
MOMENT INEQUALITY FOR THE MARTINGALE
SQUARE FUNCTION

ADAM OSȨKOWSKI

Abstract. Consider the sequence (Cn)n≥1 of positive numbers,
defined by C1 = 1 and Cn+1 = 1 + C2

n/4, n = 1, 2, . . .. Let M be
a real-valued martingale and let S(M) denote its square function.
We establish the bound

E|Mn| ≤ CnESn(M), n = 1, 2, . . . ,

and show that for each n, the constant Cn is the best possible.

1. Introduction

Square function inequalities play an important role in both classical
and noncommutative probability theory, harmonic analysis, potential
theory and many other areas of mathematics. The purpose of this
paper is to establish a sharp bound between the first moments of a
martingale and its square function, with a constant depending on the
length of the martingale.

We start with some definitions. Throughout the paper, (Ω,F ,P) will
be a given probability space, filtered by a nondecreasing family (Fn)∞n=0

of sub-σ-fields of F . Let M = (Mn)n≥1 be a real-valued martingale
adapted to (Fn)n≥1 and let dM = (dMn)n≥1 stand for its difference
sequence:

dM1 = M1, dMn = Mn −Mn−1, n = 2, 3, . . . .

A martingale M is called simple, if for any n = 1, 2, . . . the random
variable Mn takes only a finite number of values. For any nonnegative
integer n, let Sn(M) be given by

Sn(M) =

(
n∑
k=1

|dMk|2
)1/2

.

Then one defines the square function S(M) by S(M) = limn→∞ Sn(M).
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For p > 0, let ||M ||p = supn ||Mn||p = supn (E|Mn|p)1/p . We will be
interested in the inequalities between the moments of M and S(M).
Such estimates (without using the martingale concept or word) ap-
peared for the first time in classical papers of Khintchine [9], Little-
wood [10], Marcinkiewicz [11] and Paley [14]. For more recent results
in this direction, we refer the interested reader to the survey [3] by
Burkholder or the monograph [13] by the author. For example, the
inequality

(1.1) cp||M ||p ≤ ||S(M)||p ≤ Cp||M ||p, if 1 < p <∞,
valid for all martingales, was proved by Burkholder in [2]. Later,
Burkholder refined his proof and shown that (cf. [3]) the inequality
holds with c−1p = Cp = p∗ − 1, where p∗ = max{p, p/(p− 1)}. Further-
more, the constant cp is optimal for p ≥ 2, Cp is the best for 1 < p ≤ 2
and the proof carries over to the case of martingales taking values in
a separable Hilbert space. The right inequality (1.1) does not hold for
general martingales if p ≤ 1 and nor does the left one if p < 1. It was
shown by the author in [12] that c1 = 1/2 is the best. In the remaining
cases the optimal values of cp and Cp are not known. Let us mention
here a related result of Cox [5], who identified the best constant in the
corresponding weak type inequality: we have

(1.2) P(S(M) ≥ 1) ≤
√
e||M ||1

(see also Bollobás [1]). Our objective is to compare the first moments
of Mn and Sn(M) for each fixed n, and the novelty lies in the sharp
dependence of the constants on n. Here is the precise statement of our
main result.

Theorem 1.1. Let (Cn)n≥1 be the sequence of numbers given by C1 = 1
and Cn+1 = 1 + C2

n/4, n = 1, 2, . . . . Then for any real martingale M
and any n ≥ 1,

(1.3) ||Mn||1 ≤ Cn||Sn(M)||1.
For each n the constant Cn is the best possible.

Unfortunately, there seems to be no explicit formula for the sequence
(Cn)n≥1. However, an easy analysis shows that this sequence increases
to 2; thus, letting n → ∞ in (1.3) we obtain the inequality ||M ||1 ≤
2||S(M)||1, proved by the author in [12]. It is worthy to mention here
the following version of (1.3) in the reverse direction: in the proof of
(1.2), Cox [5] actually showed the more exact estimate

P(Sn(M) ≥ 1) ≤
(

n

n− 1

)(n−1)/2

E|Mn|, n ≥ 1.
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A few words about the method of proof is in order. The technique
used in this paper has its roots in the theory of moments, introduced
by Kemperman in [8]. This approach, when applicable, always leads
to a sharp inequality and provides an example of a martingale attain-
ing equality or nearly so. The argument rests on the construction of
an appropriate sequence of special functions and is closely related to
a method invented by Burkholder in [4] (see the discussion in Section
2). In the literature, there are several papers in which the method
of moments has been successfully implemented. We refer the reader
to the works of Cox [5], [6], Cox and Kemperman [7] and Kemper-
man [8]. The main problem is that the technique has the drawback of
computational complexity, which sometimes makes it difficult to push
the calculations through. This happens also in our case, and to over-
come this difficulty, we modify slightly the method which enables us to
simplify the technicalities.

