 2.

(ii) Let 2 < p <∞ and ε > 0. If f is such that

||Tmf ||Lp(Rd) ≥ (p− 1− ε)||f ||Lp(Rd),

then ∣∣∣∣|Tmf | − (p− 1)|f |
∣∣∣∣
Lp(Rd) ≤ cpε

1/p||f ||Lp(Rd), (1.4)

where

cp = (p− 1)

[
2pe

(p− 2)(e− 2)

]1/p
.

The order O(ε1/p), as ε→ 0, is optimal. Furthermore, the multiplicative constant
cp is of optimal orders O((p− 2)−1/p), as p ↓ 2, and O(p), as p→∞.

(iii) For p = 2, there is no stability result of the above type. That is, there are
no finite constants c2 and κ > 0 such that∣∣∣∣|Tmf | − |f |∣∣∣∣L2(Rd) ≤ c2ε

κ||f ||L2(Rd)

provided
||Tmf ||L2(Rd) ≥ (1− ε)||f ||L2(Rd),

with ε sufficiently small.

A few remarks are in order. First, it is clear that the above statement is mean-
ingful only for multipliers which have Lp norm equal to p∗ − 1. Furthermore, the
aforementioned optimality of the constants and exponents will be shown for the
real part of the Beurling-Ahlfors operator (and a similar reasoning proves that the
optimality holds also for the imaginary part ofB). We do not know whether the or-
der of cp as p ↓ 1 is optimal; our examples below indicate that cp ≥ O((p− 1)−1).

We also mention that inequalities (1.3) and (1.4) hold for the class of Calderón-
Zygmund singular integrals TAf(x) =

∫
Rd KA(x, y)f(y)dy with kernels of the

form

KA(x, y) =

∫ ∞
0

∫
Rd

(A(x̄, t)∇xpt(x̄− y)) · ∇xpt(x̄− x)dx̄dt. (1.5)
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Here A(x, t) is an d× d matrix-valued function with

‖A‖ = ‖ sup
|v|≤1

(|A(x, y)v|)‖L∞(Rd×[0,∞)) ≤ 1

and∇xpt denotes the gradient of the Gaussian (heat) kernel pt. They are Calderón-
Zygmund operators but not of convolution (or Fourier multiplier) type unless the
matrix does not depend on x. They arise from martingale transforms and as in the
case of the multipliers in Theorem 1.1, their Lp-norms are also bounded above by
(p∗ − 1). For details, we refer to Perlmutter [43].

Next we present a version of the above result for first-order Riesz transforms.
Recall that for any dimension d ≥ 1, the family of Riesz transforms on Rd is given
by

Rjf(x) =
Γ
(
d+1
2

)
π(d+1)/2

∫
Rd

xj − yj
|x− y|d+1

f(y)dy, j = 1, 2, . . . , d,

where the integrals are supposed to exist in the sense of Cauchy principal values.
In the particular case d = 1, the family consists of only one element, the Hilbert
transformH on R. Alternatively, Rj can be defined as the Fourier multiplier with
the symbol −iξj/|ξ|, ξ ∈ Rd \ {0}. As proved by Iwaniec and Martin [32], for
any 1 < p <∞ and any f ∈ Lp(Rd) we have

||Rjf ||Lp(Rd) ≤ cot
π

2p∗
||f ||Lp(Rd), j = 1, 2, . . . , d, (1.6)

and the constant cannot be decreased. (Note that cot π
2p∗

equals tan π
2p

if 1 <
p ≤ 2, and cot π

2p
if p ≥ 2.) An alternative probabilistic proof of the estimate

(1.6) based on a sharp estimate for orthogonal martingales, was given in [10]. Our
contribution in this direction is the following stability result.

Theorem 1.2. Let d be a fixed positive integer and let j ∈ {1, 2, . . . , d}. Fur-
thermore, let 1 < p <∞ and pick f ∈ Lp(Rd).

(i) Suppose that 1 < p < 2 and let ε > 0. If f is such that

||Rjf ||Lp(Rd) ≥ (tan
π

2p
− ε)||f ||Lp(Rd),

then ∣∣∣∣∣∣∣∣|Rjf | − tan
π

2p
|f |
∣∣∣∣∣∣∣∣
Lp(Rd)

≤ cpε
1/2||f ||Lp(Rd), (1.7)

where

cp =

(
32

π

)1/2
p(3−p)/2

(p− 1)(4−p)/2(2− p)1/2
.

7



The order O(ε1/2), as ε → 0, is optimal. Furthermore, the multiplicative factor
cp is of optimal order O((2− p)−1/2), as p ↑ 2.

(ii) Suppose that 2 < p <∞ and let ε > 0. If f is such that

||Rjf ||Lp(Rd) ≥ (cot
π

2p
− ε)||f ||Lp(Rd),

then ∣∣∣∣∣∣∣∣|Rjf | − cot
π

2p
|f |
∣∣∣∣∣∣∣∣
Lp(Rd)

≤ cpε
1/p||f ||Lp(Rd), (1.8)

where

cp = (p− 1)

[
(2 +

√
2)p2

(p− 1)(p− 2)

]1/p
.

The order O(ε1/p), as ε→ 0, is optimal. Furthermore, the multiplicative constant
cp is of optimal orders O((p− 2)−1/p), as p ↓ 2 and O(p) as p→∞.

(iii) For p = 2, there are no finite positive constants c2 and κ such that for
sufficiently small ε > 0, the inequality ||Rjf ||L2(Rd) ≥ (1 − ε)||f ||L2(Rd) implies∣∣∣∣|Rjf | − |f |

∣∣∣∣
L2(Rd) ≤ c2ε

κ||f ||L2(Rd).

As noted above, when d = 1, R1 reduces to the classical Hilbert transform and
Theorem 1.2 gives the stability of Pichorides’ [44] inequality.

Let us say a few words about the proofs and the organization of the paper.
Our approach will be probabilistic and will exploit similar tight estimates for dif-
ferentially subordinate martingales. The probabilistic content of the paper can be
found in §2, while §3 contains the proofs of the analytic results, Theorem 1.1 and
Theorem 1.2.

2. Stability for martingale inequalities

2.1. Background, statement of results and method of proofs
Suppose that (Ω,F ,P) is a complete probability space, filtered by (Ft)t≥0, a

non-decreasing family of sub-σ-algebras of F such that F0 contains all the events
of probability 0. Let X , Y be two adapted cádlág martingales, i.e., with right-
continuous trajectories that have limits from the left, taking values in a given sep-
arable Hilbert space H. We may and will assume that H is equal to `2, and we will
denote the norm in H by | · |, and the corresponding inner product by 〈·, ·〉. The
symbol [X,X] stands for the square bracket of X; see e.g. Dellacherie and Meyer
[25] for the definition in the real-valued case, and extend the notion to the vector

8



setting by [X,X] =
∑∞

k=1[X
k, Xk], where Xk is the k-th coordinate of X . For

any 1 ≤ p ≤ ∞, we will use the notation ||X||p = supt≥0 ||Xt||p for the p-th norm
of the process X , and denote by X∞ the almost sure limit limt→∞Xt, if it exists.
Martingales X and Y are said to be orthogonal, if their square bracket is constant:
[X, Y ] = [X, Y ]0. Following [10] and [46], we say that Y is differentially subordi-
nate to X , if the process ([X,X]t − [Y, Y ]t)t≥0 is nonnegative and nondecreasing
as a function of t. The origins of this notion go back to Burkholder’s paper [13],
who introduced the differential subordination in the context of discrete martin-
gales: a martingale g = (gn)n≥0 is differentially subordinate to f = (fn)n≥0 if we
have |g0| ≤ |f0| and |gn−gn−1| ≤ |fn−fn−1| almost surely for all n. Treating such
martingales as continuous-time processes (via Xt = fbtc, Yt = gbtc), we see that
the continuous-time definition is consistent with the original one. The following
discrete-time example will be of importance to us later: suppose that f = (fn)n≥0
is a martingale and let v = (vn)n≥0 be a deterministic sequence. We say that g
is the transform of f by v if we have g0 = v0f0 and gn − gn−1 = vn(fn − fn−1)
for all n ≥ 1. One immediately checks that if the sequence v takes values in the
interval [−1, 1], then g is differentially subordinate to f .

Differential subordination (regardless of orthogonality) implies many interest-
ing inequalities between the processes involved, and these estimates have plenty
of further applications in many areas of mathematics. The literature on this is
now quite large, we refer the reader to the works [3], [5], [10], [15], [16], [17],
[8], [9], [41], [42], [46] and references therein. For example, we have the fol-
lowing classical statement, proved by Burkholder [15] in the discrete-time set-
ting and extended to the continuous time by Wang [46]. We keep the notation
p∗ = max{p, p/(p− 1)} introduced in the preceding section.

Theorem 2.1. Suppose that X , Y are H-valued martingales such that Y is differ-
entially subordinate to X . Then for any 1 < p <∞ we have the inequality

||Y ||p ≤ (p∗ − 1)||X||p. (2.1)

The constant p∗ − 1 is the best possible even in the above context of discrete-time
martingale transforms with H = R.

Here is the orthogonal version of the above statement, proved by in [10]. In
the case when the martingales arise from conjugate harmonic functions in the disc,
this is due to Pichorides [44].

Theorem 2.2. Suppose that X , Y are real-valued orthogonal martingales such
that Y is differentially subordinate to X . Then for any 1 < p < ∞ we have the
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inequality
||Y ||p ≤ cot

π

2p∗
||X||p. (2.2)

The constant cot π
2p∗

is the best possible.

For the vector-valued version of this result, consult the work [40]. In this
setting the constants change slightly in the case 1 < p < 3.

One of our main results is the following Lp-stability statement in the above
probabilistic context. This can be regarded as the stochastic analogue of Theorem
1.1.

Theorem 2.3. Suppose that X , Y are H-valued martingales such that Y is differ-
entially subordinate to X .

(i) Let 1 < p < 2 and ε > 0. If X and Y are Lp-bounded and satisfy the
estimate ||Y ||p ≥ ((p− 1)−1 − ε)||X||p, then∣∣∣∣|Y∞| − (p− 1)−1|X∞|

∣∣∣∣
p
≤ cpε

1/2||X||p, (2.3)

where

cp =

(
p
p−1

)(3−p)/2
(1− p (1− 1/p)p−1)1/2

.

The order O(ε1/2) as ε → 0 is optimal. Furthermore, the multiplicative factor cp
is of optimal order O((2− p)−1/2) as p ↑ 2.

(ii) Let 2 < p < ∞ and ε > 0. If X and Y are Lp-bounded and satisfy the
estimate ||Y ||p ≥ (p− 1− ε)||X||p, then∣∣∣∣|Y∞| − (p− 1)|X∞|

∣∣∣∣
p
≤ cpε

1/p||X||p, (2.4)

where

cp = (p− 1)

[
2pe

(p− 2)(e− 2)

]1/p
.

The order O(ε1/p) as ε → 0 is optimal. Furthermore, the multiplicative constant
cp is of optimal orders O((p− 2)−1/p) as p ↓ 2 and O(p) as p→∞.

(iii) For p = 2, there are no finite positive constants c2 and κ such that for
sufficiently small ε > 0, the inequality ||Y ||2 ≥ (1 − ε)||X||2 implies

∣∣∣∣|Y∞| −
|X∞|

∣∣∣∣
2
≤ c2ε

κ||X||2.
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Note that the assumption on the Lp-boundedness of X and Y implies the ex-
istence of X∞ and Y∞, so the above formulation makes sense. As in the analytic
setting, we do not know whether the orderO((p−1)−3/2) of cp as p ↓ 1 is optimal.
We will prove that cp ≥ O((p− 1)−1), by constructing appropriate examples.

Let us briefly handle the case p = 2. Suppose that Ω = [0, 1], F = B(0, 1)
and P is a Lebesgue measure. Take Xt = Yt = χ[0,1] for t ∈ [0, 1) and Xt =
2χ[0,1/2], Yt = 2χ(1/2,1], t ≥ 1. Then Y is differentially subordinate to X (which
is equivalent to the trivial inequality |Y1 − Y1−| ≤ |X1 −X1−|). Furthermore, we
have ||Y ||2 = ||X||2, so the condition ||Y ||2 ≥ (1 − ε)||X||2 is satisfied for all
ε > 0; on the other hand, the ratio

∣∣∣∣|Y∞| − |X∞|∣∣∣∣2/||X||2 is positive (and does
not depend on ε), so the inequality

∣∣∣∣|Y∞| − |X∞|∣∣∣∣2 ≤ c2ε
κ||X||2 is violated for

sufficiently small ε (no matter what c2 and κ are). Therefore, we have to establish
the first two parts of Theorem 2.3, and this will be done in Subsections 2.2, 2.3
and 2.4 below.

In the orthogonal case we will prove the following statement.

Theorem 2.4. Suppose that X , Y are orthogonal real-valued martingales such
that Y is differentially subordinate to X .

(i) Let 1 < p < 2 and ε > 0. If X and Y are Lp-bounded and satisfy the
estimate ||Y ||p ≥ (tan π

2p
− ε)||X||p, then∣∣∣∣∣∣∣∣|Y∞| − tan

π

2p
|X∞|

∣∣∣∣∣∣∣∣
p

≤ cpε
1/2||X||p, (2.5)

where

cp =

(
32

π

)1/2
p(3−p)/2

(p− 1)(4−p)/2(2− p)1/2
.

The order O(ε1/2) as ε → 0 is optimal. Furthermore, the multiplicative factor cp
is of optimal order O((2− p)−1/2) as p ↑ 2.

