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Abstract. We introduce a method for the simultaneous study of a BMO

function ϕ and its dyadic square function S(ϕ) that can yield sharp norm
inequalities between the two. One of the applications is the sharp bound for the

p-th moment of S(ϕ), 0 < p <∞, which in turn implies the square-exponential

integrability of the square function. We also present sharp refinements of these
inequalities in the more restrictive case when ϕ is assumed to be bounded.

1. Introduction

Square function inequalities play an important role in both classical and noncom-
mutative probability theory, harmonic analysis, potential theory and many other
areas of mathematics. The purpose of this paper is to establish sharp bounds in
the dyadic case, which are closely related to the works of Bollobás [2], Davis [3],
John and Nirenberg [6], Littlewood [7], Marcinkiewicz [8], Paley [10], Slavin and
Vasyunin [15], Wang [16] and many others.

Let us start with introducing some background and notation. In what follows,
I = [0, 1] and D stands for the collection of all dyadic subintervals of I. Let (hn)n≥0

be the Haar system on [0, 1]:

h0 = χ[0,1], h1 = χ[0,1/2) − χ[1/2,1),

h2 = χ[0,1/4) − χ[1/4,1/2), h3 = χ[1/2,3/4) − χ[3/4,1),

h4 = χ[0,1/8) − χ[1/8,1/4), h5 = χ[1/4,3/8) − χ[3/8,1/2),

and so on. Let H be a separable Hilbert space with scalar product · and norm | · |.
For any I ∈ D and an integrable function ϕ : I → H, we will write 〈ϕ〉I for the
average of ϕ over I: that is, 〈ϕ〉I = 1

|I|
∫
I
ϕ (throughout, unless stated otherwise,

the integration is with respect to Lebesgue’s measure). Furthermore, for any such
ϕ and any nonnegative integer n, we use the notation

ϕn =
n∑
k=0

1
|Ik|

∫
I
ϕ(s)hk(s)ds hk

for the projection of ϕ on the subspace generated by the first n+ 1 Haar functions
(Ik is the support of hk). We define the dyadic square function of ϕ by the formula

S(ϕ)(x) =

(∑∣∣∣∣ 1
|In|

∫
I
ϕ(s)hn(s)ds

∣∣∣∣2
)1/2

,
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where the summation runs over all nonnegative integers n such that x ∈ In.
The inequalities comparing the sizes of ϕ and its square function S(ϕ) are of

importance in analysis and have interested many mathematicians. A classical result
of Paley [10] and Marcinkiewicz [8] states that there are finite absolute constants
cp (0 < p <∞) and Cp (1 < p <∞), such that for any ϕ : I → R,

(1.1) ||ϕ||p ≤ cp||S(ϕ)||p
and

(1.2) ||S(ϕ)||p ≤ Cp||ϕ||p.

The question about the optimal values of cp and Cp (still in the real-valued setting)
was studied by Davis [3]. For 0 < p < ∞, let νp denote the smallest positive zero
of a confluent hypergeometric function Mp and let µp be the largest positive zero
of the parabolic cylinder function of order p (see Abramovitz and Stegun [1] for
details). Using a related estimate for continuous-time martingales and Skorokhod
embedding theorems, Davis [3] showed that if 0 < p ≤ 2, then the best choice for
cp is νp, while for p ≥ 2, the optimal value of Cp is ν−1

p . This result was taken
up by Wang [16], who studied (1.1) and (1.2) for Hilbert-space-valued functions:
he proved that Davis’ constants are the best in this setting and also showed that
when p ≥ 3, then the optimal choice for cp is µp. In the remaining cases the best
constants are not known. For p = 1 the inequality (1.2) fails to hold, but there is
a related weak-type estimate

λ
∣∣{S(ϕ) ≥ λ}

∣∣ ≤ K||ϕ||1, λ > 0,

due to Bollobás [2], where K = 1, 463 . . .. This constant is optimal, see [9].
We will study related sharp bounds for the dyadic square function, but with the

particular emphasis put on ϕ with bounded mean oscillation. Let

BMO =
{
ϕ : I → H : 〈|ϕ− 〈ϕ〉I |2〉I <∞ for every I ∈ D

}
,

and for any ϕ ∈ BMO, define the corresponding norm

||ϕ||BMO = inf
I∈D

(
〈|ϕ− 〈ϕ〉I |2〉I

)1/2
.

It is well-known that any function ϕ ∈ BMO has very strong integrability proper-
ties, see the classical paper of John and Nirenberg [6], consult also the recent work
of Slavin and Vasyunin [15]. In particular, p-th norms 〈|ϕ|p〉I , as well as exponential
expressions 〈ecϕ〉I (for c sufficiently small), are comparable to 〈ϕ〉I (in the sense
given below). We will introduce a Bellman-type method which enables the study
of sharp bounds for various norms of S(ϕ) under the assumption that ϕ belongs to
BMO. In particular, this method will lead us to the following statements. For any
0 < p <∞ and x ≥ 0, let

Cp(x) =

(x2 + 1)1/2 if p < 2,[
ex

2 ∫∞
x2 e

−ssp/2ds
]1/p

if p ≥ 2.