We have organized the paper as follows. The next section contains
the description of the approach which is used in the proof of Theorem
1.1. In Section 3 we exploit this method: we introduce a family of spe-
cial functions and establish appropriate statements about them. This
enables us to deduce the desired bound (1.3). The final part of the
paper is devoted to the optimality of the constant Cn.

2. On the method of proof

Let V : R× [0,∞)→ R be a given function, let n be a fixed integer
and suppose that we are interested in showing that for any simple
martingale M ,

(2.1) EV (Mn, Sn(M)) ≤ 0.

For instance, the choice V (x, y) = |x|−Cn|y| leads to moment estimates
studied in this paper. Conditioning on M1 if necessary, we may and
will assume that the starting variable of M is constant almost surely.
To study (2.1), we introduce a family of auxiliary functions. Namely,
for any k = 1, 2, . . ., let us define UV

k : R× [0,∞)→ R by

(2.2) UV
k (x, y) = sup

{
EV (Mk,

√
y2 − x2 + S2

k(M))
}
,

where the supremum is taken over all simple martingales M starting
from x. In the language of these functions, (2.1) can be rephrased as
UV
n (x, |x|) ≤ 0 for all x. In particular, only the case y = |x| seems

to be of importance. However, the inductive step below requires the
analysis of UV

n on its whole domain. Observe that UV
1 (x, y) = V (x, y),
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since M1 ≡ x and
√
y2 − x2 + S2

1(M) = y. Moreover, we have

(2.3) UV
2 (x, y) = sup{EV (x+D,

√
y2 +D2) : ED = 0}

and, conditioning on M2,

(2.4) UV
k+1(x, y) = sup

{
EUV

k (x+D,
√
y2 +D2) : ED = 0

}
for k = 2, 3, . . .. Both equalities (2.3) and (2.4) involve the evalua-
tion of supEh(D) over all centered random variables D, where h is a
given function. This is a standard problem of the theory of moments
(see Kemperman [8]) and can be solved “graphically” as follows: the
required supremum is equal to the height, at location x = 0, of the
upper boundary of the convex hull of the graph of h. However, for
V (x, y) = |x| − Cy the iterative computations of the heights become
complicated; this leads us to the question about the simplification of
the above approach.

To describe the appropriate modification, let us note the following
property of the sequence (UV

k )k≥1. Namely, if M is a martingale satis-
fying M1 ≡ x, then by (2.3) and (2.4),

UV
n (x, |x|) = EUV

n (M1, S1(M))

≥ EUV
n−1 (M2, S2(M))

≥ . . .

≥ EUV
1 (Mn, Sn(M))

= EV (Mn, Sn(M)) .

(2.5)

Thus, if we have UV
n (x, |x|) ≤ 0 for all x, we indeed get (2.1). The idea

is that one may search for other functional sequences (in the place of
(UV

k )k≥1), for which the above chain of inequalities holds true (in the
last line, we allow the bound “≥”, instead of equality).

Specifically, we have the following statement.

Theorem 2.1. Let V : R× [0,∞)→ R be a given function and let n ≥
1 be a fixed integer. Suppose that (Uk)

n
k=1 is a sequence of real-valued

functions on R× [0,∞), which satisfy the following three conditions:

(i) We have Un(x, |x|) ≤ 0 for all x ∈ R.
(ii) We have U1(x, y) ≥ V (x, y) for all x ∈ R and y ≥ 0.
(iii) For each k = 1, 2, . . . , n − 1 there is a function Ak : R ×

[0,∞) → R such that the following holds: if x, d ∈ R and
y ≥ 0, then

Uk+1(x, y) + Ak(x, y)d ≥ Uk
(
x+ d,

√
y2 + d2

)
.