(ii) Let 2 < p < ∞ and ε > 0. If X and Y are Lp-bounded and satisfy the
estimate ||Y ||p ≥ (cot π

2p
− ε)||X||p, then∣∣∣∣∣∣∣∣|Y∞| − cot

π

2p
|X∞|

∣∣∣∣∣∣∣∣
p

≤ cpε
1/p||X||p, (2.6)

where

cp = (p− 1)

[
(2 +

√
2)p2

(p− 1)(p− 2)

]1/p
.
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The order O(ε1/p) as ε → 0 is optimal. Furthermore, the multiplicative constant
cp is of optimal orders O((p− 2)−1/p) as p ↓ 2 and O(p) as p→∞.

(iii) For p = 2, there are no finite positive constants c2 and κ such that for
sufficiently small ε > 0, the inequality ||Y ||2 ≥ (1 − ε)||X||2 implies

∣∣∣∣|Y∞| −
|X∞|

∣∣∣∣
2
≤ c2ε

κ||X||2.

As in the non-orthogonal case, the third part of the above theorem is easy. For
example, consider a two-dimensional Brownian motion (X, Y ) started at the ori-
gin and stopped upon reaching the boundary of the unit disc. Then the inequality
||Y ||2 ≥ (1 − ε)||X||2 is satisfied for all ε > 0, while |||Y∞| − |X∞|||2 > 0, so
the inequality

∣∣∣∣|Y∞| − |X∞|∣∣∣∣2 ≤ c2ε
κ||X||2 does not hold for sufficiently small

ε, regardless of the values of c2 and κ. Thus, we need to prove (i) and (ii), which
will done below in Subsections 2.5 and 2.6.

Let us now describe our approach. The proof of the inequalities (2.3) and
(2.4) will be based on Burkholder’s method (or Bellman function method): we
will deduce the validity of these estimates from the existence of certain special
functions, satisfying appropriate majorization and concavity. See [16] or [41]
for the detailed description of the technique. Our approach exploits the follow-
ing statements, which are slight generalizations of the results of Wang [46] (see
Lemma 3 and Proposition 1 there).

Theorem 2.5. Let U be a continuous function on H×H satisfying the following
conditions.

(i) The function U is bounded on bounded sets, is of class C1 on H × H \
{|x||y| = 0} and of class C2 on Si, i ≥ 1, where Si is a sequence of open
connected sets such that the union of closures of Si is H×H.

(ii) For each i, there is a nonnegative measurable function ci on Si such that
for any (x, y) ∈ Si and any h, k ∈ H,

〈Uxx(x, y)h, h〉+ 2〈Uxy(x, y)h, k〉+ 〈Uyy(x, y)k, k〉 ≤ −ci(x, y)(|h|2 − |k|2).
(2.7)

Furthermore, for each i and n there is a finite constant Mi,n such that

sup{ci(x, y) : (x, y) ∈ Si, 1/n ≤ |x|+ |y| < n} ≤Mi,n.

Then for t ≥ 0 and any pair X , Y of H-valued martingales such that Y is differ-
entially subordinate to X , there is a nondecreasing sequence (τn)n≥1 of stopping
times converging to infinity such that

EU(Xτn∧t, Yτn∧t) ≤ EU(X0, Y0), n = 1, 2, . . . .

12



Theorem 2.6. Let U be a continuous function on R2 satisfying the following con-
ditions.

(i) The functionU is bounded on bounded sets and of classC1 on R2\{|x||y| =
0}.

(ii) The function U is superharmonic and, for any fixed x, the function U(x, ·)
is convex.
Then for t ≥ 0 and any pairX , Y of real-valued orthogonal martingales such that
Y is differentially subordinate to X , there is a nondecreasing sequence (τn)n≥1 of
stopping times converging to infinity such that

EU(Xτn∧t, Yτn∧t) ≤ EU(X0, Y0), n = 1, 2, . . . .

For the proof, one needs to repeat the reasoning appearing in [10] and [46]
(see also [41]); we will omit this argumentation, leaving it to the interested reader.

2.2. Sharpness of the martingale inequalities, a discrete-time example
Our starting point is the construction of a certain special discrete-time mar-

tingale pair, which will be used in both cases p < 2 and p > 2 of Theorem 2.3.
For the sake of clarity and to ease the computations, we have decided to split the
construction into two stages. Fix a large positive number K > 1, a large positive
integerN , a small number η > 0 and set δ = (K1/N−1)/2, so that (1+2δ)N = K
and 2Nδ ≈ logK for large N .

First stage. Consider the Markov martingale (F,G) with a distribution unique-
ly determined by the following requirements.

(i) (F0, G0) ≡ (0, 0), (F1, G1) ∈ {(1/2,−1/2), (−1/2, 1/2)}.

(ii) For y 6= 0, the point (y,−y) leads to (2y, 0) or to (0,−2y).

(iii) For |y| < K, the point (0, y) leads to (y/p, (p− 1)y/p) or to (−δy, y+ δy).

(iv) For y 6= 0, the point (−δy, y + δy) leads to (0, y + 2δy) or to (−(y +
2δy)/p, (p− 1)(y + 2δy)/p).

(v) All the remaining points are absorbing.

Some remarks are in order. First, we do not need to specify the transition prob-
abilities, they are uniquely determined by the condition that (F,G) is a martingale.
Note that G is the transform of F by the deterministic sequence {(−1)n}∞n=0.

13



Figure 1: Markov martingale (F,G), first stage. The dotted lines describe the possible directions
for the evolution of the process. The bold line refers to an exemplary trajectory of (F,G), which
starts from (0, 0) and moves to (−1/2, 1/2), (0, 1), (−δ, 1+ δ), (0, 1+2δ) and ((1+ 2δ)/p, (p−
1)(1 + 2δ)/p) in the consecutive steps.

Clearly, this condition is symmetric: F is the transform of G by the same de-
terministic sequence. We will exploit this symmetry later on. Finally, observe
that the martingale pair (F,G) is finite in the sense that it terminates after a finite
number of steps.

Let us look at the distribution of the random variable (|F∞|, |G∞|) (note that
norms are applied to both F∞ and G∞). It takes the value (1, 0) with the proba-
bility

P
(
(|F∞|, |G∞|) = (1, 0)

)
= P

(
(|F2|, |G2|) = (1, 0)

)
=

1

2
. (2.8)

Furthermore, we have

P
(
(|F∞|, |G∞|) = (1/p, (p− 1)/p)

)
= P

(
(|F3|, |G3|) = (1/p, (p− 1)/p)

)
=

1

2
· pδ

pδ + 1
.

(2.9)

Next, for k = 1, 2, . . . , N − 1 we have

P
(
(|F∞|, |G∞|) = ((1 + 2δ)k/p, (1 + 2δ)k · (p− 1)/p)

)
= P

(
(|F2k+2|, |G2k+2|) = ((1 + 2δ)k/p, (1 + 2δ)k · (p− 1)/p)

)
+ P

(
(|F2k+3|, |G2k+3|) = ((1 + 2δ)k/p, (1 + 2δ)k · (p− 1)/p)

)
=

1

2

[
1− (p− 2)δ

(pδ + 1)(1 + 2δ)

]k−1
pδ

(pδ + 1)(1 + 2δ)
·
{

1 +
1− (p− 2)δ

1 + pδ

}
.

(2.10)
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Let us explain the latter equality more precisely, focusing on the term

P
(
(|F2k+2|, |G2k+2|) = ((1 + 2δ)k/p, (1 + 2δ)k · (p− 1)/p)

)
.

The event occurs if and only if F0 = F2 = F4 = . . . = F2k = 0, |F1| = 1/2,
|F2n+1| = δ(1 + 2δ)n−1 for n = 1, 2, . . . , k and |F2k+2| = (1 + 2δ)k/p. Directly
from the conditions (i)-(iv) above, we see that P(|F2| = 0) = 1/2 and

P(|F2n+2| = 0
∣∣|F2n| = 0) =

1− (p− 2)δ

(pδ + 1)(1 + 2δ)
.

Since
P(|F2k+2| = (1 + 2δ)k/p||F2k| = 0) =

1

pδ + 1
· pδ

1 + 2δ
,

we get

P
(
(|F2k+2|, |G2k+2|) = ((1 + 2δ)k/p, (1 + 2δ)k · (p− 1)/p)

)
=

1

2

[
1− (p− 2)δ

(pδ + 1)(1 + 2δ)

]k−1
pδ

(pδ + 1)(1 + 2δ)

A similar calculation shows that

P
(
(|F2k+3|, |G2k+3|) = ((1 + 2δ)k/p, (1 + 2δ)k · (p− 1)/p)

)
=

1

2

[
1− (p− 2)δ

(pδ + 1)(1 + 2δ)

]k
pδ

pδ + 1

and (2.10) follows.
The last possibility is for (|F∞|, |G∞|) to reach the state (0, K). An analogous

analysis to that above yields

P ((|F∞|, |G∞|) = (0, K)) =
1

2

[
1− (p− 2)δ

(pδ + 1)(1 + 2δ)

]N
. (2.11)

Second stage. Now we modify slightly the martingale (F,G) if it terminates
on the lines y = ±(p−1)x. Namely, if (F,G) reached the final value (y, (p−1)y)
at some step, then it waits for a time unit, and then goes to (y−ηy, (p−1)y+ηy) or
(y + ηy, (p− 1)y − ηy). Similarly, when (F,G) reaches the point (−y, (p− 1)y)
at a certain point in time then it stays there for a unit of time, and then goes to
(−(y − ηy), (p− 1)y + ηy) or to (−(y + ηy), (p− 1)y − ηy).
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The reason why the martingale “waits” for a unit of time is to preserve the
property that G is the transform of F by the sequence {(−1)n}∞n=0. The above
modification does not affect the probabilities (2.8) and (2.11). On the other hand,
the conditions (2.9) and (2.10) do change since the probability of getting to the
point of the form ((1 + 2δ)k/p, (1 + 2δ)k · (p − 1)/p) is split into two halves,
corresponding to the new final points

((1 + 2δ)k/p · (1± η), (1 + 2δ)k · (p− 1)/p · (1∓ η/(p− 1))).

Having completed the construction, we analyze ||F∞||p, ||G∞||p and
∣∣∣∣|G∞|−

(p− 1)|F∞|
∣∣∣∣
p
. Denoting the probability in (2.10) by pk,δ, we get

||F∞||pp =
1

2
+

1

2
· pδ

pδ + 1

[
(1− η)p + (1 + η)p

2pp

]
+

N−1∑
k=1

pk,δ ·
(

(1 + 2δ)k

p

)p
· (1− η)p + (1 + η)p

2

and, omitting the event studied in (2.9), we have the following lower bound for G:

||G∞||pp ≥
N−1∑
k=1

pk,δ ·
(

(1 + 2δ)k(p− 1)

p

)p
· (1− η/(p− 1))p + (1 + η/(p− 1))p

2

+Kp · 1

2

[
1− (p− 2)δ

(pδ + 1)(1 + 2δ)

]N
.

Concerning
∣∣∣∣|G∞| − (p − 1)|F∞|

∣∣∣∣
p
, we will exploit later two lower bounds for

this expression. The first inequality is trivial: just look at the event in (2.8) to
obtain ∣∣∣∣|G∞| − (p− 1)|F∞|

∣∣∣∣p
p
≥ 1

2
(p− 1)p. (2.12)

To get the second bound, note that on the set where

(|F∞|, |G∞|) = ((1 + 2δ)k/p · (1± η), (1 + 2δ)k · (p− 1)/p · (1∓ η/(p− 1))),

we have |G∞| − (p− 1)|F∞| = ∓(1 + 2δ)kη. Therefore,

∣∣∣∣|G∞| − (p− 1)|F∞|
∣∣∣∣p
p
≥

N−1∑
k=1

pk,δ(1 + 2δ)kpηp. (2.13)
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To simplify the later calculations, let us carry out a limiting procedure, by
sending N to infinity (but keeping K fixed). Then δ converges to 0; to see how
the above sums involving pk,δ behave, observe that the ratio of these geometric
sums is given by [

1− (p− 2)δ

(pδ + 1)(1 + 2δ)

]
(1 + 2δ)p,

which is of order 1 + o(δ) as δ → 0. Consequently (recall that limN→∞ 2Nδ =
logK),

||F∞||pp
N→∞−−−→ 1

2
+

logK

2pp−1
· (1− η)p + (1 + η)p

2
. (2.14)

Similarly,

||G∞||pp
N→∞−−−→ 1

2
+

(p− 1)p logK

2pp−1
·(1− η/(p− 1))p + (1 + η/(p− 1))p

2
(2.15)

and
lim inf
N→∞

∣∣∣∣|G∞| − (p− 1)|F∞|
∣∣∣∣p
p
≥ pηp logK

2
. (2.16)

2.3. Proof of Theorem 2.3 for 1 < p < 2

We will need the following fact.

Lemma 2.1. For any 1 < p ≤ 2 we have

p2−p(p− 1)p−1(2− p)
2

≥ 1− p
(

1− 1

p

)p−1
.

Proof. The claim is equivalent to

p

(
1− 1

p

)p−1 (
2− p

2

)
≥ 1,

or

log p+ (p− 1) log

(
1− 1

p

)
+ log

(
2− p

2

)
≥ 0.