Theorem 1.1. Suppose that ϕ : I → H satisfies ||ϕ||BMO ≤ 1. Then for any
0 < p <∞,

(1.3) ||S(ϕ)||p ≤ Cp(|〈ϕ〉I |)

and the inequality is sharp, even if H = R.
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Here by sharpness we mean that for any x ∈ R and any c < Cp(|x|), there is
a function ϕ : I → R such that 〈ϕ〉I = x and ||S(ϕ)||p > c. The above theorem
yields the following square-exponential integrability (for an alternative proof in the
real-valued setting, see e.g. Garsia [5]).

Theorem 1.2. Suppose that ϕ : I → H satisfies ||ϕ||BMO ≤ 1. Then for any
0 < c < 1,

(1.4) EecS
2(ϕ) ≤ (1− c)−1ec〈ϕ〉

2
I

and the inequality is sharp, even if H = R.

Observe that in the both results above, the upper bounds depend on the function
ϕ. This dependence cannot be removed, since the average 〈ϕ〉I can take arbitrarily
large values. By standard scaling, Theorems 1.1 and 1.2 can be formulated for
arbitrary BMO functions, not necessarily satisfying ||ϕ||BMO ≤ 1.

In the second part of the paper we study the special case ϕ ∈ L∞. Clearly,
if ||ϕ||∞ ≤ 1, then ||ϕ||BMO ≤ 2 and the above theorems (applied to ϕ/2) yield
Lp and square-exponential inequalities for S(ϕ). Since |〈ϕ〉I | ≤ 1, one can choose
the upper bounds which depend only on p or c. However, this approach does not
produce the optimal inequalities and our next contribution will be to provide sharp
versions of these. Define Kp = 1 for 0 < p < 2 and

Kp
p =

Γ(p+ 1)2p/2−1

Γ
(
p+1

2

)
πp−3/2

·
1− 1

3p+1 + 1
5p+1 − 1

7p+1 + . . .

1 + 1
32 + 1

52 + 1
72 + . . .

for p ≥ 2. We will establish the following statements.

Theorem 1.3. Suppose that ϕ : I → H satisfies ||ϕ||∞ ≤ 1. Then for 0 < p <∞,

(1.5) ||S(ϕ)||p ≤ Kp,

and the inequality is sharp, even if H = R.

Theorem 1.4. Suppose that ϕ : I → H satisfies ||ϕ||∞ ≤ 1. Then for any number
0 < c < π2/8 we have

(1.6) EecS
2(ϕ) ≤ (cos

√
2c)−1,

and the inequality is sharp, even if H = R.

The description of the method and the proofs of Theorems 1.1 and 1.2 can be
found in the next section. The final part of the paper concerns the bounded case.

2. BMO inequalities

2.1. On the method. Throughout this section, we distinguish the set

C = {(x, y, z) ∈ H × [0,∞)× (0,∞) : |x|2 ≤ y ≤ |x|2 + 1} ∪ {(0, 0, 0)}.

Let V : H × [0,∞) → R, α : H → R be given functions and suppose that we are
interested in showing the estimate

(2.1)
∫
I
V (ϕ, S(ϕ)) ≤ α(〈ϕ〉I)

for all simple functions ϕ : I → H satisfying ||ϕ||BMO ≤ 1. Here by simplicity
we mean that ϕ can be written as a finite sum

∑m
k=0 akhk for some integer m and
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some coefficients a0, a1, . . ., am ∈ H. The key to study such an estimate is a class
U(V ), which consists of all U : C → R satisfying

(2.2) U(x, |x|2, z) ≥ V (x, z) for all x, z such that (x, |x|2, z) ∈ C,

(2.3) U(x, y, |x|) ≤ α(x) for all x, y such that (x, y, |x|) ∈ C
and the further condition that for any (x, y, z) ∈ C and any d ∈ H, e ∈ R satisfying
(x±, y±,

√
z2 + |d|2) := (x± d, y ± e,

√
z2 + |d|2) ∈ C,

(2.4) U(x, y, z) ≥ 1
2

[
U
(
x−, y−,

√
z2 + |d|2

)
+ U

(
x+, y+,

√
z2 + |d|2

)]
.

The interplay between the class U(V ) and the inequality (2.1) is described in the
following statement.

Theorem 2.1. If the class U(V ) is nonempty, then (2.1) is valid for all simple ϕ
satisfying ||ϕ||BMO ≤ 1.

Proof. Fix ϕ as in the statement. First we prove that the sequence

(2.5)
(∫
I
U
(
ϕn, (|ϕ|2)n, S(ϕn)

))
n≥0

is nonincreasing (note that (|ϕ|2)n denotes the projection of the real-valued function
|ϕ|2 on the subspace spanned by the first n + 1 Haar functions). To show this
monotonicity, fix n ≥ 1, denote by I the support of hn and let I`, Ir be the left
and the right halves of I. We have∫

I

U
(
ϕn,(|ϕ|2)n, S(ϕn)

)
=
∫
I`

U
(
ϕn, (|ϕ|2)n, S(ϕn)

)
+
∫
Ir

U
(
ϕn, (|ϕ|2)n, S(ϕn)

)
=
|I|
2

[
U(x− d, y − e,

√
z2 + |d|2) + U(x+ d, y + e,

√
z2 + |d|2)