Then (2.1) holds true.
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Proof. Fix k ∈ {1, 2, . . . , n − 1}. Apply (iii) to x = Mn−k, y =
Sn−k(M) and d = Mn+1−k−Mn−k, and take the conditional expectation
with respect to Fn−k of both sides. We obtain

Uk+1(Mn−k, Sn−k(M)) ≥ E
[
Uk(Mn−k+1, Sn−k+1(M))

∣∣Fn−k]
and thus, integrating both sides, we get

EUk+1(Mn−k, Sn−k(M)) ≥ EUk(Mn−k+1, Sn−k+1(M)).

Combining this with (ii), we see that the chain (2.5) (with inequality
in the last line and UV

k replaced by Uk) is valid. It remains to apply
(i) and the claim follows. �

This methodology is closely related to the approach invented by
Burkholder in [4] (see also [2] for related technique concerning mar-
tingale transforms). Let us say a few words about this interesting
connection. Suppose that we are given a function V : R× [0,∞)→ R
and we want to establish the inequality (2.1) for all simple martin-
gales and for all values of n. To handle such a problem, we ap-
ply the formula (2.2) for each n, thus obtaining an infinite sequence
(UV

n )n≥1. It follows directly from the definition that the sequence is
nondecreasing: indeed, if M is any simple martingale, then the se-
quence (M1,M2, . . . ,Mn−1,Mn,Mn,Mn+1,Mn+2, . . .) is also a simple
martingale, so by the definition of UV

n+1,

UV
n+1(x, y) ≥ EV

(
Mn,

√
y2 − x2 + S2

n(M)
)
.

Thus, taking the supremum over all M gives the monotonicity. There-
fore it makes sense to speak about the limit

UV (x, y) = lim
n→∞

UV
n (x, y).

Now, if UV is finite on R × [0,∞), one easily checks that a version of
(2.5) holds true (all UV

k ’s are replaced by UV and there is an inequality
in the last line). These observations lead us to the following analogue
of Theorem 2.1, which can be found, in a slightly different form, in [4].

Theorem 2.2. Let V : R × [0,∞) → R be a given function. Sup-
pose that U is a real-valued function on R× [0,∞), which satisfies the
following three conditions:

(i) We have U(x, |x|) ≤ 0 for all x ∈ R.
(ii) We have U(x, y) ≥ V (x, y) for all x ∈ R and y ≥ 0.
(iii) There is a measurable function A : R × [0,∞) → R such that

the following holds: if x, d ∈ R and y ≥ 0, then

U(x, y) + A(x, y)d ≥ U
(
x+ d,

√
y2 + d2

)
.
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Then (2.1) holds true for all simple martingales M and all integers n.

For further details, examples and the proof of the above statement,
we refer the reader to the works [4], [12] and Chapter 8 in [13].

3. Proof of (1.3)

For the sake of clarity, we have decided to split this section into two
parts. The first subsection contains the proofs of three technical facts
which are needed later; in the second part, we introduce appropriate
special functions and establish (1.3).

3.1. Technical lemmas. Throughout this subsection, we assume that
C is a fixed number belonging to the interval [1, 2).

Lemma 3.1. For any x, d ∈ R such that |x| ≤
√
C − 1 we have

|x+ d| −
√
C
√
x2 + 1 + Cd2 ≤

√
C − 1(−1 + xd).

Proof. By continuity, we may assume that C > 1 and |x| <
√
C − 1.

Observe that it suffices to show the weaker bound

(3.1) x+ d−
√
C
√
x2 + 1 + Cd2 −

√
C − 1(−1 + xd) ≤ 0.

Indeed, having this done, we substitute −x, −d in the places of x and
d, obtaining

−x− d−
√
C
√
x2 + 1 + Cd2 −

√
C − 1(−1 + xd) ≤ 0,

and the two inequalities above yield the desired statement. To prove
(3.1), consider its left-hand side as a function of d and denote it by
F (d). Note that F tends to −∞ as d→ ±∞: this follows at once from
the assumption |x| <

√
C − 1. Thus, it suffices to check that F (d) ≤ 0

for all d such that F ′(d) = 0. It is straightforward to check that the
latter equation is equivalent to

d =

(
x2 + 1

C(C2 − (1−
√
C − 1x)2

)1/2

(1−
√
C − 1x)

and the inequality F (d) ≤ 0 can be rewritten in the form

√
C − 1 + x ≤

(
x2 + 1

C

[
C2 − (1−

√
C − 1x)2

])1/2

.