When p = 2, both sides are equal; therefore, we will be done if the derivative of
the left-hand side is nonpositive on the interval (1, 2). This amounts to verifying
that

2

p
+ log

(
1− 1

p

)
− 1

4− p
≤ 0.
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However, one easily checks that for any x ∈ (−1,−1/2) we have −2x+ log(1 +
x) ≤ 1+log(1/2) (the left-hand side is increasing as a function of x ∈ (−1,−1/2)
and both sides are equal for x = −1/2). Therefore, plugging x = −1/p we get

2

p
+ log

(
1− 1

p

)
− 1

4− p
≤ 1 + log

1

2
− 1

4− p
≤ 1 + log

1

2
− 1

3
< 0,

which yields the desired assertion.

In the proof of the inequality (2.3) we will exploit the following special func-
tion Up : H×H→ R:

Up(x, y) = p

(
1− 1

p

)p−1
((p− 1)|y| − |x|)(|x|+ |y|)p−1.

This function was introduced by Burkholder in [16]. In [46], Wang checked that
it satisfies all the requirements of Theorem 2.5. To establish (2.3), we will need
the following additional inequality.

Lemma 2.2. For any x, y ∈ H we have

Up(x, y) ≥ (p− 1)p|y|p − |x|p +

(
1− p

(
1− 1

p

)p−1)
((p− 1)|y| − |x|)2

(|x|+ |y|)2−p
.

(2.17)

Proof. By homogeneity, we may assume that |x| + |y| = 1. Substituting s :=
|y| ∈ [0, 1], we transform the inequality into the following equivalent form

−p
(

1− 1

p

)p−1
(ps−1)+(p−1)psp−(1−s)p+

(
1− p

(
1− 1

p

)p−1)
(ps−1)2 ≤ 0.

Denoting the left-hand side by H(s), we derive that

H ′′(s) = p(p− 1)p+1sp−2 − p(p− 1)(1− s)p−2 + 2p2

(
1− p

(
1− 1

p

)p−1)
is a decreasing function of s, with lims→0+H

′′(s) = ∞ and lims→1−H
′′(s) =

−∞. Since

H ′′(1/p) = 2p2

[
p2−p(p− 1)p−1(p− 2)

2
+ 1− p

(
1− 1

p

)p−1]

18



is nonpositive (by Lemma 2.1), we see that there is a p0 ∈ (0, 1/p] such that H
is convex on (0, p0) and concave on (p0, 1). Since H(0) = 0 and H(1/p) =
H ′(1/p) = 0, the desired result follows.

When passing to the Fourier multipliers in Section 3, we will also need the
following property of Up.

Lemma 2.3. For any x, y, k ∈ H we have

Up(x, y) + 〈(Up)y(x, y), k〉 ≤ Up(x, y + k).

Proof. For fixed x ∈ H, the function y 7→ Up(x, y) is of class C1, so it suffices to
show that the function H = Hx,y,k : R → R given by H(t) = Up(x, y + tk) is
convex. To this end, it is enough to check that H ′′(t) ≥ 0 for all t such that the
derivative exists; furthermore, since Hx,y,k(u + v) = Hx,y+uk,k(v), it suffices to
verify the inequality H ′′(t) ≥ 0 for t = 0. A direct computation reveals that

H ′x,y,k(t) = p(p− 1)(〈y, k〉+ t|k|2)(|x|+ |y + tk|)p−2

and, when y 6= 0,

H ′′x,y,k(0) = p

(
1− 1

p

)p−1
· p(p− 1)(|x|+ |y|)p−3|x||k|2

+ p

(
1− 1

p

)p−1
· p(p− 1)(|x|+ |y|)p−3|y|

(
|k|2 + (p− 2)〈y/|y|, k〉2

)
.

However, both summands on the right are nonnegative. This is clear for the first
term, while for the second we simply note that |p − 2| < 1 and 〈y/|y|, k〉2 ≤
|k|2.

Proof of (2.3). Fix t > 0 and a pair X , Y as in the statement. By Theorem 2.5,
there is a nondecreasing sequence (τn)n≥0 of stopping times converging to infinity
such that for each n, EUp(Xτn∧t, Yτn∧t) ≤ 0. Consequently, by (2.17),(

1− p
(

1− 1

p

)p−1)
E

((p− 1)|Yτn∧t| − |Xτn∧t|)2

(|Xτn∧t|+ |Yτn∧t|)2−p
+ (p− 1)pE|Yτn∧t|p

≤ E|Xτn∧t|p ≤ ||X||pp.
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Letting n→∞ and then t→∞ we obtain, by Fatou’s lemma,(
1− p

(
1− 1

p

)p−1)
E

((p− 1)|Y∞| − |X∞|)2

(|X∞|+ |Y∞|)2−p
≤ ||X||pp − (p− 1)p||Y ||pp

≤ (1− (1− (p− 1)ε)p) ||X||pp
≤ p(p− 1)ε||X||pp.

Combining this with Hölder inequality and Burkholder’s estimate (2.1), we see
that

||(p− 1)|Y∞| − |X∞|||p ≤
(
E

((p− 1)|Y∞| − |X∞|)2

(|X∞|+ |Y∞|)2−p

)1/2

|||X∞|+ |Y∞|||1−p/2p

≤

 p(p− 1)ε

1− p
(

1− 1
p

)p−1


1/2

||X||p/2p ·
(

p

p− 1
||X||p

)1−p/2

.

This is precisely (2.3).

Sharpness. We will now show that the exponent 1/2 in the factor ε1/2 cannot be
decreased and also prove that the constant cp is of optimal order as p→ 2. To this
end, fix p ∈ (1, 2), a small ε > 0 and take the example from §2.2, with small η and
a large K, to be chosen later. As we have observed above, F is a ±1-transform of
G. Furthermore, if N is large enough, then

||F∞||pp −
(

1

p− 1
− ε
)p
||G∞||pp

≥ logK

2pp−1
(1 + η)p + (1− η)p

2
−
(

1

p− 1
− ε
)p
· 1

2

− (1− ε(p− 1))p
logK

2pp−1
(1 + η/(p− 1))p + (1− η/(p− 1))p

2
.

Now, for any η we have

1

2

[(
1 +

η

p− 1

)p
+

(
1− η

p− 1

)p]
≤ 1 +

p

2(p− 1)
η2

and, if η is sufficiently small,

(1 + η)p + (1− η)p

2
≥ 1 +

p(p− 1)

2
η2 − αpη2, (2.18)
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where αp = p(2− p)/(2(p− 1)). For such η we can write

||F∞||pp −
(

1

p− 1
− ε
)p
||G∞||pp

≥ −1

2

(
1

p− 1
− ε
)p

+
logK

2pp−1

[(
1− (1− (p− 1)ε)p

)(
1 +

p

2(p− 1)
η2
)
− p(p+ 1)(2− p)η2

2(p− 1)

]
.

Now, for sufficiently small ε we have 1 − (1 − (p − 1)ε)p ≥ (p − 1)ε; taking
η = (p−1)

√
ε/(2− p)/2 (and decreasing ε if necessary, so that (2.18) holds) we

see that the expression in the square brackets above is not smaller than

(p− 1)ε− p(p− 1)(p+ 1)ε

8
≥ (p− 1)ε

4
> 0.

Therefore, for sufficiently large K we have ||F∞||pp >
(

1
p−1 − ε

)p
||G∞||pp. On

the other hand, (2.16) implies that for sufficiently large N ,∣∣∣∣|G∞| − (p− 1)|F∞|
∣∣∣∣p
p
≥
(

pη

2(p− 1)

)p
· (p− 1)p logK

2pp−1
2p

>

(
pη

2(p− 1)

)p
||G∞||pp,

provided K is sufficiently large, so that ||G∞||pp <
(p−1)p logK

2pp−1 · 2p. In other words,
we have ∣∣∣∣|F∞| − (p− 1)−1|G∞|

∣∣∣∣
p
>

p

4(p− 1)

√
ε

2− p
||G∞||p.

This implies the aforementioned optimality of the constants.

2.4. Proof of Theorem 2.3 for 2 < p <∞
Here the reasoning will be slightly longer. We start with the following string

of elementary inequalities.

Lemma 2.4. Let p ≥ 2. Then(
1− 1

p

)p−1
≥ 2

p+ 2
, (2.19)
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p

(
1− 1

p

)p−1
≥ 1 +

p− 2

p− 1

(
1

2
− 1

e

)
, (2.20)(

1− 1

p

)p−1
≤ 1/2, (2.21)(

1− 1

p− 1

)p−1
≤ 1

e
(2.22)

and

1−
(

1− 1

p

)p−2
≥ p− 2

2(p− 1)
. (2.23)

Proof. The first inequality is equivalent to

H(p) := log(p+ 2)− log 2− (p− 1) log
p

p− 1
≥ 0.

We have H ′(p) = (p+ 2)−1 + p−1 − log(p/(p− 1)) and

H ′′(p) = − 1

(p+ 2)2
− 1

p2
+

1

p(p− 1)
=

(p+ 2)2 − p2(p− 1)

p2(p− 1)(p+ 2)
.

But I(p) = (p+ 2)2−p2(p−1), the numerator of H ′′(p), is a decreasing function
of p ∈ [2,∞) and I ′(p) = −3p2 + 4p + 4 ≤ 0. Furthermore, we have I(2) = 12
and limp→∞ I(p) = −∞. Consequently, there is p0 ∈ (2,∞) such that H is
convex on [2, p0] and concave on [p0,∞). It suffices to note that H(2) = 0,
limp↓2H

′(p) = 3
4
− log 2 ≥ 0 and limp→∞H(p) = ∞, and the first estimate

follows. The inequality (2.20) is an immediate consequence of (2.19), since

p

(
1− 1

p

)p−1
≥ 2p

p+ 2
≥ 1 +

p− 2

p− 1

(
1

2
− 1

e

)
,

where the latter estimate is equivalent to 1/2+1/e ≥ 3/(p+2), which is obviously
satisfied.

The inequalities (2.21) and (2.22) follow from a straightforward differentia-
tion, together with the elementary bound for the logarithmic function: x

x+1
≤

log(1 + x) ≤ x for x > −1.
Finally, to show (2.23), note that (2.21) can be rewritten as

1−
(

1− 1

p

)p−2
≥
(

1− 1

p

)p−2
− 1

p− 1
.
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So, if (2.23) were not true, this would imply that(
1− 1

p

)p−2
− 1

p− 1
<

p− 2

2(p− 1)
,

or equivalently that (
1− 1

p

)p−2
<

p− 2

2(p− 1)
+

1

p− 1
,

and this, in turn, would give that

1−
(

1− 1

p

)p−2
> 1− 1

p− 1
− p− 2

2(p− 1)
=

p− 2

2(p− 1)
,

i.e., (2.23): a contradiction.

As in the case p < 2, the proof of (2.4) is based on properties of a certain
special function Up : H×H→ R. Let

Up(x, y) =


p

(
1− 1

p

)p−1
(|y| − (p− 1)|x|)(|x|+ |y|)p−1 if |y| ≥ (p− 2)|x|,

−(p− 1)2p−2

pp−2
|x|p if |y| < (p− 2)|x|.

(2.24)
Before we proceed, let us stress here that this function is not the function used by
Burkholder (or Wang) in the proof of (2.1). To the best of our knowledge, in the
literature one can find two proofs of this Lp-estimate. One exploits the function
by the formula

U (1)
p (x, y) = p

(
1− 1

p

)p−1
(|y| − (p− 1)|x|)(|x|+ |y|)p−1,

while the other proof uses

U (2)
p (x, y) =


p

(
1− 1

p

)p−1
(|y| − (p− 1)|x|)(|x|+ |y|)p−1 if |y| ≥ (p− 1)|x|,

p− 1

p
(|y|p − (p− 1)p|x|p) if |y| < (p− 1)|x|.
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Both of these functions are not sufficient for our purposes. As we will see in
Section 3 below, we will require that the function Up has the following property:
for any x, Up(x, ·) is convex. This condition is not satisfied by U

(1)
p . On the

other hand, U (2)
p does not enjoy the appropriate majorization condition (see (2.25)

below). This forces us to, in a sense, “mediate” between U (1)
p and U (2)

p , which has
led us to the function Up above.

Let us study the properties of this object.

Lemma 2.5. The function Up satisfies the assumptions of Theorem 2.5.

Proof. It is straightforward to check the local boundedness and regularity (there
are two sets Si: S1 = {(x, y) ∈ H × H : |y| > (p − 2)|x|} and S2 = {(x, y) ∈
H×H : |y| < (p−2)|x|}). The only nontrivial assumption is the inequality (2.7).
However, on S1 this estimate is contained in [17], while on S2 it is trivial since the
left-hand side equals

−(p− 1)2p−2

pp−2
·
(
p(p− 2)|x|p−4〈x, h〉2 + p|x|p−2|h|2

)
,

so the estimate holds with c2(x, y) = −p3−p(p− 1)2p−2|x|p−2.

The function Up enjoys the following majorization property.

Lemma 2.6. For any x, y ∈ H we have

Up(x, y) ≥ |y|p − (p− 1)p|x|p + αp
∣∣|y| − (p− 1)|x|

∣∣p, (2.25)

where

αp =
p− 2

p− 1

(
1

2
− 1

e

)
. (2.26)

Proof. By homogeneity, we may and do assume that |x| + |y| = 1. Then, substi-
tuting s := |x|, we see that the (2.25) becomes

− p
(

1− 1

p

)p−1
(1− ps) + (1− s)p − (p− 1)psp + αp|1− ps|p ≤ 0, (2.27)

when s ∈ [0, 1/(p− 1)], and

− (p− 1)p

[
1−

(
1− 1

p

)p−2]
sp + (1− s)p + αp(ps− 1)p ≤ 0 (2.28)
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if s ∈ [1/(p− 1), 1]. Denote the left-hand sides of (2.27) and (2.28) by F (s). We
easily check that if s ∈ (0, 1/(p− 1)), then

F ′′(s) = p(p−1)

[
(1−s)p−2− (p−1)psp−2 +p2αp|1−ps|p−2

]
=: p(p−1)G(s).

