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Abstract. The paper contains the study of sharp logarithmic estimates for
positive dyadic shiftsA given on probability spaces (X,µ) equipped with a tree-
like structure. For any K > 0 we determine the smallest constant L = L(K)
such that ∫

E
|Af |dµ ≤ K

∫
R

Ψ(|f |)dµ+ L(K) · µ(E),

where Ψ(t) = (t + 1) log(t + 1)− t, E is an arbitrary measurable subset of X
and f is an integrable function on X. The proof exploits Bellman function
method: we extract the above estimate from the existence of an appropriate
special function, enjoying certain size and concavity-type conditions. As a
corollary, a dual exponential bound is obtained.

1. Introduction

Let Q ⊂ Rd be a given dyadic cube and let D(Q) stand for the grid of its dyadic
subcubes. For a given sequence α = (αR)R∈D(Q) of nonnegative numbers, de�ne
its Carleson constant by

Carl(α) = sup
R∈D(Q)

1

|R|
∑

R′∈D(R)

αR′ |R′|,

where |A| is the Lebesgue measure of A. For any such sequence, we introduce the
associated dyadic shift A which acts on integrable functions f : Q → R by the
formula

(1.1) Af =
∑

R∈D(Q)

αR〈f〉RχR,

where 〈f〉R = 1
|R|
∫
R
fdµ is the average of f over R.

The class of positive dyadic shifts arose in the works of A. Lerner during his
study of the A2 theorem. Let us discuss this issue in a little more detailed manner.
Assume that T is a Calderón-Zygmund operator on Rd and let w : Rd → (0,∞)
be a weight satisfying Muckenhoupt's condition A2. The so-called A2 conjecture
asked for the linear dependence of the norm ||T ||L2(w)→L2(w) on [w]A2 , the A2

characterstic of w:

||Tf ||L2(w) ≤ C(T, d)[w]A2
||f ||L2(w).

This question has gained a lot of interest in the recent literature (see e.g. [1, 4,
11, 16, 18, 19, 20, 21, 26]) and was �nally answered in the positive by H¸tonen
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[7], with the use of clever representation of T as an average of good dyadic shifts.
Later, Lerner [12] provided a simpler proof of the A2 theorem, which avoided the
use of most of the complicated techniques in [7]. The idea was to exploit a general
pointwise estimate for T in terms of positive dyadic operators, proven in [10]. This
allowed to reduce the A2 problem to a weighted result for the positive dyadic
shifts, which had been already shown before in [9] (consult also [4] and [5]). The
aforementioned pointwise bound states that for every dyadic cube Q,

(1.2) |Tf(x)| .
∞∑
m=0

2−δmAmS |f |(x) for a.e. x ∈ Q,

where δ > 0 depends on the operator T , S is a collection of dyadic cubes which
depends on f , T and m, and AmS are positive dyadic operators de�ned by

AmS f(x) =
∑
Q∈S
〈f〉Q(m)χQ(x),

where Q(m) is the m-th dyadic parent of Q. The collections S used above are
assumed to be sparse: for all cubesQ ∈ S there exists measurable subsets E(Q) ⊂ Q
with |E(Q)| ≥ |Q|/2 and E(Q) ∩ E(Q′) = ∅ unless Q = Q′. Coming back to (1.2),
Lerner proves that the operator norm of each AmS is appropriately controlled by
the operator norm of A0

S′ , with S ′ running over the class of all possible sparse
collections. That is, he shows that for any Banach function space X,

||AmS ||X . (m+ 1) sup
D,S′
||A0
S′f ||X ,

the supremum taken over all dyadic grids D and all sparse collections S ′ ⊂ D.
Hence, any appropriate bound for A0

S yields the corresponding statement for the
class of Calderón-Zygmund operators. This motivates the question about control-
ling various norms of A0

S e�ciently. This class of operators, after an appropriate
localization, is contained in the class (1.1) considered at the beginning of the paper.
Indeed, suppose that S ∈ D is a sparse family, let us restrict ourselves to a large
cube Q ∈ D and set αR = χ{R∈S}. Then (αR)R∈D(Q) is a Carleson sequence of
constant bounded by 2: for any R ∈ D(Q), we have∑

R′∈D(R)