However, we have

C2 − (1−
√
C − 1x)2 =

√
C − 1(

√
C − 1 + x)(C + 1−

√
C − 1x),
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so squaring the above inequality and dividing both sides by
√
C − 1+x,

we obtain the equivalent bound

√
C − 1 + x ≤ x2 + 1

C

√
C − 1(C + 1−

√
C − 1x).

This estimate, in turn, can be transformed into

(x−
√
C − 1)(

√
C − 1x− 1)2 ≤ 0,

which, of course, is valid. �

Lemma 3.2. For any y ≥ 0, d ∈ R and x ≥
√
C − 1y we have

|x+ d| − C
√
y2 + d2 ≤ x− 2

√
C − 1y + (C − 1)d.

Proof. If d ≤ −x, the bound is equivalent to

−Cd− C
√
y2 + d2 ≤ 2

(
x−
√
C − 1y

)
,

which holds true: the left-hand side is nonpositive, while the expression
on the right is nonnegative. Suppose then that d > −x. Then the
desired estimate takes the form

(2− C)d− C
√
y2 + d2 ≤ −2

√
C − 1y.

Clearly, the left-hand side, considered as a function of d, is concave. A
straightforward analysis of its derivative gives that this function attains
its maximum at d = (2 − C)y/

(
2
√
C − 1

)
, and the maximal value is

precisely the right-hand side. �

Lemma 3.3. Assume that the numbers x, y ≥ 0 and d ∈ R satisfy the
conditions x ≥

√
C − 1y and |x+ d| ≤ C

2

√
y2 + d2. Then

−C
2

√(
C2

4
+ 1

)
(y2 + d2)− (x+ d)2 − (C − 1)d

≤ x− 2
√
C − 1y.

(3.2)

Proof. If d is nonnegative, then the left-hand side is not larger than
−C

2

√
y2 + d2 ≤ −C

2
y and the right-hand side is at least −

√
C − 1y ≥

−C
2
y, so the assertion is valid. Let us turn to the case when d ≤ 0.

Assume first that x ≤ C
2
y; then the discriminant of

(3.3) d 7→
(
C2

4
+ 1

)
(y2 + d2)− (x+ d)2

is nonpositive and hence the left-hand side of (3.2), as a function of d
(denoted by G(d)) is concave. However, G(0) ≤ x− 2

√
C − 1y, as we
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have already proved above, and

G′(0) =
C

2

x√(
C2

4
+ 1
)
y2 − x2

− (C − 1).

Since x ≥
√
C − 1y, we obtain

G′(0) ≥ C
√
C − 1√

(C − 2)2 + 4
− (C − 1),

and the expression on the right is nonnegative: after some straight-
forward manipulations, this is equivalent to (2 − C)3 ≥ 0. Hence
G(d) ≤ G(0) for d ≤ 0, which is exactly what we need.

It remains to deal with the case d ≤ 0 and x > C
2
y. The assumption

|x+ d| ≤ C
2

√
y2 + d2 is equivalent to saying that d ∈ [d−, d+], where

d± =
−x± C

2

√
(1− C2

4
)y2 + x2

1− C2

4

.

This time the discriminant of the binomial (3.3) turns out to be non-
negative, so the function G(d) (the left-hand side of (3.2)) is convex.
Thus, all we need is the bound G(d±) ≤ x − 2

√
C − 1y. Let us first

handle the upper bound for G(d−). We have x+ d− ≤ 0, so

G(d−)− x+ 2
√
C − 1y = (2− C)d− + 2

√
C − 1y

=
4
[
x+ C

2

√
(1− C2

4
)y2 + x2

]
2 + C

+ 2
√
C − 1y

and the latter expression is an increasing function of x. Thus, we will
be done if we show G(d−) ≤ x−2

√
C − 1y for x = Cy/2. This amounts

to proving that (
4C

C + 2
+ 2
√
C − 1

)
y ≤ 0,

or, equivalently, (C − 2)(C2 + C − 2) ≤ 0, which is evident.
Finally, we turn to the upper bound for G(d+). We have x+ d+ ≥ 0

and hence

G(d+)− x+ 2
√
C − 1y

= −Cd+ − 2(x−
√
C − 1y)