Let us analyze the sign of G. First, note that G is nonpositive on [1/p, 1/(p− 1)].
This is due to the inequality

(1− s)p−2 − (p− 1)psp−2

=
[
(1− s)p−2 − (p− 1)p−2sp−2

]
+ p(2− p)(p− 1)p−2sp−2

< p(2− p)[(p− 1)s]p−2

≤ p(2− p)(ps− 1)p−2 ≤ −p2αp(ps− 1)p−2.

To see what happens on the interval [0, 1/p], observe that G is decreasing there
since it is the sum of three terms with this property. Furthermore, we haveG(0) =
1 + p2(p − 2)/(p + 2) > 0 and G(1/p) = p(2 − p)(1 − 1/p)p−2 < 0, so there
exists s0 ∈ (0, 1/p) such that G ≥ 0 on [0, s0] and G ≤ 0 on [s0, 1/p]. There-
fore, we have shown the existence of an s0 ∈ (0, 1/p) such that F is convex
on [0, s0] and concave on [s0, 1/(p − 1)]. Combining this with the equalities
F (1/p) = F ′(1/p) = 0 and the estimate F (0) ≤ 0, which is equivalent to the
second inequality of of Lemma (2.4), we see that the claim will follow once we
have shown (2.28) for s ∈ [1/(p− 1), 1]. To do this, note that for such s we have
1− s ≤ (p− 2)s and ps− 1 ≤ (p− 1)s. Hence it suffices to prove that

1−
(

1− 1

p

)p−2
−
(
p− 2

p− 1

)p
≥ αp. (2.29)

However, by (2.22) and (2.23) we have

−
(
p− 2

p− 1

)p
≥ −p− 2

p− 1
· 1

e

and

1−
(

1− 1

p

)p−2
≥ p− 2

p− 1
· 1

2
.

Summing these two estimates gives (2.29). This completes the proof.

Finally, as in the case 1 < p < 2, we will need the convexity of Up with respect
to the variable y.
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Lemma 2.7. For any x, y, k ∈ H we have

Up(x, y) + 〈(Up)y(x, y), k〉 ≤ Up(x, y + k).

Proof. We argue as in the case p < 2 and consider the function H(t) = Up(x +
t, y + tk). Then H is of class C1 on R and it is enough to check that H ′′(0) ≥ 0,
provided |y| 6= (p−2)|x|. If |y| < (p−2)|x|, then H ′′(0) = 0 since, if the reverse

inequality holds, then H ′′(0) = p
(

1− 1
p

)p−1
· (I1 + I2), where

I1 = p(p− 2)(|x|+ |y|)p−2|x||y|−3〈y, k〉2,
I2 = p(|x|+ |y|)p−3

(
(p− 2)|y|−2〈y, k〉2 + (|x|/|y|+ 1)|k|2

)
[|y| − (p− 2)|x|]

are both nonnegative. This gives the assertion.

Proof of (2.4). Take a pair X , Y as in the statement and fix t ≥ 0. By Theorem
2.5, there is a nondecreasing sequence (τn)n≥0 of stopping times converging to
infinity such that for each n, EUp(Xτn∧t, Yτn∧t) ≤ 0. We argue as in the case
1 < p < 2. Combining this inequality with (2.25) and letting n and t go to
infinity, we get

p− 2

p− 1

(
1

2
− 1

e

) ∣∣∣∣|Y∞| − (p− 1)|X∞|
∣∣∣∣p
p
≤ (p− 1)p||X||pp − ||Y ||pp

≤
[
(p− 1)p − (p− 1− ε)p

]
||X||pp

≤ p(p− 1)p−1ε||X||pp.

This is precisely the inequality (2.4).

Sharpness. Now we will prove that the exponent 1/p in the factor ε1/p is optimal.
We will also obtain, using the same example, that the constant cp has the right
order O(p), as p → ∞. To this end, consider the example from §2.2, with η = 0
and some K to be chosen in a moment. Pick a small positive ε. By (2.14) and
(2.15), if N is sufficiently large, then the condition ||G∞||p ≥ (p− 1− ε)||F∞||p
is implied by

(p− 1)p logK

2pp−1
= (p− 1− ε)p

(
1

2
+

logK

2pp−1

)
.

This gives the condition on K should be such that

logK

pp−1
=

[(
p− 1

p− 1− ε

)p
− 1

]−1
<

1

ε
.
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But the latter inequality is equivalent to the elementary bound
(

p−1
p−1−ε

)p
> 1 + ε.

Hence, by (2.12),∣∣∣∣|G∞|− (p− 1)|F∞|
∣∣∣∣p
p
≥ 1

2
(p− 1)p >

(p− 1)pε

2
· logK

pp−1
>

(p− 1)pε

2
· ||F∞||pp,

provided K is large enough.
Finally, let us study the order of cp as p ↓ 2. First, note that for p sufficiently

close to 2 we have

2(p− 1)p−1(p− 2)

pp−2
>

(p− 1)p − 1

2
. (2.30)

Indeed, if we divide both sides by p − 2 and let p ↓ 2, then the left-hand side
converges to 2, while the right hand-side converges to 1. Now, fix p > 2 such that
(2.30) holds. Pick a small positive ε < 8(p− 2) and consider the example of §2.2
with η = 0 and K = exp(8(p − 2)/ε). If N is sufficiently large, then, by (2.14)
and (2.15),

||G∞||pp − (p− 1− ε)p||F∞||pp

≥ (p− 1)p logK

2pp−1
+

1

2
− (p− 1− ε/2)p

(
logK

2pp−1
+

1

2

)
=

((p− 1)p − (p− 1− ε/2)p) · 4(p− 2)

pp−1ε
− (p− 1− ε/2)p − 1

2
.

If ε is sufficiently small, then the above expression is nonnegative; in the limit
ε → 0 this is guaranteed by (2.30). It remains to note that for such small ε (and
for sufficiently large N ) we have∣∣∣∣|G∞| − (p− 1)|F∞|

∣∣∣∣p
p

||F∞||pp
≥ 1/2

1 + p1−p logK
=

ε

p− 2
·
(

2ε

p− 2
+ 16p1−p

)−1
.

This proves that cp is of the optimal order O((p− 2)−1/p), as p ↓ 2.

2.5. Proof of Theorem 2.4 for 1 < p < 2

We start with some technical facts.

Lemma 2.8. Let
κp = −p− 1

8
tanp−2

π

2p
cos

π

p
. (2.31)
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Then

κp ≤ −
p(p− 1)

2
tanp−2

π

2p
cos

π

p
, (2.32)

κp ≤ −
p(p− 1)

2
cos

π

p
(2.33)

and
κp ≤ tanp−2

π

2p
− sinp−3

π

2p
cos

π

2p
. (2.34)

Proof. The first inequality is trivial, since p
2
≤ 1

8
. The second inequality follows

at once from the first one since tanp−2 π
2p
≤ 1. The main difficulty lies in proving

(2.34). Substituting the expression for kappap and simplifying, the inequality is
equivalent to

−(p− 1)

8
cos

π

p
sin

π

2p
≤ sin

π

2p
− cosp−1

π

2p
.

We consider two cases.
The case 1 < p ≤ 3/2. We have − cos π

p
≤ 1 and sin π

2p
≤ 1, so we will be

done if we show that
p− 1

8
≤ sin

π

2p
− cosp−1

π

2p
. (2.35)

However, as we shall see, we have

sin
π

2p
− 1 + (2−

√
3)(p− 1) ≥ 0 (2.36)

and
1− cosp−1

π

2p
− (2−

√
2)(p− 1) ≥ 0. (2.37)

Adding these two estimates gives (2.35), since
√

3−
√

2 > 1/8. To show (2.36),
denote the left-hand side by H(p). Differentiating twice gives that

H ′′(p) =
π

4p4

(
−π sin

π

2p
+ 4p cos

π

2p

)
.

The expression in the parentheses increases as p increases. Furthermore, its values
at p = 1 and p = 3/2 equal −π and −π

√
3/2 + 3 > 0. Therefore, there is

p0 ∈ (1, 3/2) such that H is concave on (1, p0) and convex on (p0, 3/2). Since

28



H(1) = 0, (2.36) will be proved if we can show that H ′(3/2) ≤ 0. But H ′(p) =
− π

2p2
cos π

2p
+ 2−

√
3 and so

H ′(3/2) = −π
9

+ 2−
√

3 < 0,

since π/9 > 1/3 and
√

3 > 5/3. To show (2.37), note that cos π
2p
≤ 1

2
, so

1− cosp−1
π

2p
≥ 1− 21−p.

The desired bound now follows at once from the concavity of the function p 7→
1− 21−p.

The case 3/2 < p ≤ 2. We have sin π
2p
≤
√
3
2

and p− 1 ≤ 1, so it is enough to
show that

−
√

3

16
cos

π

p
≤ sin

π

2p
− cosp−1

π

2p
. (2.38)

As previously, we split the right-hand side into two parts. We will prove that

sin
π

2p
− cos

π

2p
≥ −

cos π
p√

2
(2.39)

and
cos

π

2p
− cosp−1

π

2p
≥ − 4

π
(1−

√
2) cos

π

p
. (2.40)

Summing these two bounds gives (2.38), since 1√
2
− 4

π
(
√

2 − 1) ≥
√
3

16
. To prove

(2.39), first note that the elementary identity

sin
π

2p
− cos

π

2p
=

− cos π
p

sin π
2p

+ cos π
2p

.

Combine this with the simple observation that the denominator is not larger than√
2 proves (2.39). To establish (2.40), notice that the function u 7→ u − up−1 is

increasing on [1/2, 1/
√

2]: its derivative 1− (p− 1)up−2 ≥ 1− (p− 1)22−p ≥ 0
(the inequality is equivalent to 2p−2 ≥ p−1 and follows from the convexity of the
function p 7→ 2p−2). Therefore, using cos π

2p
≥ 1/2, we obtain

cos
π

2p
− cosp−1

π

2p
≥ 1

2
(1− 22−p) ≥ (

√
2− 1)(p− 2), (2.41)

29



where in the last inequality we exploited the fact that the function p 7→ 1
2
(1−22−p)

is concave. Now, observe that the function ξ(p) = − cos π
p

is convex on [3/2, 2].
Indeed, we have

ξ′′(p) =

(
− sin

π

p
· π
p2

)′
=
π2

p4

(
cos

π

p
+

2 sin π
p

π
p

)
≥ π2

p4

(
−1

2
+

2 ·
√
3
2

2π
3

)
> 0,

where we used the fact that the function x 7→ sinx/x is decreasing on [π/2, 2π/3].
Consequently, we have

cos
π

p
= ξ(p) = ξ(p)− ξ(2) ≥ ξ′(2)(p− 2) =

π

4
(2− p), (2.42)

which combined with (2.41) gives

cos
π

2p
− cosp−1

π

2p
≥ 4

π
(
√

2− 1) cos
π

p
,

which is precisely (2.40) and completes the proof.

Let Vp : R× R→ R be given by

Vp(x, y) = −βpRp cos(pθ),

where
βp = sinp−1

π

2p
/ cos

π

2p
(2.43)

and we have used the polar coordinates |x| = R cos θ and y = R sin θ, θ ∈
[−π/2, π/2]. Pichorides [44] showed that Vp is superharmonic on R×R. For out
purpose we need its convexity and majorization properties.

Lemma 2.9. For any x ∈ R, the function Vp(x, ·) is convex.

Proof. It suffices to compute that (Vp)yy(x, y) = p(p − 1)βpR
p−2 cos((2 − p)θ)

and note that this expression is nonnegative.

The key property is the following majorization.

Lemma 2.10. For any x, y ∈ R we have

Vp(x, y) ≥ |y|p − tanp
π

2p
|x|p + κp(|y| − tan

π

2p
|x|)2(|x|+ |y|)p−2. (2.44)
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Proof. By symmetry we may assume that y ≥ 0 (in polar coordinates, θ ∈
[0, π/2]). We will consider two cases.

Case 1: θ ∈ [0, π/(2p)] We will show the stronger bound

Vp(x, y) ≥ |y|p − tanp
π

2p
|x|p + κp(|y| − tan

π

2p
|x|)2|x|p−2.

In polar coordinates, this is equivalent to

βp
cos(pθ)

cosp θ
+ tanp θ − tanp

π

2p
+
κp sin2(θ − π

2p
)

cos2 π
2p

cos2 θ
≤ 0, (2.45)

where κp is the constant in (2.31). Denoting the left-hand side byH1(θ), we derive
that

cos2(θ)H ′1(θ) =
pβp sin((p− 1)θ)

cosp−1 θ
+ p tanp−1 θ +

2κp sin
(
θ − π

2p

)
cos π

2p
cos θ

.

Again, denote the right-hand side by H2(θ) and differentiate to get

cos2(θ)H ′2(θ) = −p(p− 1)βp cos((p− 2)θ)

cosp−2 θ
+ p(p− 1) tanp−2 θ + 2κp.

We repeat this process once again. Denoting the right-hand side by H3(θ) and
computing we find that

cosp−1(θ)H ′3(θ) = p(p− 1)(p− 2)βp sin((p− 3)θ) + p(p− 1)(p− 2) sinp−3 θ.

