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Abstract

Suppose that f is a martingale and let |f |∗, S(f) denote the associated maximal
and square functions. We prove that for any weight w we have

|| |f |∗ ||L1(w) ≤ C||S(f)||L1(w∗)

with C = 16(
√

2 + 1) = 38.62742 . . .. The proof rests on the construction of
an appropriate special function, enjoying certain size and concavity conditions.
Furthermore, we show that the term w∗ on the right cannot be replaced by the
r-maximal function of w for any 0 < r < 1.
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1. Introduction

The purpose of this note is to establish a weighted version of Davis’ inequality
between maximal and square functions of an arbitrary discrete-time martingales.
In what follows, we assume that (Ω,F ,P) is a probability space equipped with
a family (Fn)n≥0 of non-decreasing sub-σ-algebras of F . Let f = (fn)n≥0 be
an adapted martingale with the difference sequence df = (dfn)n≥0 given by the
equalities df0 = f0 and dfn = fn − fn−1 for n ≥ 1. The maximal and square

functions of f are defined by |f |∗ = supk≥0 |fk| and S(f) =
(∑∞

k=0 df
2
k

)1/2
. We

will also need truncated versions of these objects, given by |f |∗n = max0≤k≤n |fk|
and Sn(f) =

(∑n
k=0 df

2
k

)1/2
, n = 0, 1, 2, . . .. Furthermore, we will work with

one-sided maximal function f∗ = supk≥0 fk and let f∗n = max0≤k≤n fk for n ≥ 0.
The inequalities involving f , |f |∗ and S(f) play a prominent role in prob-

ability and the theory of stochastic integration. For an overview of the results
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Preprint submitted to Elsevier April 15, 2017



in this direction, we refer the interested reader to the survey by Burkholder
(1991) or the monograph by Osȩkowski (2012). Our motivation comes from
the classical result of Davis (1970) which asserts the existence of an absolute
constant c such that

|| |f |∗ ||L1 ≤ c||S(f)||L1

for all real-valued martingales f . We will be interested in the weighted version
of this bound, where, in the probabilistic context, the word “weight” refers to
a nonnegative and integrable random variable w. A short bibliographical com-
ment is in order. The theory of weighted inequalities has developed rapidly
during the last forty years, starting with the seminal analytic work of Mucken-
houpt (1972) on the Lp-boundedness of Hardy-Littlewood maximal operator.
Since then, numerous estimates for various classes of operators (e.g., integral,
singular integral, fractional, area functionals) have been investigated. Many
aspects of this theory can be carried over to the probabilistic setting: see Kaza-
maki (1994) for an overview of results in this direction.

We come back to the weighted version of Davis’ inequality. Consider the
estimate

|| |f |∗ ||L1(w) ≤ cw||S(f)||L1(w),

where ||ξ||L1(w) = E|ξ|w is the usual weighted L1-norm and the constant cw
depends only on w. It is not difficult to show that in general, without any
additional assumptions on w, this estimate fails to hold, no matter what cw is.
To see a simple example, suppose that f is a symmetric random walk over the
integers, started at 1 and stopped upon reaching 0. Then the random variable
|f |∗/S(f) is unbounded and hence there is a nonnegative random variable w
such that || |f |∗ ||L1(w) =∞ and ||S(f) ||L1(w) <∞.

Thus the inequality must be modified. Motivated by related results of Fef-
ferman & Stein (1971) from harmonic analysis, we will replace the weight
w on the right-hand side by its maximal function. That is, we consider the
martingale (wn)n≥0 = (E(w|Fn))n≥0 induced by w and consider the space
L1(|w|∗) = L1(w∗) on the right. Here is the precise statement.

Theorem 1.1. Suppose that w is a weight. Then for any martingale f =
(fn)n≥0 we have

|| |f |∗ ||L1(w) ≤ 16(
√

2 + 1)||S(f)||L1(w∗). (1)

Here the constant 16(
√

2 + 1) = 38.62742 . . . does not seem to be the best
possible, but we believe it is not very far from the optimal one. We would like
to comment that the above result complements the reverse estimate obtained
in the recent paper by Osȩkowski (2017).

