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Abstract

Given a Hilbert space valued martingale (Mn), let (M∗
n), (Sn(M))

denote its maximal and square function, respectively. We prove the
following two inequalities:

E|Mn| ≤ 2ESn(M), n = 0, 1, 2, . . . ,

EM∗
n ≤ E|Mn|+ 2ESn(M) n = 0, 1, 2, . . . .

The �rst inequality is sharp and is strict in all nontrivial cases.

1 Introduction

In [1] Burkholder proposed a method for showing martingale maximal
inequalities and in [2] he introduced a new approach to study the
behaviour of maximal function and square function simultaneously. In
the paper we use this method to obtain a sharp inequality between the
�rst moments of a martingale and its square function, as well as some
other inequalities involving the maximal function.

Let us �x the notation. In the sequel, (Ω,F , (Fn), P) will be a
probability space equipped with some discrete �ltration. Let H be
a Hilbert space with norm | · | and scalar product (·, ·). Let (Mn)
be a (Fn)-martingale, taking values in some separable subspace of
H. A di�erence sequence (dn) of the martingale (Mn) is de�ned by
d0 = M0 a.s., dn = Mn −Mn−1 a.s., n = 1, 2, . . .. Let (Sn(M)) be
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a square function and (M∗
n) the maximal function of the martingale

(Mn), i.e. processes de�ned by

Sn(M) =

[
n∑

k=0

|dk|2
]1/2

, M∗
n = sup

0≤k≤n
|Mk|, n = 0, 1, 2, . . . .

The inequalities between the moments of the martingale, its square
and maximal function were studied deeply in the literature. Such
inequalities are of fundamental importance to the martingale theory
and harmonic analysis. We will only present here two basic results:

(Doob's inequality) For 1 < p < ∞,

E|M∗
n|p ≤

(
p

p− 1

)p

E|Mn|p, n = 0, 1, 2, . . . ,

and the constant (p/(p− 1))p is best possible.
(Burkholder-Davis-Gundy inequalities) For 1 < p < ∞,

cpE(Sn(M))p ≤ E|Mn|p ≤ CpE(Sn(M))p, n = 0, 1, 2, . . . ,

where Cp = c−1
p = (p∗ − 1)p, p∗ = max{p, p/(p − 1)}. The constant

Cp is best possible for p ≥ 2 and the constant cp is best possible for
p ≤ 2. In the remaining cases the best constants are not known.

In the paper we take up the studies on the comparison of the mo-
ments of a martingale, its square and maximal functions. We will be
particularly interested in �rst moments. The inequality

cEM∗
n ≤ ESn(M) ≤ CEM∗

n

for general martingales was �rst proved by Davis [3]. Later, Garsia
[4], [5] proved that the left inequality holds with c =

√
10 and the

right with C = 2 +
√

5. Both these constants were not optimal. Quite
recently, Burkholder [2] proved that the best constant in the right
inequality is equal to

√
3. We will exploit his methods to investigate

some other inequalities of this type.
Precisely, we will prove the following two results.

Theorem 1. The following inequality holds:

E|Mn| ≤ 2ESn(M), n = 0, 1, 2, . . . (1.1)

and the constant 2 is best possible. Moreover, the inequality is strict

in all nontrivial cases.

Theorem 2. We have

EM∗
n ≤ E|Mn|+ 2ESn(M), n = 0, 1, 2, . . . . (1.2)
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As an immediate consequence of the theorems above is the inequal-
ity between the �rst moments of the maximal function and the square
function of a martingale, however, with a worse constant.

Corollary 1. We have

EM∗
n ≤ 4ESn(M), n = 0, 1, 2, . . . .

The paper is organized as follows. In the next Section we present
the main tools of proving martingale inequalities, which enable to re-
duce a problem of proving a certain inequality to �nding a special
function with some convex-type properties. The Section 3 is devoted
to the proof of the Theorem 1 and in the last Section we deal with the
proof of the Theorem 2.

2 The Burkholder's method

In this section we state two theorems of Burkholder. They hold for
any Banach space valued martingales (Mn).

First of them (a slight modi�cation of Theorem 2.1 of [2]) provides
the key tool to prove maximal inequalities.

Theorem 3. Let B be a Banach space and suppose U , V are functions

from B × [0,∞)2 to R satisfying

U(x, y, z) ≤ V (x, y, z), (2.1)

U(x, t, z) = U(x, t, |x| ∨ z), (2.2)
and the further condition that if |x| ≤ z and any mean-zero F-measurable

random variable d,

EU(x + d,
√

y2 + |d|2, |x + d| ∨ z) ≥ U(x, y, z). (2.3)

Then for any nonnegative integer n and any martingale (Mn), we have

EV (Mn, Sn(M),M∗
n) ≥ U(M0, S0(M), |M0|). (2.4)

Proof: We have, by the condition (2.1),

EV (Mn, Sn(M),M∗
n) ≥ EU(Mn, Sn(M),M∗

n)

= E [EU(Mn, Sn(M),M∗
n)|Fn−1] .