Now, a direct differentiation shows that the right-hand side is nondecreasing; it
tends to −∞ when θ ↓ 0, and its value at π/(2p) may be nonpositive or positive,
depending on p. Consequently, H3 either decreases on [0, π/(2p)], or it decreases
on some subinterval [0, θ0], θ0 < π/(2p), and then increases on [θ0, π/(2p)]. How-
ever, we have H3(0+) =∞ and

H3

(
π

2p

)
= p(p− 1) tanp−2

π

2p
cos

π

p
+ 2κp ≤ 0,

where the inequality follows from (2.32). Hence, the sign of H3 behaves as fol-
lows: there is θ1 ∈ [0, π/(2p)] such that H3 > 0 on (0, θ1) and H3 < 0 on
(θ1, π/(2p)). So, H2 increases on (0, θ1) and decreases on (θ1, π/(2p)). But
H2(0) < 0 and H2(π/(2p)) = 0. Therefore, there is θ2 ∈ (0, π/(2p)) such
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that H2 < 0 on [0, θ2) and H2 > 0 on (θ2, π/(2p)). So, H1 decreases on (0, θ2)
and increases on (θ2, π/(2p)). Since

H1(0) = βp − tanp
π

2p
+ κp tan2 π

2p
≤ 0,

(by (2.34)) andH1(π/(2p)) = 0, we conclude thatH1 is nonpositive on [0, π/(2p)],
which is precisely (2.45).

Case 2: θ ∈ [π/(2p), π/2]. The reasoning is similar to that above. The ma-
jorization follows from the stronger estimate

Vp(x, y) ≥ |y|p − tanp
π

2p
|x|p + κp(|y| − tan

π

2p
|x|)2|y|p−2,

which, in polar coordinates, can be rewritten in the form

βp
cos(pθ)

sinp θ
+ 1− tanp

π

2p
cotp θ +

κp sin2(θ − π
2p

)

cos2 π
2p

sin2 θ
≤ 0.

Denote the left-hand side by H1(θ) and compute that

sin2(θ)H1(θ) = −pβp cos((p− 1)θ)

sinp−1 θ
+p tanp

π

2p
cotp−1 θ+

2κp sin(θ − π
2p

) sin π
2p

cos2 π
2p

sin θ
.

Denote the right-hand side by H2(θ) and differentiate this function to obtain

sin2(θ)H ′2(θ) =
p(p− 1)βp cos((p− 2)θ)

sinp−2 θ
−p(p−1) tanp

π

2p
cotp−2 θ+2κp tan2 π

2p
.

Finally, denote the right-hand side by H3(θ) and derive that

sinp−1(θ)H ′3(θ) = −p(p−1)(p−2)βp cos((p−3)θ)+p(p−1)(p−2) tanp
π

2p
cosp−3 θ.

Obviously, the right-hand side is decreasing. Furthermore, it is not difficult to
check that its value at π/(2p) equals

p(p− 1)(p− 2)
sinp π

2p

cos π
2p

[
−3 + 4 sin2 π

2p
+ cos−2

π

2p

]
,

which is nonpositive, since p(p− 1)(p− 2) < 0, 4 sin2 π
2p
≥ 2 and cos−2 π

2p
≥ 1.

Therefore, H3 is decreasing on the interval [π/(2p), π/2]. But

H3

(
π

2p

)
= 2p(p− 1) sin2 π

2p
− p(p− 1) tan2 π

2p
+ 2κp tan2 π

2p
≤ 0,
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where once again we used (2.33) above. So, H3 is actually nonpositive on the in-
terval (π/(2p), π/2) and henceH2 is decreasing there. ButH2 vanishes at π/(2p),
so H2 is negative on [π/(2p), π/2], which implies that H1 is decreasing on this in-
terval. Since H1 also vanishes at π/(2p), this shows that H1 ≤ 0 and completes
the proof of the lemma.

Proof of (2.5). Fix t > 0 and a pair X , Y as in the statement. By Theorem 2.6,
there is a nondecreasing sequence (τn)n≥0 of stopping times converging to infinity
such that for each n, EVp(Xτn∧t, Yτn∧t) ≤ 0. Consequently, by (2.44),

κpE
(|Yτn∧t| − tan π

2p
|Xτn∧t|)2

(|Xτn∧t|+ |Yτn∧t|)2−p
+ E|Yτn∧t|p ≤ tanp

π

2p
E|Xτn∧t|p ≤ tanp

π

2p
||X||pp.

Letting n→∞ and then t→∞ we obtain, by Fatou’s lemma,

κpE
(|Y∞| − tan π

2p
|X∞|)2

(|X∞|+ |Y∞|)2−p
≤ tanp

π

2p
||X||pp − ||Y ||pp

≤
(

tanp
π

2p
−
(

tan
π

2p
− ε
)p)

||X||pp

≤ p tanp−1
π

2p
ε||X||pp.

Applying Hölder’s inequality and the estimate (2.2), we obtain∣∣∣∣∣∣∣∣|Y∞| − tan
π

2p
|X∞|

∣∣∣∣∣∣∣∣
p

≤

(
E

(|Y∞| − tan π
2p
|X∞|)2

(|X∞|+ |Y∞|)2−p

)1/2

|||X∞|+ |Y∞|||1−p/2p

≤

(
p tanp−1 π

2p
ε

κp

)1/2(
1 + tan

π

2p

)1−p/2

||X||p

=

(
−

8p tan π
2p
ε

(p− 1) cos π
p

)1/2(
1 + tan

π

2p

)1−p/2

||X||p.

Now it suffices to apply − cos π
p
≥ π

4
(2− p) (see (2.42) above) and the inequality

tan π
2p
≤ (p− 1)−1 (which follows from the comparison of the sharp constants in

(2.1) and (2.2)) to get the claim.

Sharpness. Now we will show that the exponent ε1/2 and the orderO((p−2)−1/2)
as p ↑ 2 are optimal. We start with the observation that for a given p ∈ (1, 2), if
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η > 0 is sufficiently small, then

sinp( π
2p

+ η) + sinp( π
2p
− η)

cosp( π
2p

+ η) + cosp( π
2p
− η)

≥ tanp
π

2p
− dp(p− 2)η2, (2.46)

where dp = 2p3/(p− 1)p. To show this, note that

sinp
(
π

2p
+ η

)
+ sinp

(
π

2p
− η
)

= 2 sinp
π

2p
+

(
p(p− 1) sinp−2

π

2p
cos2

π

2p
− p sinp

π

2p

)
η2 + o(η2)

and

cosp
(
π

2p
+ η

)
+ cosp

(
π

2p
− η
)

= 2 cosp
π

2p
+

(
p(p− 1) cosp−2

π

2p
sin2 π

2p
− p cosp

π

2p

)
η2 + o(η2),

which, after some straightforward manipulations, implies

sinp( π
2p

+ η) + sinp( π
2p
− η)

cosp( π
2p

+ η) + cosp( π
2p
− η)

− tanp
π

2p

=

[
p(p− 1)

(
tanp−2

π

2p
− tan2 π

2p

)
+ p

(
1− tanp

π

2p

)]
η2 + o(η2)

≥ p2
(

1− tanp
π

2p

)
η2 + o(η2)

≥ p2
(

1− 1

(p− 1)p

)
η2 + o(η2)

= p2
(p− 1)p − 1

(p− 1)p
η2 + o(η2) ≥ p3(p− 2)

(p− 1)p
η2 + o(η2).

Hence (2.46) follows. Now, pick a positive number ε and ξ < π/(2p). By (2.46),
if ξ is sufficiently close to π/(2p) and ε is small enough, then

sinp(ξ + η) + sinp(ξ − η)

cosp(ξ + η) + cosp(ξ − η)
≥ tanp

(
π

2p
− ε
)

provided p3(2−p)(p−1)−pη2 ≤ ε (here we have used the inequality tanp(π/(2p)) ≥
tanp(π/(2p)− ε) + ε, valid for sufficiently small ε).
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Now, consider the angle

D = {(x, y) : x > −1, − tan(ξ + η)(x+ 1) ≤ y ≤ tan(ξ − η)(x+ 1)}
and let (X, Y ) be a two-dimensional Brownian motion starting from the origin,
killed upon hitting the boundary ofD. Since the aperture ofD is smaller then π/p,
both X and Y are Lp bounded; furthermore, if ξ is sufficiently close to π/(2p),
then the Lp-norm of X can be made arbitrarily large. For any a, b ∈ R, the
function

Wp(x, y) = aRp cos pθ + bRp sin pθ

is harmonic in D; if a, b are chosen such that

Wp(x, y) = yp − tanp
(
π

2p
− ε
)
|x|p

for (x, y) ∈ ∂D, then a straightforward use of Itô’s formula implies

||Y ||pp − tanp
(
π

2p
− ε
)
||X + 1||p = Wp(1, 0) = a.

Now, we easily find a and b; actually, we only need to study the first of them,
equal to

a = sin−1 2pξ

{
sin p(ξ + η)

[
sinp(ξ − η)− tanp(

π

2
− ε)] cosp(ξ − η)

]
+ sin p(ξ − η)

[
sinp(ξ + η)− tanp(

π

2
− ε)] cosp(ξ + η)

]}
.

Take a look at the expression in the parentheses. If ξ were equal to π/(2p), then
(2.46) would guarantee the positivity of the expression, with η = (ε/(2 − p))1/2;
by continuity, this is also true if ξ is a little less than π/(2p). In other words, if
ξ and η are chosen in such a way, then ||Y ||p ≥

(
tan π

2p
− ε
)
||X + 1||p; by the

aforementioned explosion of Lp-norms for ξ ↑ π/(2p), we see that

||Y ||p ≥
(

tan
π

2p
− 2ε

)
||X||p

provided ξ is sufficiently close to π/2p. Next, by the definition of D, |Y∞| =
tan(ξ ± η)|X∞ + 1|, so∣∣∣∣|Y∞| − tan

π

2p
|X∞|

∣∣∣∣
p
≥
∣∣∣∣|Y∞| − tan

π

2p
|X∞ + 1|

∣∣∣∣
p
− tan

π

2p

≥ η||X + 1||p − tan
π

2p
≥ η

2
||X||p,
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provided ξ is sufficiently close to π/(2p). The desired sharpness follows.

2.6. Proof of Theorem 2.4 for 2 < p <∞
We will need the following fact.

Lemma 2.11. Let

µp =

(
1−
√

2

2

)
p− 2

p
.

Then

µp ≤ 1−
sinp−1 π

2p

cos π
2p

sinp−1 π
2(p−1)

, (2.47)

µp ≤
cosp−2 π

2p
sinp−2 π

2p
cos π

p

sinp−2 π
2p(p−1)

, (2.48)

and

µp ≤
cosp−1 π

2p

sin π
2p

− 1. (2.49)

Proof of (2.47). First we will prove that for p ≥ 2 we have the estimate

sin π
2p

sin π
2(p−1)

≤
(
p− 1

p

)1/2

. (2.50)

To this end, consider the function ξ(x) = x−1/2 sinx, x ∈ [0, π/2] (we set
ξ(0) = 0). We easily check that ξ′(x) = x−3/2 cosx(x − 1

2
tanx), so there is

x0 ∈ (π/4, π/2) such that ξ increases on [0, x0] and decreases on [x0, π/2]. Now,
take a look at the difference(

π

2p

)−1/2
sin

π

2p
−
(

π

2(p− 1)

)−1/2
sin

π

2(p− 1)
.

If p ≥ p0, where π/(2(p0−1)) = x0, then the difference is nonpositive: this is due
to the monotonicity of ξ. Now, if we decrease p from p0 to 2, then the expression(
π
2p

)−1/2
sin π

2p
increases, while

(
π

2(p−1)

)−1/2
sin π

2(p−1) decreases (again, this fol-
lows from the monotonicity of ξ and the fact that π/(2p) ≤ x0). It suffices to note
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that for p = 2 the difference is zero; this proves that for any p ≥ 2 the difference
is nonpositive, which is equivalent to (2.50). This inequality implies(

sin π
2p

sin π
2(p−1)

)p−1

≤
(
p− 1

p

)(p−1)/2

≤
(

2− 1

2

)1/2

= 2−1/2.

Consequently,

1−
sinp−1 π

2p

cos π
2p

sinp−1 π
2(p−1)

≥ 1− 2−1/2

cos π
2p

=
cos π

2p
− 2−1/2

cos π
2p

≥ cos
π

2p
− 2−1/2.

Now, by the concavity of the cosine function on [0, π/4], we have cosx−2−1/2 ≥
(1 − 4x/π)(1 − 2−1/2); plugging x = π/(2p) and working a little bit, we get
(2.47).

Proof of (2.48) and (2.49). First we will show that

cosp−1
π

2p
≥ 2−1/2. (2.51)

To this end, we will prove that the left-hand side is an increasing function of p
(note that for p = 2 both sides are equal). Plugging x = 1/p and taking logarithm,
this is equivalent to saying that the function x 7→ (x−1− 1) ln cos π

2
x is increasing

on [0, 1/2]. Differentiating and manipulating a little bit, we obtain the equivalent
statement

H(x) := ln cos
π

2
x+

π

2
(x− x2) tan

π

2
x ≥ 0.