Our proof will exploit Burkholder’s technique (called sometimes the Bell-
man function method in the literature). Namely, we will deduce the validity of
(1) from the existence of a certain special function of four variables, enjoying
appropriate majorization and concavity.

There is an interesting question whether the estimate (1) can be improved
by decreasing the term w∗ on the right. A natural candidate is the r-maximal
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function of w, where 0 < r < 1 is a given parameter. Recall that the r-maximal
function is given by the formula [(wr)∗]1/r, i.e., we take the martingale generated
by the integrable random variable wr and consider its maximal function raised
to the power 1/r. We will show that after such change, the weighted estimate
fails to hold, even if we replace |f |∗ on the left by the terminal variable f of the
martingale.

Theorem 1.2. Let 0 < r < 1. Then for any c > 0 there is a finite martingale
f = (fn)Nn=0 and a weight w such that

E|fN |w > cES(f)[(wr)∗]1/r.

We have organized the rest of this paper as follows. We establish Theorem
1.1 in the next section. The counterexamples of Theorem 1.2 are provided in
the final part of this note.

2. Proof of Theorem 1.1

Throughout this paper, the letter C will stand for the constant 4(
√

2 + 1).
Consider the special function U : R× [0,∞)× [0,∞)× (0,∞)→ R, given by

U(x, y, u, v) = (x2 + y2)1/2u− Cyv + 4yv ln(uv−1 + 1).

This function enjoys the following size conditions.

Lemma 2.1. Take (x, y, u, v) ∈ R × [0,∞) × [0,∞) × (0,∞) satisfying u ≤ v.
Then we have

U(x, y, v, v) ≤ 0, if |x| ≤ y, (2)

U(x, y, u, v) ≥ |x|u− Cyv (3)

and
|Ux(x, y, u, v)| ≤ v. (4)

Proof. This is very straightforward, we leave the details to the reader.

The key property of U is the following concavity-type condition.

Lemma 2.2. For any (x, y, u, v) ∈ R× [0,∞)× [0,∞)× (0,∞)→ R satisfying
u ≤ v and any d ∈ R, e ≥ −u we have

U
(
x+ d, (y2 + d2)1/2, u+ e,max(u+ e, v)

)
≤ U(x, y, u, v) + Ux(x, y, u, v)d+ Uu(x, y, u, v)e.

(5)

Proof. Fix x, y, u, v, d, e as in the statement. We may assume that d ≥ 0,
replacing x, d with −x and −d, if necessary (this does not change the left and
the right-hand side of (5)). It is convenient to split the reasoning into three
separate parts.
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Step 1: u+ e ≤ v, d ≤ y. Consider the functions G, H : [0, 1]→ R given by

G(t) = U
(
x+ td, (y2 + t2d2)1/2, u+ te, v

)
=
(
(x+ td)2 + y2 + t2d2

)1/2
(u+ te)− 4

√
2
(
y2 + t2d2

)1/2
v

− 4(y2 + t2d2)1/2v + 4(y2 + t2d2)1/2v ln((u+ te)v−1 + 1)

and

H(t) =
(
(x+ td)2 + y2

)1/2
(u+ te)− 4

√
2
(
y2 + t2d2

)1/2
v

− 4yv + 4yv ln((u+ te)v−1 + 1).

The assertion is equivalent to G(1) ≤ G(0) + G′(0). However, we see that
G(0) = H(0) and G′(0) = H ′(0). Furthermore, for any t ∈ [0, 1] we have
G(t) ≤ H(t), which follows from the estimate

∂

∂s

[ (
(x+ td)2 + s2

)1/2
(u+ te)

− 4
√

2
(
y2 + t2d2

)1/2
v − 4sv + 4sv ln((u+ te)v−1 + 1)

]

=
s(u+ te)

((x+ td)2 + s2)
1/2
− 4v + 4v ln((u+ te)v−1 + 1) ≤ v − 4v + 4v ln 2 ≤ 0.