=
4C
[
x− C

2

√
(1− C2

4
)y2 + x2

]
4− C2

− 2(x−
√
C − 1y).
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The latter expression, considered as a function of x, is nonincreasing:
indeed, its derivative equals

4C

4− C2
− 2C2

(4− C2)
√

(1− C2

4
) y

2

x2
+ 1
− 2 ≤ 4C

4− C2
− C3

4− C2
− 2

= C − 2 ≤ 0,

where the first bound above follows from the assumption x > Cy/2.
Thus, we will be done if we show G(d+) ≤ x − 2

√
C − 1y ≤ 0 for

x = Cy/2. This is equivalent to (2
√
C − 1−C)y ≤ 0, or (C − 2)2 ≥ 0.

This completes the proof of the lemma. �

3.2. A family of special functions. Let 1 ≤ C ≤ 2 be a fixed
number. Consider a function UC : R× [0,∞)→ R given by

(3.4) UC(x, y) =

{
−C

2

√
(C

2

4
+ 1)y2 − x2 if |x| ≤ C

2
y,

|x| − Cy if |x| > C
2
y.

Note that U2 is precisely the special function used by the author in [12]
in the proof of the estimate ||M ||1 ≤ 2||S(M)||1. We will also need an
auxiliary function AC on R× [0,∞), defined by

AC(x, y) =

{
C
2
x/
√

(C
2

4
+ 1)y2 − x2 if |x| ≤ C

2
y,

C2

4
sgnx if |x| > C

2
y.

Let (Cn)n≥1 be the sequence introduced in Section 1 and let n ≥ 1
be fixed. For any k = 1, 2, . . . , n, let Uk = UCn+1−k ; furthermore, for
k = 1, 2, . . . , n− 1, let Ak = ACn−k . Finally, put V (x, y) = |x| − Cny.
We will show that the sequence (Uk)

n
k=1 has all the necessary properties

listed in Theorem 2.1.

Lemma 3.4. The conditions (i) and (ii) of Theorem 2.1 are satisfied.

Proof. The property (i) is trivial: we have Un(x, |x|) = UC1(x, |x|) = 0.
The condition (ii) also has a simple proof. Indeed, for |x| ≥ Cny/2 we
get equality, so we may assume that |x| < Cny/2. Furthermore, we
may restrict ourselves to nonnegative x. Rewrite the majorization in
the form

(3.5) Cny ≥ x+
Cn
2

√(
C2
n

4
+ 1

)
y2 − x2
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and observe that the right-hand side, as a function of x ∈ [0, Cny/2],
is increasing: its derivative equals

1− Cn
2

1√
(C

2
n

4
+ 1) y

2

x2
− 1
≥ 1− C2

n

4
≥ 0.

Hence, it suffices to show (3.5) for x = Cny/2; but then both sides are
equal. �

We turn to the third condition of Theorem 2.1.

Lemma 3.5. For any k = 1, 2, . . . , n−1, any x, d ∈ R and any y ≥ 0
we have

(3.6) Uk
(
x+ d,

√
y2 + d2

)
≤ Uk+1(x, y) + Ak(x, y)d.

Proof. Denote C = Cn+1−k, so that Cn−k = 2
√
C − 1. The function Uk

is defined by the right-hand side of (3.4), while the formulas for Uk+1

and Ak read

Uk+1(x, y) =

{
−
√
C − 1

√
Cy2 − x2 if |x| ≤

√
C − 1y,

|x| − 2
√
C − 1y if |x| >

√
C − 1y.

and

Ak(x, y) =

{√
C − 1x/

√
Cy2 − x2 if |x| ≤

√
C − 1y,

C − 1 if |x| >
√
C − 1y.

Suppose first that x ≤
√
C − 1y. If |x+ d| ≤ C

2

√
y2 + d2, then

Un(x+ d,
√
y2 + d2) = −C

2

√(
C2

4
+ 1

)
(y2 + d2)− (x+ d)2

≤ −
√
C − 1

√
C(y2 + d2)− (x+ d)2

(simply square both sides to verify the latter bound). The discriminant
of the quadratic function d 7→ C(y2 + d2) − (x + d)2 is nonpositive
(because of the assumption x ≤

√
C − 1y), so the function H(d) =

−
√
C − 1

√
C(y2 + d2)− (x+ d)2 is concave. Thus H(d) ≤ H(0) +

H ′(0)d, or

Un(x+ d,
√
y2 + d2) ≤ −

√
C − 1

√
Cy2 − x2 +

√
C − 1

xd√
Cy2 − x2

,

which is precisely (3.6).
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Next, assume that x ≤
√
C − 1y and |x + d| > C

2

√
y2 + d2. The

bound (3.6) becomes

|x+ d| − C
√
y2 + d2 ≤

√
C − 1

√
Cy2 − x2

(
−1 +

xd

Cy2 − x2

)
.