However,

H ′(x) = −π
2

tan
π

2
x+

π2

4
(x− x2) cos−2

π

2
x

has the same sign as − sin πx + (1 − x)π/2. This expression is positive for
x = 0, decreasing on [0, 1/2] and negative for x = 1/2. Consequently, there
is x0 ∈ (0, 1/2) such that H increases on (0, x0) and decreases on (x0, 1). How-
ever, H(0) = 0 and H(1/2) = −1

2
ln 2 + π

8
≥ 0. This shows H ≥ 0 on [0, 1/2]

and completes the proof of (2.51). This estimate, together with the trivial bound
sin π

2p
≥ sin π

2p(p−1) , implies

cosp−2 π
2p

sinp−2 π
2p

cos π
p

sinp−2 π
2p(p−1)

≥
2−1/2 cos π

p

cos π
2p

≥ 2−1/2 cos
π

p
≥ 2−1/2 · p− 2

p
≥ µp.
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Here in the middle we have used the elementary estimate cosx ≥ 1 − 2
π
x for

x ∈ [0, π/2] (and applied it to x = π/p). Thus (2.48) is established, and (2.49)
also follows quickly: by (2.51),

cosp−1 π
2p

sin π
2p

−1 ≥ 2−1/2

sin π
2p

−1 ≥ 2−1/2−sin
π

2p
= sin

π

4
−sin

π

2p
≥ π

4
√

2
·p− 2

p
≥ µp,

where the difference of the sine functions was bounded with the use of mean-value
theorem. The proof is complete.

Consider Vp : R× R→ R given by

Vp(x, y) =

βpRp cos
(
p
(π

2
− θ
))

if θ ≥ π
2
− π

2(p−1) ,

−γp|x|p if θ ≤ π
2
− π

2(p−1) ,

where

βp =
cosp−1 π

2p

sin π
2p

and

γp =
cosp−1 π

2p

sin π
2p

sinp−1 π
2(p−1)

.

We have used the polar coordinates: |x| = R cos θ, |y| = R sin θ, R ≥ 0 and
θ ∈ [0, π/2].

Lemma 2.12. The function Vp is superharmonic and for each x ∈ R, the function
Vp(x, ·) is convex.

Proof. It is not difficult to check that Vp is of class C1, so it suffices to verify that
∆yVp ≤ 0 and (Vp)yy ≥ 0, for θ < π

2
− π

2(p−1) and for θ > π
2
− π

2(p−1) . In the
first case the inequalities are trivial. ∆yVp(x, y) = −p(p − 1)γp|x|p−2 < 0 and
(Vp)yy(x, y) = 0; on the set θ > π

2
− π

2(p−1) the laplacian vanishes and we have

(Vp)yy(x, y) = p(p− 1)βpR
p−2 cos

(
(p− 2)

(π
2
− θ
))
≥ 0.

This proves the assertion.

As in the case 1 < p < 2, the main difficulty lies in proving the appropriate
majorization condition.
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Lemma 2.13. We have

Vp(x, y) ≥ |y|p − cotp
π

2p
|x|p + µp

∣∣∣∣|y| − cot
π

2p
|x|
∣∣∣∣p . (2.52)

Proof. We consider two cases separately.
The case θ ≤ π

2
− π

2(p−1) . Here the situation is simple. The majorization can
be rewritten in the form

tanp θ + γp − cotp
π

2p
+
µp cosp

(
θ + π

2p

)
sinp π

2p
cosp θ

≤ 0.

Denote the left-hand side by H1(θ) and compute that

H ′1(θ) =
p sinp−1 θ

cosp+1 θ

1− µp
sinp−1 π

2p

cos
(
θ + π

2p

)
sin θ

p−1 .
Since cos

(
θ + π

2p

)
sin θ

′ = −cos π
2p

sin2 θ
< 0,

the expression in the square brackets above is an increasing function of θ; this
expression is negative when θ is close to 0 and may be positive/nonpositive for
θ = π

2
− π

2(p−1) . Consequently, it is enough to check the majorization for θ = 0
(and then it holds: see (2.47)) and for θ = π

2
− π

2(p−1) (this will follow from the
next case).

The case θ ≥ π
2
− π

2(p−1) . Here the calculations are more elaborate. We must
show that

−βp
cos(p(π

2
− θ))

sinp θ
+ 1− cotp

π

2p
cotp θ +

µp
sinp π

2p

∣∣∣∣∣cos(θ + π
2p

)

sin θ

∣∣∣∣∣
p

≤ 0.

Denote the left-hand side by H1(θ) and differentiate to obtain

sinp+1 θ

p cosp−1 θ
H ′1(θ) = βp

cos(pπ
2
− (p− 1)θ)

cosp−1 θ
+cotp

π

2p
±
µp cos π

2p

sinp π
2p

∣∣∣∣∣cos(θ + π
2p

)

cos θ

∣∣∣∣∣
p−1

,
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where ± = − sgn cos(θ + π
2p

). Denote the right-hand side by H2(θ) and compute
that

H3(θ) =
cosp θ

p− 1
H ′2(θ) = βp sin

(pπ
2
− (p− 2)θ

)
+
µp cos π

2p

sinp−1 π
2p

∣∣∣∣cos

(
θ +

π

2p

)∣∣∣∣p−2 .
The function θ 7→ sin

(
pπ
2
− (p− 2)θ

)
= − sin

(
(p− 2)

(
π
2
− θ
))

is increasing
on the interval [π

2
− π

2(p−1) ,
π
2
], while θ 7→ | cos(θ + π

2p
)| is decreasing on [π

2
−

π
2(p−1) ,

π
2
− π

2p
] and increasing on [π

2
− π

2p
, π
2
]. This implies the following: if θ ∈

[π
2
− π

2(p−1) ,
π
2
− π

2p
], then H3(θ) does not exceed

βp sin

(
pπ

2
− (p− 2)

(
π

2
− π

2p

))
+
µp cos π

2p

sinp−1 π
2p

∣∣∣∣cos

(
π

2
− π

2(p− 1)
+

π

2p

)∣∣∣∣p−2
= −βp cos

π

p
+
µp cos π

2p

sinp−1 π
2p

sinp−2
π

2p(p− 1)
≤ 0

(see (2.48)). On the other hand, H3 increases on [π
2
− π

2p
, π
2
] and H3(π/2) > 0.

Consequently, there is θ0 ∈ [π
2
− π

2p
, π
2
] such that H3 is negative on [π

2
− π

2(p−1) , θ0)

and positive on (θ0,
π
2
]. This implies that H2 decreases on the first interval and

increases on the second. But H2(
π
2
− π

2p
) = 0 and H2(

π
2
) > 0. This implies that

there is θ1 ∈ [θ0,
π
2
] such that H1 is increasing on [π

2
− π

2(p−1) ,
π
2
− π

2p
], decreasing

on [π
2
− π

2p
, θ1] and increasing on [θ1,

π
2
]. Since H1(

π
2
− π

2p
) = 0, the desired

inequality H1 ≤ 0 follows from H1(
π
2
) ≤ 0, which is guaranteed by (2.49).

Proof of (2.6). The argument is the same as in the case p < 2. We omit the
details.

Sharpness. Let ε > 0 be fixed. Take ξ = π
2p
− bpε, where

bp =
sin π

p

p(p− 2)
.

Let (X, Y ) be a two-dimensional Brownian motion starting from (0, 0) and stopped
upon reaching the boundary of the set D = {(x, y) : y + 1 ≥ cot ξ|x|}. A direct
use of Ito’s formula, applied to the harmonic functions Rα cosαθ, shows that

E|Y∞+1|p =
cosp ξ

cos pξ
,E|Y∞+1|p−1 =

cosp−1 ξ

cos(p− 1)ξ
,E|Y∞+1|p−2 =

cosp−2 ξ

cos(p− 2)ξ
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and
E|X∞|p =

sinp ξ

cos pξ
.

Therefore, using the elementary inequality yp/2 − xp/2 ≤ p
2
yp/2−1(y − x), valid

for x, y ≥ 0, we compute that

||Y ||pp −
(

cot
π

2p
− ε
)p
||X||pp

= ||Y + 1||pp −
(

cot
π

2p
− ε
)p
||X||pp +

(
||Y ||pp − ||Y + 1||pp

)
≥ cosp ξ

cos pξ
−
(

cot
π

2p
− ε
)p

sinp ξ

cos pξ
− p

2

(
E|Y∞ + 1|p/2(|Y∞ + 1|2 − |Y∞|2

)
=

sinp ξ

cos pξ

[
cotp ξ −

(
cot

π

2p
− ε
)p]
− p

2

[
2 cosp−1 ξ

cos(p− 1)ξ
− cosp−2 ξ

cos(p− 2)ξ

]
.

Letting ε → 0, we see that ξ → π/(2p), so calculating a little bit gives that the
above expression converges to

cosp−2
π

2p

[
sin π

p

bp
−

4(p− 1) cos2 π
2p
− p

2 sin π
p

]

= cosp−2
π

2p

[
p(p− 2)−

4(p− 1) cos2 π
2p
− p

2 sin π
p

]
.

However, sin π
p
> 2/p and

4(p− 1) cos2
π

2p
− p = 4

(p
2
− 1
)

cos2
π

2p
+ 2p

(
cos2

π

2p
− 1

2

)
≤ 4

(p
2
− 1
)

+ 2p

(
π

4
− π

2p

)
≤ 4(p− 2),

where in the middle we have used the estimate cos2 x − cos2 π
4
≤ π

4
− x, which

follows directly from the mean-value property. Putting all the above facts together
we see that if ε is sufficiently small, then ||Y ||p ≥

(
cot π

2p
− ε
)
||X||p. On the

other hand, consider the set D ∩ R× [−1/100, 1/100]. With some positive prob-
ability (which can be bounded from below by a positive constant η not depending
on p), the process (X, Y ) never leaves this set. That is, it terminates inside it. If
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such a situation occurs, then |X∞| ≥ 99
100

tan ξ and |Y∞| ≤ 1/100. Thus for small
ε, ∣∣∣∣|Y∞| − cot

π

2p
|X∞|

∣∣∣∣ ≥ 99

100
tan ξ cot

π

2p
− 1

100
≥ 1/2

and hence |||Y∞| − cot π
2p
|X∞|||p ≥ η1/p/2. It remains to note that

||X||p =
sin ξ

(cos pξ)1/p
= sin

π

2p

(
sin

π

p
· ε

p− 2

)−1/p
+ o(ε).

This proves the optimality of the constants.

3. Proofs of results for Fourier multipliers

Here we will show how the martingale inequalities studied in the preceding
section yield the corresponding stability results for Fourier multipliers.

3.1. Proof of inequalities (1.3) and (1.4) in Theorem 1.1
Let us begin by recalling the probabilistic representation of the multipliers

from the class (1.1). We follow here the description in [4] and [5] and refer the
reader to those papers for full details.

Let ν be a finite, nonzero Lévy measure on Rd, i.e., a nonnegative Borel mea-
sure on Rd which does not charge the origin and satisfies ν(Rd) <∞ and∫

Rd
min{|x|2, 1}ν(dx) <∞.

Then for any s < 0, there is a Lévy process (Xs,t)t∈[s,0] with Xs,s ≡ 0, for which
Lemmas 3.1 and 3.2 below hold true. To state these, we need some notation. For a
given complex-valued f ∈ L∞(Rd), define the corresponding parabolic extension
Uf to (−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).

Next, fix x ∈ Rd, s < 0 and a complex-valued φ ∈ L∞(Rd). We introduce the
processes F = (F x,s,f

t )s≤t≤0 and G = (Gx,s,f,φ
t )s≤t≤0 by

Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[
(Fu − Fu−) · φ(Xs,u −Xs,u−)

]
−
∫ t

s

∫
Rd

[
Uf (v, x+Xs,v− + z)− Uf (v, x+Xs,v−)

]
φ(z)ν(dz)dv.

(3.1)
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Now, fix s < 0 and define the operator S = Ss,φ,ν by the bilinear form∫
Rd
Sf(x)g(x)dx =

∫
Rd

E
[
Gx,s,f,φ

0 g(x+Xs,0)
]
dx, (3.2)

where f, g ∈ C∞0 (Rd). Standard density argument implies that if 1 < p < ∞,
then the above identity holds true for all f ∈ Lp(Rd).

We have the following facts, proved in [4] and [5].

Lemma 3.1. For any fixed x, s, f, φ as above, the processes F x,s,f , Gx,s,f,φ are
martingales with respect to (Ft)s≤t≤0 = (σ(Xs,t : s ≤ t))s≤t≤0. Furthermore, if
||φ||∞ ≤ 1, then Gx,s,f,φ is differentially subordinate to F x,s,f .

The aforementioned representation of Fourier multipliers in terms of Lévy
processes is as follows.

Lemma 3.2. Let 1 < p < ∞ and d ≥ 2. The operator Ss,φ,ν is well defined and
extends to a bounded operator on Lp(Rd), which can be expressed as a Fourier
multiplier with the symbol

Ms,φ,ν(ξ)

=

[
1− exp

(
2s

∫
Rd

(1− cos〈ξ, z〉)ν(dz)

)] ∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)

(3.3)

if
∫
Rd(1− cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise.

Equipped with the above facts, we turn our attention to Theorem 1.1. The key
ingredient in the proof of this statement is contained in the following. Let Up be
the special function used in the proof of Theorem 2.3.