]
,

where x, y, z are the (constant) values of ϕn−1, (|ϕ|2)n−1 and S(ϕn−1) on I,
respectively, and d ∈ H, e ∈ R are determined by the conditions ϕn − ϕn−1 ∈
{−d, d}, (|ϕ|2)n − (|ϕ|2)n−1 ∈ {−e, e}. Using (2.4), we obtain the bound∫

I

U
(
ϕn, (|ϕ|2)n, S(ϕn)

)
≤ |I|U(x, y, z) =

∫
I

U
(
ϕn−1, (|ϕ|2)n−1, S(ϕn−1)

)
,

and since (ϕn, (|ϕ|2)n, S(ϕn)) and (ϕn−1, (|ϕ|2)n−1, S(ϕn−1)) coincide on I \ I, we
get the announced monotonicity property of the sequence (2.5). Next, since ϕ is
simple, there is m such that ϕm = ϕ, (|ϕ|2)m = |ϕ|2 and S(ϕm) = S(ϕ). Combining
this with (2.2) and (2.3), we obtain∫

I
V (ϕ, S(ϕ)) ≤

∫
I
U(ϕm, (|ϕ|2)m, S(ϕm))

≤
∫
I
U(ϕ0, (|ϕ|2)0, S(ϕ0))

=
∫
I
U(〈ϕ〉I , 〈|ϕ|2〉I , |〈ϕ〉I |)

≤ α(〈ϕ〉I).

(2.6)

This completes the proof. �
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It turns out that the implication of the above theorem can be reversed. For
(x, y) ∈ H × [0,∞) such that |x|2 ≤ y ≤ |x|2 + 1, let M(x, y) denote the class of
all simple functions ϕ : I → H from the unit ball of BMO, satisfying 〈ϕ〉I = x and
〈|ϕ|2〉I = y. The class M(x, y) is nonempty: for example, it contains the function
ϕ = (x−d)χ[0,1/2)+(x+d)χ[1/2,1), where d ∈ H is a vector satisfying |d|2 = y−|x|2.
Define U0 : C → (−∞,∞] by the formula

(2.7) U0(x, y, z) = sup
{∫
I
V
(
ϕ,
√
z2 − |x|2 + S2(ϕ)

)
: ϕ ∈M(x, y)

}
.

Theorem 2.2. Suppose that the inequality (2.1) holds for all simple ϕ : I → H
satisfying ||ϕ||BMO ≤ 1. Then the class U(V ) is nonempty and U0 is its least
element.

Proof. To see that U0 is the least pick an element U of U(V ) and ϕ ∈ M(x, y).
Repeating the argumentation from (2.6), we obtain∫

I
V
(
ϕ,
√
z2 − |x|2 + S2(ϕ)

)
≤
∫
I
U
(
ϕ0, (|ϕ|2)0,

√
z2 − |x|2 + S2(ϕ0)

)
= U(x, y, z).

Thus, taking supremum over ϕ ∈ M(x, y), we get U0(x, y, z) ≤ U(x, y, z), i.e. the
minimality of U0.

Now we check that U0 belongs to the class U(V ). The majorization (2.2) is
obvious: if y = |x|2, then ϕ ≡ x belongs to M(x, y), and for this choice of ϕ,∫

I
V
(
ϕ,
√
z2 − |x|2 + S2(ϕ)

)
= V (x, z).

The condition (2.3) is also straightforward: by (2.1), for any ϕ ∈M(x, y) we have∫
I
V (ϕ, S(ϕ)) ≤ α(x)

and hence, taking supremum over ϕ, we get U0(x, y, |x|) ≤ α(x). To prove (2.4),
fix any x, y, z, d, e as in the statement of this condition and pick ϕ± ∈M(x±, y±).
Next, splice these two functions together, using the formula

ϕ(t) =

{
ϕ−(2t) if t ∈ [0, 1/2),
ϕ+(2t− 1) if t ∈ [1/2, 1].

The new function belongs to M(x, y). Indeed, it is simple,

〈ϕ〉I =
∫ 1/2

0

ϕ−(2t)dt+
∫ 1

1/2

ϕ+(2t− 1)dt =
〈ϕ−〉I + 〈ϕ+〉I

2
= x

and similarly,

〈|ϕ|2〉I =
〈|ϕ−|2〉I + 〈|ϕ+|2〉I

2
= y.

Of course, ||ϕ||BMO ≤ 1. Finally, it is a matter of a simple verification that

−〈ϕ〉2I + S2(ϕ)(t) =

{
|d|2 − 〈ϕ−〉I + S2(ϕ−)(2t) for t ∈ [0, 1/2),
|d|2 − 〈ϕ+〉I + S2(ϕ+)(2t− 1) for t ∈ [1/2, 1].
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In consequence, by the definition of U0,

U0(x, y, z) ≥
∫
I
V
(
ϕ,
√
z2 − |x|2 + S2(ϕ)

)
=
∫ 1/2

0

V

(
ϕ,
√
z2 − 〈ϕ〉2I + S2(ϕ)

)
+
∫ 1

1/2

V

(
ϕ,
√
z2 − 〈ϕ〉2I + S2(ϕ)

)
=

1
2

[ ∫
I
V

(
ϕ−,

√
z2 + |d|2 − 〈ϕ−〉2I + S2(ϕ−)

)
+
∫
I
V

(
ϕ+,

√
z2 + |d|2 − 〈ϕ+〉2I + S2(ϕ+)

)]
.