Therefore, it su�ces to prove that the process (U(Mn, Sn(M),M∗
n)) is

a submartingale. Applying (2.3) conditionally with respect to Fn−1,
we obtain the inequality

E[U(Mn, Sn(M),M∗
n)|Fn−1]
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= E
[
U(Mn−1 + dn,

√
S2

n−1(M) + d2
n, |Mn−1 + dn| ∨M∗

n−1)|Fn−1

]
≥ U(Mn−1, Sn−1(M),M∗

n−1)

and the inequality (2.4) follows immediately.

The second theorem (Lemma 4.1 in [2]) enables to obtain the lower
bounds for the constants in the martingale inequalities.

Theorem 4. Let B be a Banach space. For a function V : B ×
[0,∞)2 → R de�ne U : B × [0,∞)2 → [−∞,∞) by

U(x, y, z) = inf{EV (Mn,
√

y2 − |x|2 + S2
n(M),M∗

n ∨ z)}, (2.5)

where the in�mum is taken over the set of all martingales (Mn) starting
from x and over all nonnegative integers n. Then the pair (U, V )
satis�es (2.1), (2.2) and (2.3).

We refer the reader to [2] for the proof of this result. Let us note
that the above theorems may be as well used to prove inequalities
which only involve a martingale and its square function, by omitting
the variable z (and the condition (2.2)).

3 The proof of Theorem 1

First we prove some auxiliary inequalities, which we will need later.

Lemma 1. Let x, d ∈ H, y ∈ R+, y < |x|. Then√
y2 + |d|2 − y ≥

√
|x|2 + |d|2 − |x|. (3.1)

If, moreover,
√

y2 + |d|2 ≥ |x + d|, then√
2y2 + 2|d|2 − |x + d|2−2y ≥

√
2|x|2 + 2|d|2 − |x + d|2−2|x|. (3.2)

Proof: The inequality (3.1) is equivalent to

|x| − y ≥
√
|x|2 + |d|2 −

√
y2 + |d|2 =

|x|2 − y2√
|x|2 + |d|2 +

√
y2 + |d|2

,

or √
|x|2 + |d|2 +

√
y2 + |d|2 ≥ |x|+ y,

which is obvious.
Now we turn to (3.2). We may write it as follows:

2|x| − 2y ≥
√

2|x|2 + 2|d|2 − |x + d|2 −
√

2y2 + 2|d|2 − |x + d|2
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=
2|x|2 − 2y2√

2|x|2 + 2|d|2 − |x + d|2 +
√

2y2 + 2|d|2 − |x + d|2
,

which can be written as√
2|x|2 + 2|d|2 − |x + d|2 +

√
2y2 + 2|d|2 − |x + d|2 ≥ |x|+ y.

The left hand side of the inequality above is equal to

|x− d|+
√
|x + d|2 + 2(y2 + |d|2 − |x + d|2)

and, due to assumption
√

y2 + |d|2 ≥ |x+d|, can be bound from below
by

|x− d|+ |x + d| ≥ 2|x| > |x|+ y.

We are ready to use Theorem 3 of Burkholder. Let us introduce
functions Û , V̂ : H× [0,∞)2 → R de�ned by

Û(x, y, z) = u(x, y) =

{√
2y2 − |x|2 if y ≥ |x|,

2y − |x| if y < |x|,
(3.3)

V̂ (x, y, z) = v(x, y) = 2y − |x|. (3.4)

Then we have

Lemma 2. The functions Û , V̂ satisfy (2.1), (2.2), (2.3).

Proof: The condition (2.2) holds trivially. Let us deal with the
majorizing condition (2.1). Note, that for any x ∈ H, y ∈ [0,∞),
satisfying |x| ≤

√
2y, we have√

2y2 − |x|2 ≤ 2y − |x|. (3.5)

Indeed, squaring both sides, we obtain 2(y−|x|)2 ≥ 0. Therefore (2.1)
holds if y ≥ |x|. In the opposite case both sides of (2.1) are equal.