Consequently, it suffices to show that H(1) ≤ H(0) +H ′(0) which, in turn, will
immediately follow if we prove that H is concave. To this end, we derive that

H ′(t)=
(x+ td)(u+ te)d

((x+ td)2 + y2)
1/2

+
(
(x+ td)2 + y2

)1/2
e− 4

√
2td2v

(y2 + d2)1/2
+

4yve

u+ te+ v

and H ′′(t) is equal to

y2(u+ te)d2

((x+ td)2 + y2)
3/2

+
2(x+ td)de

((x+ td)2 + y2)
1/2
− 4

√
2y2d2v

(y2 + d2)3/2
− 4yve2

(u+ te+ v)2

≤ vd2

y
+ 2d|e| − 4

√
2y2d2v

(y2 + d2)3/2
− ye2

v
,

where we have used the bound u + te ≤ v. By the second assumption of this
step, we have d ≤ y. This implies y2 + d2 ≤ 2y2 and hence

H ′′(t) ≤ vd2

y
+ 2d|e| − 2vd2

y
− ye2

v
≤ 0.

Step 2: d ≥ y, u+ e ≤ v. Denote

I(d) = U
(
x+ d, (y2 + d2)1/2, u+ e, (u+ e) ∨ v

)
− (U(x, y, u, v) + Ux(x, y, u, v)d+ Uu(x, y, u, v)e)
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It follows from the previous step that I(d) ≤ 0 if d = y. Therefore we will be
done if we show that I ′(d) ≤ 0. A direct computation yields

I ′(d) =

(
(x+ d) + d

)
(u+ te)

((x+ d)2 + y2 + d2)
1/2

− vd

(y2 + d2)1/2

[
4
√

2 + 4− 4 ln((u+ e)v−1 + 1)
]
− xu

(x2 + y2)1/2

≤ 21/2v − 2−1/2v
[
4
√

2 + 4− 4 ln 2
]

+ v ≤ 0,

where we have used the bound d/(y2 + d2)1/2 ≥ 2−1/2 which is a consequence
of the assumption d ≥ y.

Step 3. u+ e ≥ v. This assumption implies that e is a nonnegative number.
Let

J(e) = U
(
x+ d, (y2 + d2)1/2, u+ e, (u+ e) ∨ v

)
− (U(x, y, u, v) + Ux(x, y, u, v)d+ Uu(x, y, u, v)e) .

This is precisely the expression which was denoted by I(d) in the previous step;
however, here we treat it as a function of e. It follows from Steps 1 and 2 that
in the limit case u + e = v we have J(e) ≤ 0. Therefore it is enough to prove
that J ′(e) ≤ 0. The derivative is equal to

((x+ d)2 + y2 + d2)1/2 − (x2 + d2)1/2 − (y2 + d2)1/2(4
√

2 + 4− 4 ln 2)− 2y

≤ 2(x+ d)d

((x+ d)2 + y2 + d2)1/2 + (x2 + d2)1/2
− (y2 + d2)1/2(4

√
2 + 4− 4 ln 2)

≤ 2d− d(4
√

2 + 4− 4 ln 2) ≤ 0.

This completes the proof of the lemma.

Proof of (1). Fix a martingale f = (fn)n≥0 and a weight w inducing the
associated martingale (wn)n≥0. We may assume that the weight w is strictly
positive, by a simple approximation argument (add a small ε to w and let ε→ 0
at the very end). Furthermore, we may and do assume that ES(f)w∗ < ∞,
since otherwise there is nothing to prove. In particular, this implies that for
any n ≥ 0 we have E|dfn|w∗ < ∞ and hence also E|fn|w∗ < ∞. For n ≥ 0,
denote hn = (fn, Sn(f), wn, w

∗
n). The first step is to show that the process

(U(hn))n≥0 is a supermartingale; note that the assumption on the positivity of
the weight implies w∗n > 0 for all n and hence hn belongs to the domain of the
function U . Fix n ≥ 0 and apply (5) to x = fn, y = Sn(f), u = wn, v = w∗n,
d = dfn+1 and e = dwn+1, obtaining

U(hn+1) ≤ U(hn)− Ux(hn)dfn+1 + Uu(hn)dwn+1.