Taking supremum over all ϕ± ∈ M(x±, y±) yields (2.4). The final step is to
show that −∞ < U0(x, y, z) < ∞ for any (x, y, z) ∈ C. The lower bound follows
from the definition of U0 and the already mentioned fact that the function ϕ =
(x− d)χ[0,1/2) + (x+ d)χ[1/2,1) (where |d|2 = y− |x|2) belongs toM(x, y). We turn
to the upper bound. The case (x, y, z) = (0, 0, 0) follows immediately from (2.3):
U0(0, 0, 0) ≤ α(0) < ∞. Thus we may assume that z > 0. Using induction, we
shall prove that for any x, d1, d2, . . ., dn ∈ H we have

U0(x+ d1 + d2 + . . .+ dn, y,
√
|x|2 + |d1|2 + |d2|2 + . . .+ |dn|2) <∞.

The case n = 0 follows at once from (2.3). To deal with the induction step, put
x = x+d1 + . . .+dn, z =

√
|x|2 + |d1|2 + . . .+ |dn|2 and d = dn+1. An application

of (2.4) gives

U0(x+ d, y,
√
z2 + |d|2) ≤ 2U0(x, y, z)− U0(x− d, y,

√
z2 + |d|2).

which is finite by the induction assumption and the lower bound

−∞ < U0(x− d, y,
√
z2 + |d|2),

which we have already established. It suffices to note that any point (x, y, z) ∈ C
with z > 0 can be written in the form

(x+ d1 + d2 + . . .+ dn, y,
√
|x|2 + |d1|2 + |d2|2 + . . .+ |dn|2)

for appropriate choice of vectors x, d1, d2, . . . and dn. A straightforward proof of
this fact is left to the reader. �

The method, after straightforward modifications, can be applied in many other
settings. For example, if we want to establish (2.1) for nonnegative BMO functions
ϕ only, we need to take H = R and change the definition of C to

{(x, y, z) ∈ [0,∞)× [0,∞)× (0,∞)} ∪ {(0, 0, 0)}.

Another modification, which will be used below, concerns the case in which ϕ
is assumed to be bounded and there are no additional assumptions on the mean
oscillation of ϕ. Then the method rests on the existence of appropriate special
functions of two variables; we may remove the variable y, which controls the BMO
norm of ϕ. To be more precise, suppose that B is the unit ball of H and let
V : B × [0,∞) → R, α : B → R be given functions. Suppose we are interested in
showing (2.1) for all simple ϕ : I → B. Put C =

(
B × (0,∞)

)
∪ {(0, 0)}. Then
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the validity of the estimate is equivalent to the existence of a function U : C → R,
which satisfies

(2.8) U(x, z) ≥ V (x, z) for all (x, z) ∈ C,

(2.9) U(x, |x|) ≤ α(x) for all x ∈ B

and the further condition that for any (x, z) ∈ C and any d ∈ H such that x±d ∈ B
we have

(2.10) U(x, z) ≥ 1
2

[
U(x+ d,

√
x2 + |d|2) + U(x− d,

√
z2 + |d|2)

]
.

Essentially, the proof of the equivalence is a word-by-word repetition of the rea-
soning presented above. We leave the details to the interested reader; consult also
Slavin and Vasyunin [15].

2.2. Applications: proofs of Theorem 1.1 and Theorem 1.2.

Proof of (1.3) for p ≥ 2. By Lebesgue’s monotone convergence theorem, it suffices
to prove the claim for simple functions ϕ only. The estimate (1.3) is of the form
(2.1), with the following choice of parameters:

V (x, z) = zp and α(x) = e|x|
2
∫ ∞
|x|2

e−ssp/2ds.

The corresponding special function U : C → R is given by

U(x, y, z) = (y − |x|2)ez
2
∫ ∞
z2

e−ssp/2 ds+ (1 + |x|2 − y)zp.

Let us check the conditions (2.2)–(2.4). The majorization is trivial; in fact, both
sides are equal. The condition (2.3) is also straightforward: if s ≥ |x|2, then
sp/2 ≥ |x|p and hence

U(x, y, |x|) = (y − |x|2)e|x|
2
∫ ∞
|x|2

e−ssp/2 ds+ (1 + |x|2 − y)|x|p

≤ (y − |x|2)e|x|
2
∫ ∞
|x|2

e−ssp/2 ds+ (1 + |x|2 − y)e|x|
2
∫ ∞
|x|2

e−ssp/2 ds

= α(x, y).

Finally, (2.4) is equivalent to

(y − |x|2 − |d|2)ez
2+|d|2

∫ ∞
z2+|d|2

e−ssp/2ds+ (1 + |x|2 + |d|2 − y)(z2 + |d|2)p/2

≤ (y − |x|2)ez
2
∫ ∞
z2

e−ssp/2ds+ (1 + |x|2 − y)zp.