By homogeneity, we may assume that Cy2 − x2 = 1. Then the above
inequality is precisely the assertion of Lemma 3.1. Therefore, all we
need is the verification of the assumption |x| ≤

√
C − 1 appearing in

the statement of the lemma. But this follows from

x2 = Cx2 − (C − 1)x2 ≤ C(C − 1)y2 − (C − 1)x2 = C − 1.

Next, we turn to the case |x| ≥
√
C − 1y. Since Un(x, y) = Un(−x, y)

and An(x, y) = −An(−x, y), we may restrict ourselves to nonnegative

x. Now, if |x + d| > C
2

√
y2 + d2, the inequality (3.6) is precisely the

assertion of Lemma 3.2. On the other hand, if |x + d| ≤ C
2

√
y2 + d2,

then the claim follows from Lemma 3.3.
The proof is complete. �

4. Sharpness

To prove that for a given n the constant Cn cannot be replaced by
a smaller number, one could try to construct appropriate examples.
However, we will use a different approach which rests on the properties
of the abstract special functions U of Section 2.

Let n ≥ 1 be a fixed integer and let α < 1 be a given constant.
Consider the sequence (αk)

n
k=1 given by α1 = α, αk+1 = 1 + α2

k/4,
k = 1, 2, . . . , n − 1. Of course, then αn < Cn; furthermore, by the
proper choice of α, we may make αn as close to Cn as we wish. For
any 1 ≤ k ≤ n, let

Uα
k (x, y) = sup

{
E|Mk| − αnE

√
y2 − x2 + S2

k(M)
}
,

where the supremum is taken over all simple martingales starting from
x (we stress here that the constant above is αn, not αk). Note that
Uα
k (x, y) = Uα

k (−x, y): this follows from the trivial fact that if M is
a martingale starting from x, then −M is a martingale starting from
−x, and the two sequences have the same square function. As we have
observed in Section 2, Uα

k satisfies

Uα
k (x, y) = sup

{
EUα

k−1(x+D,
√
y2 +D2) : ED = 0

}
,

and hence, for any centered random variable D we have

(4.1) Uα
k (x, y) ≥ EUα

k−1(x+D,
√
y2 +D2).
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We will prove that

(4.2) Uα
k (x, y) ≥ |x| − αn+1−ky for k = 1, 2, . . . , n,

which will immediately yield the claim: indeed, in particular this will
give Uα

n (1, 1) ≥ 1 − α > 0, and will imply that no constant smaller
than Cn suffices in (1.3).

To show (4.2), we use induction. Fix x, y; actually, by the sym-
metry of Uα

k , we may assume that x ≥ 0. For k = 1 the bound
is trivial. Next, fix 1 ≤ k ≤ n − 1 and consider a centered ran-
dom variable D which takes values in the set {t1, t2}, where t1 =
(2 − αn−k+1)y/(2

√
αn−k+1 − 1) > 0 and t2 is negative number. By

(4.1) and the inductive assumption, we get

Uα
k+1(x, y)

≥ β1U
α
k

(
x+ t1,

√
y2 + t21

)
+ β2U

α
k

(
x+ t2,

√
y2 + t22

)
≥ β1

[
x+ t1 − αn−k+1

√
y2 + t21

]
+ β2

[
|x+ t2| − αn−k+1

√
y2 + t22

]
,

where β1 = −t2/(t1 − t2) and β2 = t1/(t1 − t2). Now let t2 → −∞: as
the result, we obtain

Uα
k+1(x, y) ≥ x+ t1 − αn−k+1

√
y2 + t21 + t1(1− αn−k+1)

= x− 2
√
αn−k+1 − 1y = x− αn−ky.

This completes the proof.
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[12] A. Osȩkowski, Two inequalities for the first moment of a martingale, its square

and maximal function, Bull. Polish Acad. Sci. Math. 53 (2005), pp. 441-449.
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