Lemma 3.3. Let p ∈ (1, 2) ∪ (2,∞). Then for any complex-valued function
f ∈ C∞0 (Rd) we have the estimate∫

Rd
Up(f(x),Sf(x))dx ≤ 0, (3.4)

where Up is the function defined in (2.24).
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Proof. Take g(x) = (Up)y(f(x),Sf(x)). Then we have g ∈ Lp/(p−1)(Rd), be-
cause |(Up)y(f(x),Sf(x))| ≤ ηp(|f(x)| + |Sf(x)|)p−1 for some constant ηp de-
pending only on p. Therefore, by (3.2) and Fubini’s theorem, we have

E
∫
Rd
Sf(x+Xs,0)g(x+Xs,0)dx = E

∫
Rd

E
[
Gx,s,f,φ

0 g(x+Xs,0)
]
dx,

or

E
∫
Rd

(Up)y(f(x+Xs,0),Sf(x+Xs,0))
[
Gx,s,f,φ

0 − Sf(x+Xs,0)
]
dx = 0.

Hence∫
Rd
Up(f(x),Sf(x))dx

= E
∫
Rd
Up(f(x+Xs,0),Sf(x+Xs,0))dx

= E
∫
Rd

{
Up(f(x+Xs,0),Sf(x+Xs,0))

+ (Up)y(f(x+Xs,0),Sf(x+Xs,0))
[
Gx,s,f,φ

0 − Sf(x+Xs,0)
]}

dx

≤ E
∫
Rd
Up(f(x+Xs,0), G

x,s,f,φ
0 )dx

=

∫
Rd

EUp(F x,s,f
0 , Gx,s,f,φ

0 )dx.

We will be done if we prove that EUp(F x,s,f
0 , Gx,s,f,φ

0 ) ≤ 0 for all x. This follows
from Theorem 2.5 and a limiting argument. Indeed, we know that there is a non-
decreasing sequence (τn)n≥1 of stopping times converging to 0 (and depending on
x, s, f and φ) such that

EUp(F x,s,f
τn∧0 , G

x,s,f,φ
τn∧0 ) ≤ 0 (3.5)

for all n. However, from the very definition of Up, there is a constant Cp > 0 such
that

|Up(x, y)| ≤ Cp(|x|p + |y|p).
This implies

Up(F
x,s,f
τn∧0 , G

x,s,f,φ
τn∧0 ) ≤ Cp(((F

x,s,f )∗)p + ((Gx,s,f,φ)∗)p)
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(where X∗ denotes the maximal function of a martingale X). By Doob’s inequal-
ity and Burkholder’s estimate (2.1), we see that

E((F x,s,f )∗)p + ((Gx,s,f )∗)p) ≤
(

p

p− 1

)p
(1 + (p∗ − 1)p)E|F x,s,f

0 |p <∞,

since ||F x,s,f ||∞ ≤ ||f ||∞. It remains to let n → ∞ in (3.5) and use Lebesgue’s
dominated convergence theorem to get the claim.

We are ready to establish the stability result for Fourier multipliers.

Proof of (1.3) and (1.4). It suffices to prove the inequality for bounded f . We
will only give the details for 1 < p < 2, in the remaining case the reasoning is
analogous. By (3.4) and the majorization (2.17) we get(

1−
(

1− 1

p

)p−1)∫
Rd

((p− 1)|Sf(x)| − |f(x)|)2

(|f(x)|+ |Sf(x)|)2−p
+ (p− 1)p||Sf(x)||p

Lp(Rd)

≤ ||f ||p
Lp(Rd).

Recall that S = Ss,φ,ν is a Fourier multiplier with the symbol given by (3.3). If
we let s→ −∞, then the symbol Ms,φ,ν converges pointwise to

Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
. (3.6)

By Plancherel’s theorem, Ss,φ,νf = TMs,φ,ν
f → TMφ,ν

f in L2 and hence there is a
sequence (sn)∞n=1 converging to−∞ such that limn→∞ S

sn,φ,νf → TMφ,ν
f almost

everywhere. Thus Fatou’s lemma combined with the above estimate yields(
1−

(
1− 1

p

)p−1)∫
Rd

((p− 1)|TMφ,ν
f(x)| − |f(x)|)2

(|f(x)|+ |TMφ,ν
f(x)|)2−p

+ (p− 1)p||TMφ,ν
f(x)||p

Lp(Rd) ≤ ||f ||
p
Lp(Rd).

(3.7)

Now, for a given κ > 0, define a Lévy measure νκ in polar coordinates (r, θ) ∈
(0,∞)× S by

νκ(drdθ) = κ−2δκ(dr)µ(dθ),

where δκ stands for the Dirac measure on {κ} and µ is the measure involved in the
definition of the symbol m. Next, consider a multiplier mκ as in (3.6), in which
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the Lévy measure is νκ and the jump modulator is given by 1{|x|=κ}ψ(x/|x|) (ψ is
the function involved in the definition of m). If we let κ→ 0, we see that∫

Rd
[1− cos〈ξ, x〉]ψ(x/|x|)νκ(dx) =

∫
S
ψ(θ)

1− cos〈ξ, κθ〉
κ2

µ(dθ)

→ 1

2

∫
S
〈ξ, θ〉2ψ(θ)µ(dθ)

and similarly∫
Rd

[1− cos〈ξ, x〉]ψ(x/|x|)νκ(dx)→ 1

2

∫
S
〈ξ, θ〉2µ(dθ),

so that mκ → m pointwise. This observation, combined with (3.7), yields the
estimate (

1−
(

1− 1

p

)p−1)∫
Rd

((p− 1)|Tmf(x)| − |f(x)|)2

(|f(x)|+ |Tmf(x)|)2−p

+ (p− 1)p||Tmf(x)||p
Lp(Rd) ≤ ||f ||

p
Lp(Rd),

by the similar argument as above, using of Plancherel’s theorem and the passage
to the subsequence which converges almost everywhere. In other words, we have(

1−
(

1− 1

p

)p−1)∫
Rd

((p− 1)|Tmf(x)| − |f(x)|)2

(|f(x)|+ |Tmf(x)|)2−p

≤ ||f ||p
Lp(Rd) − (p− 1)p||Tmf(x)||p

Lp(Rd)

≤ (1− (1− (p− 1)ε)p)||f ||p
Lp(Rd)

≤ p(p− 1)p−1ε||f ||p
Lp(Rd).

Therefore, Hölder’s inequality and the estimate (1.2) imply∣∣∣∣(p− 1)|Tmf | − |f |
∣∣∣∣
Lp(Rd)

≤
(∫

Rd

((p− 1)|Tmf | − |f |)2

(|f |+ |Tmf |)2−p

)1/2

|||f |+ |Tmf |||1−p/2Lp(Rd)

≤

 p(p− 1)ε

1− p
(

1− 1
p

)p−1


1/2

||f ||p/2
Lp(Rd) ·

(
p

p− 1
||f ||Lp(Rd)

)1−p/2

.

This is the claim.
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Remark 3.1. The above argumentation can be easily carried over to the vector-
valued case. Let us state this more precisely. Suppose that f = (f1, f2, . . .) ∈
Lp(Rd;H), i.e., f is a p-integrable function on Rd taking values in H. Let m =
(m1,m2, . . .), where for any j, mj is a symbol from the class (1.1), with the cor-
responding parameters φj and µj . We define the Fourier multiplier Tm, associated
with m, by the coordinate-wise action: Tmf = (Tm1f1, Tm2f2, . . .). Then the
inequalities of Theorem 1.1 hold true under this more general setting. Indeed,
one fixes s < 0 and introduces the H-valued martingales F and G, as well as
the “intermediate” operator S = (Ss,φ1,ν1 ,Ss,φ2,ν2 , . . .), where each νj is a Lévy
measure on Rd. If one writes (3.2) for each j (and some functions gj) and sums
the obtained identities, one gets∫

Rd
〈Sf(x), g(x)〉dx =

∫
Rd

E〈Gx,s,f,φ
0 , g(x+Xs,0)〉dx.

Having done this, one easily shows the vector-valued version of the inequality
(3.4) just by replacing products appearing under integrals by inner products of the
corresponding vectors. The remainder of the proof is a word-by-word repetition
of the arguments used in the scalar case.

3.2. Sharpness of Theorem 1.1
We will now construct appropriate functions showing that the order of con-

stants involved in (1.3) and (1.4) is quite tight. Our approach depends heavily on
the paper [12] by Boros, Székelyhidi and Volberg, in which the interplay between
martingale transforms and the class of the so-called laminates, important proba-
bility measures on matrix spaces (see below) was investigated for the first time.
In order to make this section as self-contained as possible, we recall all the basic
information on the subject.

Let Rm×n denote the space of all real matrices of dimension m× n and Rn×n
sym

denote the subclass of Rn×n consisting of all real symmetric n× n matrices.

Definition 3.2. A function f : Rm×n → R is said to be rank-one convex, if for all
A,B ∈ Rm×n with rank B = 1, the function t 7→ f(A+ tB) is convex.

Let P = P(Rm×n) denote the class of all compactly supported probability
measures on the space Rm×n. For ν ∈ P , the center of mass, or barycenter of ν,
is given by

ν =

∫
Rm×n

Xdν(X)
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Definition 3.3. We say that a measure ν ∈ P is a laminate (and write ν ∈ L), if

f(ν) ≤
∫
Rm×n

fdν

for all rank-one convex functions f . The set of laminates with barycenter 0 (the
zero matrix) is denoted by L0.

Laminates arise naturally in several applications of convex integration, where
they can be used to produce interesting counterexamples; see [1], [22], [34], [38]
and [45]. For our results in this paper we will be interested in the case of 2 × 2
symmetric matrices. An important observation to make is that laminates can be
regarded as probability measures that record the distribution of the gradients of
smooth maps as described by Corollary 3.1 below. We briefly explain this and
refer the reader to [33], [38] and [45] for the full discussion.

Definition 3.4. Let PL denote the smallest class of probability measures on R2×2
sym

which

(i) contains all measures of the form λδA + (1 − λ)δB with λ ∈ [0, 1] and
satisfying rank(A−B) = 1;

(ii) is closed under splitting in the following sense: if λδA + (1 − λ)ν belongs
to PL for some ν ∈ P(R2×2) and µ also belongs to PL with µ = A, then
also λµ+ (1− λ)ν belongs to PL.

The class PL is called the class of prelaminates.

It is clear from the very definition that the class PL contains only atomic
measures. Also, by a successive application of Jensen’s inequality, we have the
inclusion PL ⊂ L. Recall the following two well-known results in the theory of
laminates; see [1], [33], [38], [45].

Lemma 3.4. Let ν =
∑N

i=1 λiδAi ∈ PL with ν = 0. Moreover, let 0 < r <
1
2

min |Ai − Aj| and δ > 0. For any bounded domain B ⊂ R2 there exists u ∈
W 2,∞

0 (B) such that ‖u‖C1 < δ and for all i = 1 . . . N∣∣{x ∈ B : |D2u(x)− Ai| < r}
∣∣ = λi|B|.

Lemma 3.5. LetK ⊂ R2×2
sym be a compact convex set and ν ∈ L with supp ν ⊂ K.

Then there exists a sequence νj of prelaminates with νj = ν and νj
∗
⇀ ν, where

∗
⇀ denotes weak convergence of measures.
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Combining these two lemmas and using a simple mollification, we obtain the
following statement, proved by Boros, Shékelyhidi Jr. and Volberg [12]. It ex-
hibits the connection between laminates supported on symmetric matrices and
second derivatives of functions. This fact will play a crucial role in our argumen-
tation below. As in the introduction, the symbol D stands for the unit disc in the
complex plane C.

Corollary 3.1. Let ν ∈ L0. Then there exists a sequence uj ∈ C∞0 (D) with
uniformly bounded second derivatives, such that

1

|D|

∫
D
φ(D2uj(x)) dx →

∫
R2×2
sym

φ dν (3.8)

for all continuous φ : R2×2
sym → R.

We are ready to provide lower bounds for the constants and exponents involved
in the estimates (1.3) and (1.4), and prove that there is no stability result in the case
p = 2. We will focus on the case 1 < p < 2. For the remaining cases the reasoning
is essentially the same and we leave it to the reader.

Fix 1 < p < 2, a small ε > 0, a largeK > 0 and set η = (p−1)
√
ε/(2− p)/2.

We may assume that (2.18) holds by decreasing ε if necessary. Let (F,G) be the
(finite) martingale pair studied in §2.3.

Lemma 3.6. The distribution of diag(G∞−F∞, F∞+G∞) ∈ R2×2
sym is a prelam-

inate with barycenter 0.

Proof. By the construction, the martingale F is a transform of G by the determin-
istic sequence {(−1)n}n≥0. Consequently, the pair (G−F, F +G) has the follow-
ing zigzag property: for any n, it moves either vertically or horizontally. More pre-
cisely, depending on the parity of n, we have Gn+1−Fn+1 = Gn−Fn with prob-
ability 1 or Fn+1 +Gn+1 = Fn +Gn with probability 1. This implies the desired
prelaminate property: when comparing the distributions of (Gn − Fn, Fn + Gn)
and (Gn+1 − Fn+1, Fn+1 + Gn+1) we see exactly the splitting as in the second
condition defining the class of prelaminates.

Next, consider the continuous functions φ1, φ2 : R2×2
sym → R given by

φ1(A) = |A11 − A22|p −
(

1

p− 1
− ε
)p
|A11 + A22|p
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and

φ2(A) =
∣∣|A11 − A22| − (p− 1)−1|A11 + A22|

∣∣p
−

(
p

4(p− 1)

√
ε

2− p

)p
|A11 + A22|p.

By Corollary 3.1, there is a sequence uj ∈ C∞0 (D) such that

1

|D|

∫
D
φi(D

2uj(x)) dx →
∫
R2×2
sym

φi dν, i = 1, 2.