αR′ |R′| =
∑

R′∈S, R′⊆R

|R′| ≤ 2
∑

R′∈S, R′⊆R

|E(R′)| ≤ 2|R|,

since the sets (E(R′))R′∈S are pairwise disjoint.
From now on, we will focus on the dyadic shifts of the form (1.1). It is not

di�cult to show, using sharp estimates for the dyadic maximal operator and the
multisublinear maximal function (cf. [6, 8]), that any A from this class is bounded
on Lp(Q), 1 < p <∞. More precisely, we have

(1.3) ||Af ||Lp(Q) ≤
p2

p− 1
Carl(α)||f ||Lp(Q)

and the multiplicative constant p2/(p − 1) cannot be improved. For p = 1 the
Lp-boundedness does not hold, but, as proved by Rey and Reznikov [22] (for d = 1
only), we have the sharp weak-type bound

|{x ∈ Q : Af(x) ≥ 1}| ≤ 2 Carl(α)||f ||L1(Q).

In this paper, we will establish a related LlogL bound, which can be regarded as
another natural substitute for the L1 estimate, and the dual exponential inequality
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which serves as a version of (1.3) for p = ∞. Actually, instead of working with
the dyadic lattice in Rd, we will study these estimates in the more general context
of probability measures equipped with a tree-like structure. Here is the precise
de�nition.

De�nition 1.1. Suppose that (X,µ) is a nonatomic probability space. A set T of
measurable subsets of X will be called a tree if the following conditions are satis�ed:

(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a �nite subset C(Q) ⊂ T containing at least two
elements such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q,
(b) Q =

⋃
C(Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
Q∈T m C(Q).

(iv) We have limm→∞ supQ∈Tm µ(Q) = 0.

The normalization imposed in the above de�nition (which restricts us to prob-
ability spaces) will not a�ect sharp constants in the estimates under investigation,
which can be seen by applying standard dilation and scaling arguments. For any
sequence α = (αQ)Q∈T of nonnegative numbers, we de�ne its Carleson constant by

Carl(α) = sup
Q∈T

1

µ(Q)

∑
R⊆Q,R∈T

αRµ(R),

and the associated shift is given by the formula

Af =
∑
Q∈T

αQ〈f〉QχQ.

Here, as above, 〈f〉Q = 1
µ(Q)

∫
Q
fdµ is the average of f over Q.

The main emphasis in the paper is put on inequalities of the form

(1.4)

∫
E

|Af |dµ ≤ K
∫
X

Ψ(|f |)dµ+ L(K) · µ(E).

Here A is the shift associated with some sequence (αQ)Q∈T with Carleson constant
not exceeding 1, E is a measurable subset of X, f is an integrable function on X
and Ψ stands for the �LlogL� function Ψ(t) = (t + 1) log(t + 1) − t, t ≥ 0. There
are two natural questions about (1.4) to be asked:

(i) For which K is there a �nite number L(K) such that the inequality holds
for all f and E?

(ii) For K as in (i), what is the optimal (i.e., the least) value of L(K) allowed?

Both these questions are answered in the theorem below.

Theorem 1.2. For any K > 0, the optimal value of the constant L(K) in (1.4) is
equal to +∞ if K ≤ 1, and

K

K − 1
exp(K−1)− 1 +

∫ 1

0

(exp(u/K)− 1)
du

u

if K > 1.

Some important observations are in order. First, we may restrict ourselves to
nonnegative functions f ; indeed, the passage from f to |f | does not change the
right-hand side of (1.4) and does not decrease the left-hand side. Second, our use
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of somewhat special LlogL function Ψ is forced by the fact that for the standard
functions t 7→ t log t or t 7→ t log+ t the above estimate does not hold (for any K
one would have to take L(K) =∞). Indeed, otherwise the shifts would be bounded
on L∞: we would have

∫
E
Afdµ ≤ L(K) · µ(E) for any f : X → [0, 1] and any E,

which is not the case (see e.g. Theorem 1.3 below).
As a corollary, we obtain the following dual exponential bound. Throughout the

paper, Φ : [0,∞)→ [0,∞) is the Young-conjugate to Ψ, given by Φ(t) = et − 1− t.

Theorem 1.3. Let A be the shift associated with some sequence (αQ)Q∈T with

Carleson constant not exceeding 1. For any K > 0 and any f : X → [−1, 1], we
have

(1.5)

∫
X

Φ(|Af |/K)dµ ≤ L(K)

K
µ({f 6= 0}).