Now, observe that the expressions above are integrable. This easily follows from
(4) and the estimates ES(f)w∗ < ∞, E|dfn|w∗ < ∞ and E|fn|w∗ < ∞ men-
tioned at the beginning of the proof. Thus, taking the conditional expectation
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with respect to Fn yields the desired supermartingale property of (U(hn))n≥0.
Hence, by (2) and (3), we obtain

E|fn|wn − CESn(f)w∗n ≤ EU(hn) ≤ EU(h0) = EU(f0, |f0|, w0, w0) ≤ 0. (6)

This gives an upper bound for the weighted norm of f . To pass to |f |∗, consider
another sequence kn = (max(f∗n, 0) − fn, Sn(f), wn, w

∗
n) (here f∗n is the one-

sided maximal function of f). We will prove that the process (U(kn))n≥0 is a
supermartingale. Fix n ≥ 0 and observe first that (max(f∗n+1, 0) − fn+1)2 ≤
(max(f∗n, 0)−fn+1)2. Indeed, if max(f∗n+1, 0) = max(f∗n, 0), then both sides are
equal; otherwise we must have f∗n+1 = fn+1 > 0 and then the bound is evident.
Consequently,

U(kn+1) ≤ U(max(f∗n, 0)− fn+1, Sn+1(f), wn+1, w
∗
n+1).

Now we apply (5) to x = max(f∗n, 0) − fn, y = Sn(f), u = wn, v = w∗n,
d = −dfn+1 and e = dwn+1, obtaining

U(kn+1) ≤ U(max(f∗n, 0)− fn+1, Sn+1(f), wn+1, w
∗
n+1)

≤ U(kn)− Ux(kn)dfn+1 + Uu(kn)dwn+1.

Taking the conditional expectation with respect to Fn, we get the supermartin-
gale property of (U(kn))n≥0. Therefore, by (2) and (3),

E(max(f∗n, 0)− fn)wn − CESnfw
∗
n ≤ EU(kn) ≤ EU(k0) ≤ 0

and hence, using (6),

Emax(f∗n, 0)wn ≤ Efnwn + CESnfw
∗
n ≤ 2CESn(f)w∗n.

Applying this estimate to −f , we get Emax((−f)∗n, 0)wn ≤ 2CESn(f)w∗n and
adding it to the previous estimate, we finally get

E|fn|∗wn ≤ 4CESn(f)w∗n.

Letting n→∞ and using standard limiting theorems, we get the desired claim.

3. Proof of Theorem 1.2

Fix an arbitrary positive integer N and a parameter r ∈ (0, 1). Define the
martingale f = (fn)Nn=0 by df0 ≡ 0 and requiring that df1, df2, . . ., dfN are
independent Rademacher variables (let (Fn)Nn=0 be the natural filtration of this
sequence). Consider the weight

w = ((1 + df0)(1 + df1) . . . (1 + dfN ))
1/r

and introduce the events

An = {df1 = df2 = . . . = dfn = 1, dfn+1 = −1}, n = 0, 1, 2, . . . , N − 1,
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and AN = {df1 = df2 = . . . = dfN = 1}. We have

E|fN |w ≥ E|fN |w1AN
= N · 2N/r · P(AN ) = N2N(1/r−1). (7)

To compute ES(f)[(wr)∗]1/r, let us identify [(wr)∗]1/r first. The martingale
generated by wr is given by

(wr)n = E(wr|Fn) = (1 + df0)(1 + df1) . . . (1 + dfn), n = 0, 1, 2, . . . , N,

since 1 + df0, 1 + df1, . . ., 1 + dfN are independent mean-one random variables.
Thus, on the set An we have (wr)0 = 1, (wr)1 = 2, . . . , (wr)n = 2n and
(wr)n+1 = (wr)n+2 = . . . = (wr)N = 0, so [(wr)∗]1/r = 2n/r there. Since S(f)
is identically

√
N , we get

ES(f)[(wr)∗]1/r =
√
N ·

N∑
n=0

E[(wr)∗]1/r1An

=
√
N

[
N−1∑
n=0

2n/r · 2−n−1 + 2N/r · 2−N
]

=
√
N

[
1

2

2N(1/r−1) − 1

21/r−1 − 1
+ 2N(1/r−1)

]
≤ κ ·

√
N2N(1/r−1),

where κ depends only on r. Combining this with (7), we see that if N is
sufficiently large, then the ratio

E|fN |w
ES(f)[(wr)∗]1/r

can be made arbitrarily large. This is precisely the assertion of Theorem 1.2.
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