If we substitute A = y−|x|2 ∈ [0, 1], Z = z2 ≥ 0, we see that all we need is to show
that the function

F (D) := (A−D)eZ+D

∫ ∞
Z+D

e−ssp/2ds+ (1−A+D)(Z +D)p/2
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is nonincreasing on [0,∞). A little calculation yields

F ′(D) = (1−A+D)
[
(Z +D)p/2 +

p

2
(Z +D)p/2−1 − eZ+D

∫ ∞
Z+D

e−ssp/2ds
]

= −p
2

(p
2
− 1
)

(1−A+D)eZ+D

∫ ∞
Z+D

e−ssp/2−2ds ≤ 0.

This completes the proof of (2.4) and the inequality (1.3) is established. �

Sharpness of (1.3) for p ≥ 2. Here we exploit Theorem 2.2. Fix a function β : R→
R and suppose that the inequality∫

I
Sp(ϕ) ≤ β(〈ϕ〉I)

holds true for all simple real-valued ϕ on I satisfying ||ϕ||BMO ≤ 1. By Theorem
2.2, the function U0, given by (2.7), belongs to the class U(V ) (here, as previously,
V (x, z) = zp). For any simple ϕ : I → R and any d ∈ R, we easily check that
||ϕ||BMO = ||ϕ+ d||BMO and, in addition, ϕ ∈M(x, x2 + 1) if and only if ϕ+ d ∈
M(x+ d, (x+ d)2 + 1). In consequence, since S2(ϕ+ d)−〈ϕ+ d〉2I = S2(ϕ)−〈ϕ〉2I ,
we obtain the following additional property of U0: for any x ∈ R and z > 0,

U0(x, x2 + 1, z) = sup
ϕ∈M(x,x2+1)

{∫
I
(z2 − x2 + S2(ϕ))p

}
= sup
ϕ∈M(x,x2+1)

{∫
I
(z2 − (x+ d)2 + S2(ϕ+ d))p

}
= sup
ϕ∈M(x+d,(x+d)2+1)

{∫
I
(z2 − (x+ d)2 + S2(ϕ))p

}
= U0(x+ d, (x+ d)2 + 1, z).

(2.11)

Now we are ready to prove the sharpness. By (2.4), we have, for any x > 0, z > 0
and any d ∈ (0, 1),

U0(x, x2 + 1, z) ≥ 1
2

[
U0(x− d, x2 + 1− 2xd,

√
x2 + d2)

+ U0(x+ d, x2 + 1 + 2xd,
√
x2 + d2)

]
.

(2.12)

Next, note that for any x, z, the function U(x, ·, z), given on [x2, x2 +1], is midcon-
cave and hence concave, since U0 is locally bounded from below (see the previous
subsection). Thus,

U0(x− d, x2 + 1− 2xd,
√
z2 + d2) = U0(x− d, (x− d)2 + 1− d2,

√
z2 + d2)

≥ d2 U0(x− d, (x− d)2,
√
z2 + d2)

+ (1− d2)U0(x− d, (x− d)2 + 1,
√
z2 + d2)

≥ d2(z2 + d2)p/2

+ (1− d2)U0(x, x2 + 1,
√
x2 + d2),

where in the last passage we have used (2.2) and (2.11). The analogous reasoning
leads to the same lower bound for U0(x+d, x2 +1+2xd,

√
z2 + d2). Plugging these
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two estimates into (2.12) yields

U0(x, x2 + 1, z) ≥ d2(z2 + d2)p/2 + (1− d2)U0(x, x2 + 1,
√
x2 + d2).

Therefore, by induction,

U0(x, x2 + 1, x)

≥ d2
n∑
k=1

(1− d2)k−1(x2 + kd2)p/2 + (1− d2)nU0(x, x2 + 1,
√
x2 + nd2)

≥ d2
n∑
k=1

(1− d2)k−1(x2 + kd2)p/2.

Here, in the last line, we have used the fact that the function V is nonnegative and
hence so is U0, by the very definition. Let n→∞ and pick c > 1. If d is sufficiently
close to 0, then 1− d2 ≥ e−cd2 and hence we obtain that

U0(x, x2 + 1, x) ≥ d2
∞∑
k=1

e−c(k−1)d2(x2 + kd2)p/2 d→0−−−→ ex
2
∫ ∞
x2

e−cssp/2ds.

Since c > 1 was arbitrary, (2.3) implies

β(x) ≥ U0(x, x2 + 1, x) ≥ ex
2
∫ ∞
x2

e−ssp/2ds,

which is the desired sharpness. �

Proof of (1.3), 0 < p < 2. Though the bound follows easily from Jensen inequality:∫
I
Sp(ϕ) ≤

[∫
I
S2(ϕ)

]p/2
= 〈|ϕ|2〉p/2I ≤

(
|〈ϕ〉I |2 + 1

)p/2
,

it is instructive to see how it can be established using the above methodology. We
see that the estimate is of the form (2.1), with

V (x, z) = zp and α(x) = (|x|2 + 1)p/2.

Consider the function U : C → R given by U(x, y, z) = (y − |x|2 + z2)p/2. Then
U ∈ U(V ): indeed, the conditions (2.2) and (2.3) are trivial, while (2.4) follows
from the concavity of the function t 7→ tp/2, t ≥ 0:

U(x+ d, y + e,
√
z2 + d2) + U(x− d, y − e,

√
z2 + d2)

=
(
y − |x|2 + z2 + (e− 2x · d)

)p/2 +
(
y − |x|2 + z2 − (e− 2x · d)

)p/2
≤ 2(y − |x|2 + z2)p/2 = 2U(x, y, z).