The constant L(K)/K is the best possible for each K.

We should point out here that the constants L(K) and L(K)/K are best pos-
sible for each probability space (X,µ) equipped with some tree T . Therefore, in
particular, these constants are also optimal in the dyadic context studied at the
beginning.

Our approach rests on the so-called Bellman function method. This technique
allows to deduce the validity of the LlogL estimate from the existence of a cer-
tain special function, which enjoys appropriate size conditions and concavity. This
method has its origins in the theory of stochastic optimal control, and, as observed
by Burkholder in the eighties during his study on the boundedness properties of the
Haar system, it can be used in the investigation of various problems for semimartin-
gales. Following the seminal work [2], Burkholder and others managed to establish
a variety of interesting estimates in this probabilistic context (see the monograph
[17] for the details). A decisive step towards further applications of the method
in harmonic analysis was made by Nazarov, Treil and Volberg [14, 15], who put
the approach in a more modern and universal form. Since then, the method has
been applied in numerous problems arising in various areas of mathematics (cf. e.g.
[19, 24, 25, 27, 28] and consult references therein).

The rest of the paper is organized as follows. In the next section we present an
informal reasoning which leads to the discovery of a Bellman function corresponding
to our problem. Then, in Section 3, we exploit rigorously the properties of this
object to prove the inequalities (1.4) and (1.5). In the �nal part of the paper we
exploit further properties of the Bellman function to show that the constants in the
estimates (1.4) and (1.5) cannot be improved.

2. A related Bellman function

Throughout this section, we assume that the probability space (X, T , µ) is the
interval [0, 1) equipped with Lebesgue's measure and the tree of its dyadic subin-
tervals. We will also use the notation T − = {Q ∈ T : Q ⊆ [0, 1/2)} and
T + = {Q ∈ T : Q ⊆ [1/2, 1)}. We start the analysis with introducing the ab-
stract Bellman function B : [0, 1] × [0, 1] × [0,∞) → R associated with (1.4). This
function is given by

B(s, t, x) = sup

 1

µ(R)

∫
E

( ∑
Q⊂R,Q∈T

αQ〈f〉QχQ

)
dµ− K

µ(R)

∫
R

Ψ(f)dµ

 .
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Here R is a given dyadic subinterval of [0, 1) and the supremum is taken over all
measurable sets E ⊆ X satisfying 〈χE〉R = s, all sequences α = (αQ)Q⊆R,Q∈T of
nonnegative numbers with Carl(α) ≤ 1 satisfying

(2.1)
1

µ(R)

∑
Q⊆R

αQµ(Q) = t,

and all integrable functions f : R → [0,∞) satisfying 〈f〉R = x. From the formal
point of view, the function B depends also on R, however, this is not the case. In-
deed, for any two dyadic intervals R1 and R2, an a�ne mapping of one interval onto
another puts the Carleson sequences satisfying (2.1) in one-to-one correspondence,
and such a change of the variable preserves the averages. On the other hand, as we
will see below, working with di�erent domains R is crucial for the understanding
of properties of the Bellman function.

There are two natural questions arising. The �rst concerns the explicit formula
for B, and the second is about the extremizers for a given (s, t, x) (i.e., those E,
(αQ)Q and f , for which the supremum de�ning B(s, t, x) is attained, or at least
almost attained). Clearly, the answer to the �rst question is all we need: having
found B, it remains to take R = [0, 1] and determine the least constant L(K)
such that B(s, t, x) ≤ L(K)s for all s, t and x. To identify B, one might try to
answer the second question, guessing some structural, fractal-type properties of the
extremizers. However, in a sense, we will exploit the implications between the two
questions in both directions. Our plan is the following. We will consider a slightly
di�erent Bellman function (whose identi�cation is a little easier), then extract the
extremizers from its explicit formula, and �nally postulate that these extremizers
coincide with those corresponding to the initial B. Even though this conjecture is
not true (the extremizers coincide only on a part of the domain), plugging them into
the formula for B will return the right Bellman function, which allows a successful
treatment of (1.4).