Now we turn to (2.3). Suppose �rst, that y ≥ |x|. If y = 0, then
x = 0 and the inequality is trivial: it reduces to the inequality E|d| ≥ 0.
Suppose then, that y > 0. We shall show that for any d ∈ H,

u(x + d,
√

y2 + d2) ≥ u(x, y) +
(x, d)√

2y2 − |x|2
. (3.6)

This will immediately yield (2.3) (by taking expectations of both sides).
We have

2(
√

y2 + |d|2)2 − |x + d|2

≥ 2|x|2 + 2|d|2 − |x|2 − 2(x, d)− |d|2 = |x− d|2 ≥ 0
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and, due to (3.3) and (3.5),

u(x + d,
√

y2 + |d|2) ≥
√

2(y2 + |d|2)− |x + d|2,

Hence it su�ces to check the inequality√
2(y2 + |d|2)− |x + d|2 ≥

√
2y2 − |x|2 − (x, d)√

2y2 − |x|2
, (3.7)

or √
2y2 − |x|2

√
2y2 − |x|2 − 2(x, d) + |d|2 ≥ 2y2 − |x|2 − (x, d).

But we have

(2y2 − |x|2)(2y2 − |x|2 − 2(x, d) + |d|2)

≥ (2y2 − |x|2)2 − 2(2y2 − |x|2)(x, d) + |x|2|d|2 ≥ (2y2 − |x|2 − (x, d))2

and the inequality follows.
Now suppose that y < |x| and let d ∈ H. Again, the inequality

(2.3) will follow immediately by taking expectation, if we show that

u(x + d,
√

y2 + |d|2) ≥ u(x, y) +
(

x

|x|
, d

)
.

If
√

y2 + d2 < |x + d|, then we must show that

2
√

y2 + d2 − |x + d| ≥ 2y − |x| −
(

x

|x|
, d

)
,

or, equivalently,

2
√

y2 + |d|2 − 2y ≥ |x + d| − |x| −
(

x

|x|
, d

)
. (3.8)

By inequality (3.1), we may bound from below the left-hand side of
the above inequality by

2
√
|x|2 + |d|2 − 2|x|

and, therefore, it su�ces to prove that

2
√
|x|2 + |d|2 − |x + d| ≥ |x| −

(
x

|x|
, d

)
. (3.9)

Now we will use the inequalities we have just proven. Setting y = |x|
in (3.7), we get√

2(|x|2 + |d|2)− |x + d|2 ≥ |x| −
(

x

|x|
, d

)
(3.10)
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and using (3.5) with x := x + d, y :=
√
|x|2 + |d|2, we obtain

2
√
|x|2 + |d|2 − |x + d| ≥

√
2(|x|2 + |d|2)− |x + d|2,

which establishes (3.9).
Finally, let us consider the case

√
y2 + |d|2 ≥ |x + d|. We must

prove that √
2(y2 + |d|2)− |x + d|2 ≥ 2y − |x| −

(
x

|x|
, d

)
,

or √
2(y2 + |d|2)− |x + d|2 − 2y ≥ −|x| −

(
x

|x|
, d

)
.

By inequality (3.2), the left-hand side is not smaller than√
2(|x|2 + |d|2)− |x + d|2 − 2|x|,

which, with the aid of (3.10), yields the desired inequality. The proof
is complete.

Proof of Theorem 1 It su�ces to combine Lemma 2 with The-
orem 3; indeed, for any �xed martingale (Mn) and any nonnegative
integer n,

2ESn(M)− E|Mn| = EV̂ (Mn, Sn(M), 0) (3.11)

≥ Û(M0, S0(M), |M0|) = Û(M0, |M0|, |M0|) ≥ 0,

which completes the proof of the inequality (1.1).
Now we will show that the inequality in Theorem 1 is sharp, even if

H = R. Suppose that the inequality holds with a constant C ∈ [1,∞)
and let V (x, y, z) = v(x, y) = Cy−|x|. Let us now apply the Theorem
4. The function U de�ned by (2.5) does not depend on z (because V
does not), therefore the pair (u, v), where u(x, y) = U(x, y, z), satis�es
(2.1), (2.3) and u(0, 0) > −∞. Let n be a �xed nonnegative integer
and set x = n, y =

√
n. We apply the condition (2.3) to a mean-zero

random variable taking values s < 0 and 1; we obtain

s

s− 1
u(n + 1,

√
n + 1) +

1
1− s

u(n + s,
√

n + s2) ≥ u(n,
√

n),

which, by (2.1), implies

s

s− 1
u(n + 1,

√
n + 1) +

1
1− s

v(n + s,
√

n + s2) ≥ u(n,
√

n).

Now we let s → −∞. We get

u(n + 1,
√

n + 1) + C − 1 ≥ u(n,
√

n),
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which, by induction, implies, that for any nonnegative integer n,

u(n,
√

n) ≥ u(0, 0)− n(C − 1).