This finishes the proof. �

Sharpness of (1.3), 0 < p < 2. This time the simplest approach is to provide an
appropriate example. For any x ∈ R, put ϕ = x + h1 and observe that 〈ϕ〉I = x

and S(ϕ) =
√
〈ϕ〉2I + 1. Thus, both sides of (1.3) are equal and hence the bound

is sharp. �
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Proof of (1.4). This follows immediately from the above considerations. Indeed,
for any c < 1 and any ϕ : I → H with ||ϕ||BMO ≤ 1,∫

I
ecS

2(ϕ) =
∞∑
k=0

ck

k!

∫
I
S2k(ϕ)

≤
∞∑
k=0

ck

k!
e〈ϕ〉

2
I

∫ ∞
〈ϕ〉2I

e−sskds

= e〈ϕ〉
2
I

∫ ∞
〈ϕ〉2I

e−secsds =
ec〈ϕ〉

2
I

1− c
,

which is the claim. �

Sharpness of (1.4) for H = R. Again, we make use of Theorem 2.2. Fix c ∈ (0, 1),
a function β : R→ R and suppose that the inequality∫

I
ecS

2(ϕ) ≤ β(ϕ〉I)

holds true for all simple ϕ : I → R satisfying ||ϕ||BMO ≤ 1. Let V : R× [0,∞)→ R
be given by V (x, z) = ecz

2
and let U0 be defined by (2.7). Repeating the reasoning

leading to (2.11), we see that here we also have

U0(x, x2 + 1, z) = U0(x+ d, (x+ d)2 + 1, z)(2.13)

for all x ∈ R, z > 0 and d ∈ R. Furthermore, for all (x, y, z) ∈ C and d > 0,

U0(x, y,
√
z2 + d2) = sup

ϕ∈M(x,y)

{∫
I
ec(z

2+d2−x2+S2(ϕ))

}
= ecd

2
sup

ϕ∈M(x,y)

{∫
I
ec(z

2−x2+S2(ϕ))

}
= ecd

2
U0(x, y, z).

(2.14)

Finally, a reasoning similar to that presented above yields that for any d ∈ (−1, 1),

U0(x− d, x2 + 1− 2xd,
√
x2 + d2)

= U0(x− d, (x− d)2 + 1− d2,
√
x2 + d2)

≥ d2 U0(x− d, (x− d)2,
√
x2 + d2) + (1− d2)U0(x− d, (x− d)2 + 1,

√
x2 + d2)

≥ d2ec(x
2+d2) + (1− d2)U0(x, x2 + 1,

√
x2 + d2)

= d2ec(x
2+d2) + (1− d2)ecd

2
U0(x, x2 + 1, |x|),

where in the last passage we have used (2.14). Now, write down (2.12), combine it
with the above lower bound and calculate a little bit to obtain

U0(x, x2 + 1, |x|) ≥ ec(x
2+d2)

1− (1− d2)ecd2
.

Letting d→ 0 and applying (2.3) gives

β(x) ≥ U0(x, x2 + 1, |x|) ≥ ecx
2

1− c
.

Thus the bound (1.4) is optimal. �
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3. Inequality for bounded functions

Now we will study the case in which the functions ϕ are bounded by 1. It will be
convenient to make use of some classical probabilistic arguments. Throughout this
section, (Ω,F ,P) is a probability space, equipped with a continuous-time filtration
(Ft)t≥0, and X = (Xt)t≥0 is an adapted, one-dimensional Brownian motion starting
from the origin. Then [X,X], the quadratic covariance process (square bracket) of
X is given by [X,X]t = t; for the necessary definitions, we refer the reader to
Dellacherie and Meyer [4].

As in the BMO setting, the main difficulty lies in proving the Lp estimates (1.5)
for p ≥ 2. Fix such a number p and let S denote the strip [−1, 1]× [0,∞). Consider
a function v : S → R, satisfying the heat equation

(3.1) vy +
1
2
vxx = 0

with the boundary condition v(±1, y) = yp, y ≥ 0. It is well-known (and follows
immediately from some very basic facts from semigroup theory; see e.g. Revuz
and Yor [12]) that v admits the following stochastic representation: if τx = inf{t :
|x+Xt| ≥ 1} is the first exit time of the process ((t, x+Xt))t≥0 from the strip S,
then

(3.2) v(x, y) = E(y + τx)p/2.

Clearly, v is of class C∞ in the interior of the strip S and continuous up to its
boundary. In fact, it is not difficult to write down the explicit integral formula for
v. However, we will not do this; we will only need the explicit value of v at the
point (0, 0), which can be directly derived from (3.2).

Let us gather some further information on v.

Lemma 3.1. The function v has the following properties.
(i) We have vy ≥ 0 and vyy ≥ 0 in the interior of S.
(ii) For any y ≥ 0, the function v(·, y) is even and concave.
(iii) We have

v(0, 0) =
Γ(p+ 1)2p/2−1

Γ
(
p+1

2

)
πp−3/2

·
1− 1

3p+1 + 1
5p+1 − 1

7p+1 + . . .