If we set fj = ∆uj , this equivalent to the statement that

1

|D|

∫
D

(
|<Bfj|p −

(
1

p− 1
− ε
)p
|fj|p

)
dx

→ 2p
[
||F∞||pp −

(
1

p− 1
− ε
)p
||G∞||pp

]
> 0

and

1

|D|

∫
D

(∣∣|<Bfj| − (p− 1)−1|fj|
∣∣p − ( p

4(p− 1)

√
ε

2− p

)p
|fj|p

)
dx

→ 2p
[∣∣∣∣|F∞| − (p− 1)−1|G∞|

∣∣∣∣p
p
−
(

p

4(p− 1)

√
ε

2− p

)p
||G∞||pp

]
> 0.

Therefore, for sufficiently large j we have

||<Bfj||Lp(C) ≥
(∫

D
|<Bfj|pdx

)1/p

≥
(

1

p− 1
− ε
)
||fj||Lp(C)

and, simultaneously,

∣∣∣∣|<Bfj| − (p− 1)−1|fj|
∣∣∣∣
Lp(C) ≥

(
p

4(p− 1)

√
ε

2− p

)
||fj||Lp(C).

This is precisely the desired bound.
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3.3. First order Riesz transforms, inequalities (1.7) and (1.8)
The reasoning is similar to that above, so we will be brief; we will mostly

focus on the case p < 2, for other values of p we proceed analogously. Our argu-
mentation rests on the well-known representation of Riesz transforms in terms of
the so-called background radiation process, introduced by Gundy and Varopoulos
in [30]. Let us briefly describe this connection. Throughout this section, d is a
fixed positive integer. Suppose that X is a Brownian motion in Rd and let Y be
an independent Brownian motion in R (both processes start from the appropriate
origins). For any y > 0, introduce the stopping time τ(y) = inf{t ≥ 0 : Yt ∈
{−y}}. If f belongs to S(Rd), the class of rapidly decreasing functions on Rd, let
Zf : Rd×[0,∞)→ R stand for the Poisson extension of f to the upper half-space.
That is,

Zf (x, y) := Ef
(
x+Xτ(y)

)
.

For any (d+ 1)× (d+ 1) matrix A we define the martingale transform A∗f by

A∗f(x, y) =

∫ τ(y)

0+

A∇Zf (x+Xs, y + Ys) · d(Xs, Ys).

Note that A ∗ f(x, y) is a random variable for each x, y. Now, for any f ∈ C∞0 ,
any y > 0 and any matrix A as above, define T yAf : Rd → R through the bilinear
form ∫

Rd
T yAf(x)g(x) dx =

∫
Rd

E
[
A∗f(x, y)g(x+Xτ(y))

]
dx, (3.9)

where g runs over C∞0 (Rd). The interplay between the operators T yA and Riesz
transforms is explained in the following theorem, consult [30] or Gundy and Sil-
verstein [29].

Theorem 3.5. Let Aj = [aj`m], j = 1, 2, . . . , d be the (d+ 1)× (d+ 1) matrices
given by

aj`m =


1 if ` = d+ 1, m = j,
−1 if ` = j, m = d+ 1,
0 otherwise.

Then T y
Aj
f → Rjf almost everywhere as y →∞.

Here is the analogue of Lemma 3.3, exploiting the functions Vp introduced in
the proof of Theorem 2.4. The argument goes along the same lines, so we will not
repeat it here.
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Lemma 3.7. Let p ∈ (1, 2) ∪ (2,∞) and let A be the matrix from Theorem 3.5
corresponding to Riesz transform Rj . Then for any real-valued function f ∈
C∞0 (Rd) we have the estimate∫

Rd
Vp(f(x), TAf(x))dx ≤ 0. (3.10)

Proof of (1.7). By (3.10) and the majorization (2.44), we get

κp

∫
Rd

(
|TAf(x)| − tan

π

2p
|f(x)|

)2

(|f(x)|+ |TAf(x)|)2−pdx+ ||TAf ||pLp(Rd)

≤ tanp
π

2p
||f ||p

Lp(Rd).

Now we exploit Theorem 3.5: if we let the parameter y go to ∞, then Fatou’s
lemma implies

κp

∫
Rd

(
|Rjf(x)| − tan

π

2p
|f(x)|

)2

(|f(x)|+ |Rjf(x)|)2−pdx+ ||Rjf ||pLp(Rd)

≤ tanp
π

2p
||f ||p

Lp(Rd).

Since ||Rjf ||Lp(Rd) ≥ (tanp π
2p
− ε)||f ||Lp(Rd), we obtain

κp

∫
Rd

(
|Rjf(x)| − tan

π

2p
|f(x)|

)2

(|f(x)|+ |Rjf(x)|)2−pdx

≤ p tanp−1
π

2p
ε||f ||Lp(Rd),

which combined with Hölder inequality and (1.6) yields∣∣∣∣∣∣∣∣|Rjf | − tan
π

2p
|f |
∣∣∣∣∣∣∣∣
Lp(Rd)

≤

(
E

(|Rjf | − tan π
2p
|f |)2

(|f |+ |Rjf |)2−p

)1/2

|||f |+ |Rjf |||1−p/2Lp(Rd)

≤

(
p tanp−1 π

2p
ε

κp

)1/2(
1 + tan

π

2p

)1−p/2

||f ||Lp(Rd)

=

(
−

8p tan π
2p
ε

(p− 1) cos π
p

)1/2(
1 + tan

π

2p

)1−p/2

||f ||Lp(Rd).

Now it suffices to apply the same bounds as at the end of the proof of (2.5) to get
the claim.
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3.4. Shapness of Theorem 1.2
Sharpness of (1.7), d = 1. Fix 1 < p < 2 and ε > 0. We have constructed above
a pair (X, Y ) of orthogonal martingales such that ||Y ||p > (tan π

2p
− ε)||X||p and

|||Y∞| − tan π
2p
|X∞||p ≥ ap

(
ε

2−p

)1/2
||X||p for some constant ap bounded in a

neighborhood of 2. Actually, the pair (X, Y ) was the planar Brownian motion
started at the origin, killed upon leaving the boundary of a certain angle D. Let
F : D→ D be the conformal map which sends the unit disc of the complex plane
onto that angle, such that F (0) = 0. Then the distribution, with respect to the
Haar measure, of F = <F + i=F = <F + iHT<F on the unit circle T coincides
with the distribution of the pair (X, Y ); therefore, we have

||HT<F ||Lp(T) >
(

tan
π

2p
− ε
)
||f ||Lp(T)

and, at the same time,∣∣∣∣∣∣∣∣|HT<F | − tan
π

2p
|<F |

∣∣∣∣∣∣∣∣
Lp(T)

≥ ap

(
ε

2− p

)1/2

||<F ||Lp(T).

To pass from the periodic Hilbert transformHT to its non-periodic counterpart, we
exploit well-known argument going back to Davis’ work [23]. Let H denote the
upper half-plane and let G : D ∩ H → H be defined by G(z) = −(1− z)2/(4z).
Then G is conformal and hence so is its inverse L. We extend L to the continuous
function on H = {z ∈ C : Imz ≥ 0}. Then L maps [0, 1] onto {eiθ : 0 ≤ θ ≤ π};
specifically, for x ∈ [0, 1] we have

L(x) = eiθ, where θ ∈ [0, π] is uniquely determined by x = sin2(θ/2). (3.11)

Moreover, L maps R \ [0, 1] onto (−1, 1); precisely, we have

L(x) =

{
1− 2x− 2

√
x2 − x if x < 0,

1− 2x+ 2
√
x2 − x if x > 1.

(3.12)

Therefore, if we take ϕn = <
(
F (L2n)

)
, x ∈ R, then HRϕn = =

(
F (L2n)

)
,

since F (L2n) is analytic on H and it vanishes at ∞ (the latter follows from the
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requirement F (0) = 0). Using (3.11), we derive that∫
R
|HRϕn(x)|pdx ≥

∫ 1

0

|=
(
F (L2n)

)
|pdx

=
1

2

∫ π

0

|=
(
F (e2inθ)

)
|p sin θdθ

=
1

2

∫ 2nπ

0

|=
(
F (eiθ)

)
|p sin

(
θ

2n

)
dθ
2n

=
1

2

∫ 2π

0

|=
(
F (eiθ)

)
|p
n−1∑
k=0

sin

(
kπ

n
+

θ

2n

)
dθ
2n

=
1

2

∫ 2π

0

|=
(
F (eiθ)

)
|p

cos
(
θ−π
n

)
2n sin

(
π
2n

)dθ

n→∞−−−→ 1

2π

∫ 2π

0

|=
(
F (eiθ)

)
|pdθ = ||Y ||pp

and similarly ∫ 1

0

|ϕn(x)|pdx n→∞−−−→ ||X||pp.

Furthermore, exploiting (3.12) and the condition F (0) = 0, we easily get∫
R\[0,1]

|ϕn(x)|pdx n→∞−−−→ 0

and (∫
R

∣∣∣∣|HRϕn(x)| − tan
π

2p
|ϕn(x)|

∣∣∣∣p dx
)1/p

≥
(∫ 1

0

∣∣∣∣|HRϕn(x)| − tan
π

2p
|ϕn(x)|

∣∣∣∣p dx
)1/p

n→∞−−−→
∣∣∣∣∣∣∣∣|Y∞| − tan

π

2p
|X∞|

∣∣∣∣∣∣∣∣
p

.

This proves the desired optimality of the constants. For p > 2 the reasoning is
essentially the same and we leave it to the interested reader.

Sharpness of (1.7) and (1.8), the case d > 1. Clearly, it is enough to handle the
Riesz transform R1 only. Fix p ∈ (1, 2) ∪ (2,∞) and suppose that there is a
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nondecreasing function ϕp : [0,∞) → (0,∞) such that for all f ∈ Lp(Rd) we
have∣∣∣∣∣∣∣∣|R1f | − cot

π

2p∗
|f |
∣∣∣∣∣∣∣∣
p

≤ ϕp

(
cot

π

2p∗
−
||R1f ||Lp(Rd)
||f ||Lp(Rd)

)
||f ||Lp(Rd). (3.13)

Our plan is to show that this inequality implies the validity of the corresponding
estimate for the Hilbert transform on the real line (with the same function ϕp).
This will clearly yield the announced optimality of the constants appearing in
(1.7) and (1.8), by the case d = 1 considered above. For t > 0, define the
dilation operator δt as follows: for any function g : R × Rd−1 → R, we let
δtg(ξ, ζ) = g(ξ, tζ). Using (3.13), we see that the operator Tt := δ−1t ◦ R1 ◦ δt
satisfies ∣∣∣∣∣∣∣∣|Ttf | − cot

π

2p∗
|f |
∣∣∣∣∣∣∣∣
Lp(Rd)

= t(d−1)/p
∣∣∣∣∣∣∣∣|R1 ◦ δtf | − cot

π

2p∗
|δtf |

∣∣∣∣∣∣∣∣
Lp(Rd)

≤ t(d−1)/pϕp

(
cot

π

2p∗
−
||R1 ◦ δtf ||Lp(Rd)
||δtf ||Lp(Rd)

)
||δtf ||Lp(Rd)

= ϕp

(
cot

π

2p∗
−
||Ttf ||Lp(Rd)
||f ||Lp(Rd)

)
||f ||Lp(Rd).

(3.14)

It is easy to check that the Fourier transform F satisfies the identity F = td−1δt ◦
F ◦ δt and therefore the operator Tt has the property

T̂tf(ξ, ζ) = −i ξ

(ξ2 + t2|ζ|2)1/2
f̂(ξ, ζ), (ξ, ζ) ∈ R× Rd−1,

for any square integrable f on Rd. By Lebesgue’s dominated convergence theo-
rem, we have

lim
t→0

T̂tf(ξ, ζ) = T̂0f(ξ, ζ)

in L2(Rd), where T̂0f(ξ, ζ) = −i sgn (ξ)f̂ . Combining this with Plancherel’s the-
orem, we obtain that for any f ∈ L2(Rd) there is a sequence (tn)n≥1 decreasing
to 0 such that Ttnf converges to T0f almost everywhere. Using Fatou’s lemma,
(3.14) and the monotonicity of ϕp, we obtain∣∣∣∣∣∣∣∣|T0f | − cot

π

2p∗
|f |
∣∣∣∣∣∣∣∣
Lp(Rd)

≤ ϕp

(
cot

π

2p∗
−
||T0f ||Lp(Rd)
||f ||Lp(Rd)

)
||f ||Lp(Rd) (3.15)
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Note that Tt are bounded on Lp(Rd) for 1 < p <∞ (in fact, ||Tt||Lp(Rd)→Lp(Rd) =
||R1||Lp(Rd)→Lp(Rd)), hence so is T0 and thus the above estimate holds true for
all f ∈ Lp(Rd). Define f : R × Rd−1 → R by f(ξ, ζ) = h(ξ)1[0,1]d−1(ζ),
where h is an arbitrary function belonging to Lp(R). Then f ∈ Lp(Rd) and
T0f(ξ, ζ) = HRh(ξ)1[0,1]d−1(ζ), which is due to the identity

T̂0f(ξ, ζ) = −isgn (ξ) ĥ(ξ)1̂[0,1]d−1(ζ).

Plug this into (3.15) to obtain∣∣∣∣∣∣∣∣|HRh| − cot
π

2p∗
|h|
∣∣∣∣∣∣∣∣
Lp(Rd)

≤ ϕp

(
cot

π

2p∗
−
||T0h||Lp(Rd)
||h||Lp(Rd)

)
||h||Lp(Rd).

This yields the desired sharpness.
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