Therefore

u(0, 0)− n(C − 1) ≤ v(n,
√

n) = C
√

n− n,

or, equivalently,
C ≥ 2n + u(0, 0)

n +
√

n
.

Now letting n →∞ yields the result.
Finally, we will prove that the inequality is strict in all nontrivial

cases. Let n be a �xed nonnegative integer and (Mn) be a martingale
such that P(Mn 6= 0) > 0. Let us introduce the stopping time

τ = inf{k : Mk 6= 0}.

If P(τ = 0) > 0, then the last inequality in (3.11) is strict and we are
done. If P(τ > 0) = 1, then applying the optional sampling theorem
to the submartingale Û(Mk, Sk(M),M∗

k ), k = 0, 1, 2, . . . , we have

EU(Mn, Sn(M),M∗
n) ≥ EU(Mτ∧n, Sτ∧n(M),M∗

τ∧n).

Since

U(Mτ∧n, Sτ∧n(M),M∗
τ∧n) = U(Mτ∧n, |Mτ∧n|,M∗

τ∧n) > 0

on the set {τ ≤ n} (which has positive probability), the strictness
follows. The proof of Theorem 1 is complete.

4 The proof of Theorem 2

We start from a simple

Lemma 3. For x, d ∈ H, z ∈ R+ we have

|x + d| ∨ z − |x + d| ≤ | − x

|x|
(|x| ∨ z − |x|) + d|. (4.1)

Proof: We may and will assume that z ≥ |x|. For |x + d| ≥ z
there is nothing to prove. If |x + d| < z, then the left hand side is
equal to z− |x + d| and, squaring both sides, we obtain the equivalent
inequality to prove:

z2 − 2z|x + d|+ |x + d|2 ≤ |x + d|2 − 2
(

x + d, x · z

|x|

)
+ z2,
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or an obvious inequality(
x + d,

x

|x|

)
≤ |x + d|.

As in the proof of Theorem 1, we will use use Theorem 3 of Burkholder;
let us introduce functions U1, V1 : H× [0,∞)2 → R de�ned by

U1(x, y, z) =

{√
2y2 − (|x| ∨ z − |x|)2 if y > |x| ∨ z − |x|,

2y − (|x| ∨ z − |x|) if y ≤ |x| ∨ z − |x|,

V1(x, y, z) = 2y − (|x| ∨ z − |x|).

Note that
U1(x, y, z) = u

(
± x

|x|
(|x| ∨ z − |x|), y

)
, (4.2)

V1(x, y, z) = v

(
± x

|x|
(|x| ∨ z − |x|), y

)
, (4.3)

where u, v are de�ned by (3.3), (3.4).
We must check the assumptions of the Theorem 3.

Lemma 4. The functions U1, V1 satisfy (2.1), (2.2), (2.3).

Proof: As we shall see, the formulae (4.2), (4.3) enable us to reduce
the claim to the Lemma 2. The condition (2.2) holds obviously; the
inequality (2.1) follows immediately by (4.2), (4.3) and the condition
u ≤ v proved in Lemma 2. Hence it su�ces to show (2.3).

With �xed y, the function x 7→ u(x, y) decreases as |x| increases;
therefore the formula (4.2) and the inequality (4.1) imply

U1(x + d,
√

y2 + d2, |x + d| ∨ z)− U1(x, y, |x| ∨ z)

= u(
x

|x|
(|x + d| ∨ z − |x + d|),

√
y2 + |d|2)− u(− x

|x|
(|x| ∨ z − |x|), y)

≥ u(− x

|x|
(|x| ∨ z − |x|) + d,

√
y2 + d2))− u(− x

|x|
(|x| ∨ z − |x|), y).

Now if d is a centered H-valued random variable, then the inequality
(2.3) for Û (de�ned by (3.3)) and point

(− x

|x|
(|x| ∨ z − |x|), y, |x| ∨ z) ∈ H × [0,∞)2,

states that the expectation of the right hand side of the inequality
above is nonnegative. Therefore the left hand side also has nonnega-
tive expected value, which is the claim.
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Proof of Theorem 2: We repeat the arguments from the proof
of Theorem 1. Fix an H-valued martingale M and nonnegative integer
n. By Lemma 4 and Theorem 3, the inequality (1.2) is established:

2ESn(M) + E|Mn| − EM∗
n = EV1(Mn, Sn(M),M∗

n)

≥ U1(M0, S0(M), |M0|) = U1(M0, |M0|, |M0|) ≥ 0.
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