1 + 1
32 + 1

52 + 1
72 + . . .

.

Proof. (i) The bound vy ≥ 0 is obvious. The inequality vyy ≥ 0 follows from (3.2)
and the convexity of the function t 7→ tp/2 on [0,∞). Indeed, if y1, y2 ≥ 0 and
λ ∈ (0, 1), then

(3.3) λE(y1 + τx)p/2 + (1− λ)E(y2 + τx)p/2 ≥ E(λy1 + (1− λ)y2 + τx)p/2.

(ii) The first assertion follows at once from the stochastic representation of v
and the fact that (−Xt)t≥0 is also a Brownian motion. The second property is an
immediate consequence of (3.1) and part (i).

(iii) Let Y = (Yt)t≥0 be a Brownian motion independent of X. It is a classi-
cal result that Yτ0 has the density g(u) = e−πu/2/(1 + e−πu). The process Y is
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independent from τ0, so Yτ0 has the same distribution as τ1/2
0 Y1 and thus

v(0, 0) = Eτp/20 =
E|Yτ0 |p

E|Y1|p

=
√
π

2p/2Γ
(
p+1

2

) ∫
R
|x|p e−πx/2

1 + e−πx
dx

=
2
√
π

2p/2Γ
(
p+1

2

) ∫ ∞
0

xp
∞∑
k=0

(−1)ke−(2k+1)πx/2 dx

=
√
π

2p/2−1Γ
(
p+1

2

) ∞∑
k=0

(
(2k + 1)π

2

)−p−1 ∫ ∞
0

xpe−xdx

=
Γ(p+ 1)2p/2−1

Γ
(
p+1

2

)
πp−3/2

·
1− 1

3p+1 + 1
5p+1 − 1

7p+1 + . . .

1 + 1
32 + 1

52 + 1
72 + . . .

.

(3.4)

Here, in the last passage, we have used the identity

π2

8
= 1 +

1
32

+
1
52

+
1
72

+ . . . . �

Proof of (1.5). Suppose first that p ≥ 2. For any (x, y) ∈ B × [0,∞), let V (x, y) =
yp, α(x) = v(0, 0) and U(x, y) = v(|x|, y2). We will prove that the conditions (2.8)–
(2.10) are satisfied. The majorization follows immediately from the concavity of
v(·, y) and the fact that U(x, y) = V (x, y) for x lying on the unit sphere. To prove
(2.9), note that for t ∈ (0, 1),

d
dt
v(t, t2) = vx(t, t2) + 2tvy(t, t2) = vx(t, t2)− tvxx(t, t2).

By parts (i) and (ii) of Lemma 3.1, we have vx(0, t2) = 0, vxxx(0, t2) = 0 and
vxxxx = 4vyy ≥ 0, which implies vxxx(·, t2) ≥ 0 on [0, 1]. Thus, by the mean-value
theorem, there is t′ ∈ (0, t) such that vx(t, t2) = tvxx(t′, t2) and

d
dt
v(t, t2) = t

(
vxx(t′, t2)− vxx(t, t2)

)
≤ 0.

In consequence, U(x, |x|) = v(x, |x|2) ≤ v(0, 0). Finally, we turn to (2.4). Fix
x, d ∈ H and y ≥ 0 such that |x| ≤ 1, |x+ d| ≤ 1. We must prove that

(3.5) v(|x+ d|, y2 + |d|2) + v(|x− d|, y2 + |d|2) ≤ 2v(|x|, y2).

The left-hand side can be written in the form F (2x · d), where

F (s) = v(
√
A− s, y2 + |d|2) + v(

√
A+ s, y2 + |d|2)

and A = |x|2 + |d|2. The function F is nondecreasing on [0, 2|x||d|]: we have

F ′(s) = −vx(
√
A− s, y2 + |d|2)
2
√
A− s

+
vx(
√
A+ s, y2 + |d|2)
2
√
A+ s

≥ 0,

where the latter bound is due to d
dx (vx(x, y)/x) = (xvxx(x, y) − vx(x, y))x−2 ≥ 0

for x > 0 (see the above verification of (2.9)). Furthermore, F is even; thus, it
suffices to prove (3.5) for x · d = |x||d|, i.e. in the case when x and d are linearly
dependent. Introduce an auxiliary continuous function G : [0, 1]→ R, given by

G(t) = v
(
|x+ td|, y2 + t2|d|2

)
+ v
(
|x− td|, y2 + t2|d|2

)
.
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We will prove that G is nonincreasing, which will immediately yield (3.5). Fix
t ∈ (0, 1) satisfying x ± td 6= 0 and let x± = |x ± td|, y+ =

√
y2 + t2|d|2. Since

x · d = |x||d|, G′(t) equals

vx(x+, y
2
+)

(x+ td) · d
|x+ td|

− vx(x−, y2
+)

(x− td) · d
|x− td|

+ 2
(
vy(x−, y2

+) + vy(x+, y
2
+)
)
t|d|2

= vx(x+, y
2
+)|d| − vx(x−, y2

+)
(|x| − t|d|)|d|
|x− td|

− (vxx(x−, y2
+) + vxx(x+, y

2
+))t|d|2.

Now, if |x| ≥ t|d|, the above expression is equal to

|d|
[
vx(x+, y

2
+)− vx(x−, y2

+)− (vxx(x−, y2
+) + vxx(x+, y

2
+))t|d|

]
= |d|

[∫ x+

x−

vxx(s, y2
+) ds− (vxx(x−, y2

+) + vxx(x+, y
2
+))
|x+ − x−|

2

]
,

which is nonpositive: this follows at once from the estimates vxx ≤ 0 and vxxxx ≥ 0,
which we have already established above. Similarly, if t|d| > |x|, then

G′(t) = |d|
[
vx(x+, y

2
+) + vx(x−, y2

+)− (vxx(x−, y2
+) + vxx(x+, y

2
+))t|d|

]
= |d|

[∫ x+

−x−
vxx(s, y2

+) ds− (vxx(x−, y2
+) + vxx(x+, y

2
+))
|x+ + x−|

2

]
≤ 0,

because of the same reasons as above. This completes the proof of (2.10) and hence
(1.5) is established for p ≥ 2. If 0 < p < 2, then the estimate follows immediately
from Jensen’s inequality combined with the case p = 2, or by the use of the function
U(x, z) = (1 − |x|2 + z2)p/2. Since the calculations are the same as in the BMO
case, we omit them. �

Sharpness. For 0 < p ≤ 2, the optimality of the constant is trivial, so assume that
p > 2. Suppose that the best constant in (1.5) (for real-valued functions) equals cp.
Apply the version of Theorem 2.2: the function U0 : ([−1, 1]×(0,∞))∪{(0, 0)} → R,
given by

U0(x, z) = sup
{

E(z2 − x2 + S2(ϕ))p/2
∣∣ ϕ : I → [−1, 1], 〈ϕ〉I = x

}
,

satisfies (2.8), (2.9) and (2.10) with V (x, z) = zp/2 and α(x) = cpp. Next, let N be
a positive integer. Introduce the family (τNn )n≥0 of stopping times, given by τ0 ≡ 0
and, for n ≥ 1,

τNn = inf{t > τNn−1 : |Xt −XτN
n−1
| ≥ 1/N}.

Then (Rn)n≥0 = (XτN
n

)n≥0 is a symmetric random walk of step of size 1/N . Con-
sider the stopping time σN = inf{n : |Rn| = 1}. If σN > n and we apply (2.10) to
x = Rn, z =

√
n/N and d = Rn+1 −Rn, then we get

U0(Rn,
√
n/N) ≥ 1

2

[
U0(Rn+1,

√
n+ 1/N) + U0(Rn − (Rn+1 −Rn),

√
n+ 1/N)

]
.

Since Rn+1−Rn is symmetric and independent from the event {σN > n}, the above
estimate yields

EU0(Rn,
√
n/N)χ{σN>n} ≥ EU0(Rn+1,

√
n+ 1/N)χ{σN>n},

which can be rewritten in the form

EU0
(
RσN∧n,

√
σN ∧ n/N

)
≥ EU0

(
RσN∧(n+1),

√
σN ∧ (n+ 1)/N

)
.
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Consequently, applying (2.9) and then (2.8), we get

cpp ≥ U0(0, 0) ≥ EU0
(
RσN∧n,

√
σN ∧ n/N

)
≥ E

(√
σN ∧ n/N

)p
and hence, by Lebesgue’s monotone convergence theorem,

(3.6) E (
√
σN/N)p ≤ cpp.

However, by the very definition of (τNn ) and σN , we have that τ := τNσN is the first
exit time of X from the interval [−1, 1]. Since sup0≤k<σN |τNk+1 − τNk | → 0 almost
surely as N →∞, we have

σN

N2
=
σN−1∑
k=0

|XτN
k+1
−XτN

k
|2 → [X,X]τ = τ

in probability as N → ∞ (see Dellacherie and Meyer [4]). Thus, by (3.6) and
Fatou’s lemma,

Eτp/2 ≤ cpp.
However, the left hand side is precisely v(0, 0), by virtue of (3.2), and this shows
that [v(0, 0)]1/p is indeed the optimal constant in (1.5). �

Proof of (1.6). By (1.5), for any nonnegative integer n we have

ES2n(ϕ) ≤
√
π

2nΓ
(

2n+1
2

) ∫
R
|x|2n eπx/2

1 + eπx
dx,

see the second line in (3.4). In consequence, for any 0 < c < π2/8 we may write

E exp(cS2(ϕ)) ≤
∞∑
n=0

√
πcn

2nΓ
(

2n+1
2

)
n!

∫
R
|x|2n eπx/2

1 + eπx
dx

=
∫

R

∞∑
n=0

(
√

2c|x|)2n

(2n)!
eπx/2

1 + eπx
dx

=
∫

R
cosh(

√
2cx)

eπx/2

1 + eπx
dx.

Using the residue theorem, one easily verifies that for any a ∈ (0, π) we have∫
R

eax

1 + eπx
dx = (sin a)−1.

Plugging this above yields the desired estimate. �

Sharpness. This can be shown exactly in the same manner as in the case of (1.5).
We leave the details to the reader. �
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