The usual �rst step in the search for the formula is to exploit some structural,
homogeneity-type properties of the Bellman function which follow directly from its
abstract de�nition. Consider a slightly di�erent Bellman function B : [0, 1]× [0, 1]×
[−1,∞)→ R de�ned by

B(s, t, x) = sup

 1

µ(R)

∫
E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ− K

µ(R)

∫
R

(
Ψ(f) + f

)
dµ

 ,

where the supremum is taken over the same parameters as previously, with one
crucial change. Namely, we slightly enlarge the allowed class of functions, assuming
that they take values in [−1,∞). This new function B has a nice structural property
studied in the lemma below; this will allow us to reduce the number of variables to
two and then solve the underlying Monge-Ampère equation.

Lemma 2.1. For any s, t ∈ [0, 1] and x ≥ −1 we have

B(s, t, x) = (x+ 1)B(s, t, 0)−K(x+ 1) log(x+ 1).

Proof. If x = −1, then in the de�nition of B(s, t, x) we must take f ≡ −1 and
then the expression under the supremum vanishes. Therefore B(s, t, x) = 0 and
the equality holds. Suppose then that x > −1. Take E, α = (αQ)Q∈T and f :

[0, 1] → [−1,∞) as in the de�nition of B(s, t, x). Fix a parameter λ > 0 and
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consider the function g : [0, 1]→ [−1,∞) given by g = (f + 1)/λ−1. Then we have
〈g〉Q + 1 = (x+ 1)/λ and∫

[0,1]

(Ψ(f) + f)dµ =

∫
[0,1]

(f + 1) log(f + 1)dµ

= λ

∫
[0,1]

(g + 1) log(λ(g + 1))dµ

= λ

∫
[0,1]

(Ψ(g) + g)dµ+ λ log λ

∫
[0,1]

(g + 1)dµ,

so∫
E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
[0,1]

(
Ψ(f) + f

)
dµ

= λ

∫
E

( ∑
Q∈T

αQ(〈g〉Q + 1)χQ

)
dµ−K

∫
[0,1]

(
Ψ(g) + g

)
dµ

−K(x+ 1) log λ

≤ λB(s, t, (x+ 1)/λ− 1)−K(x+ 1) log λ.

Since E, (αQ)Q∈T and f were arbitrary, we conclude that

(2.2) B(s, t, x) ≤ λB(s, t, (x+ 1)/λ− 1)−K(x+ 1) log λ.

Now, plug y = (x+ 1)/λ− 1 and γ = λ−1 to get

B(s, t, (y + 1)/γ − 1) ≤ γ−1B(s, t, y) +Kγ−1(y + 1) log γ−1,

which, after renaming x := y, λ := γ, becomes the reverse to (2.2). Consequently,
this inequality is actually an equality, and plugging λ = x+ 1 yields the assertion.

�

Next, we will show that B satis�es the concavity property.

Lemma 2.2. Suppose that s±, t± ∈ [0, 1], x± ∈ [−1,∞). Then

B
(
s− + s+

2
,
t− + t+

2
,
x− + x+

2

)
≥ B(s−, t−, x−) + B(s+, t+, x+)

2
.

Proof. Take E±, (α±Q)Q and f± as in the de�nitions of B(s±, t±, x±). Furthermore,

as we have discussed above, for any (s, t, x) we have some freedom in selecting the
underlying dyadic interval R �supporting� B(s, t, x). We assume that B(s−, t−, x−)
is supported on [0, 1/2) and B(s+, t+, x+) is supported on [1/2, 1) (so E− is a subset
of [0, 1/2), (α−Q)Q∈T − is a Carleson sequence indexed by dyadic subsets of [0, 1/2)

and f is supported on [0, 1/2); analogous statements, with [0, 1/2) replaced by
[1/2, 1), hold for E+, (α+

Q)Q∈T + and f+). Let us glue these objects as follows: put

E = E− ∪ E+, let (αQ)Q∈T be given by

αQ =


0 if Q = [0, 1),

α−Q if Q ∈ T −,
α+
Q if Q ∈ T +,

and de�ne f : [0, 1) → [−1,∞) by f = f−χ[0,1/2) + f+χ[1/2,1). We easily check
that µ(E) = (s+ + s−)/2, (αQ)Q∈T has Carleson constant less or equal to 1 and
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satis�es
∑
Q αQµ(Q) = (t− + t+)/2, and 〈f〉[0,1) = (x− + x+)/2. Therefore,

B
(
s− + s+

2
,
t− + t+

2
,
x− + x+

2

)
≥
∫
E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
[0,1]

(
Ψ(f) + f

)
dµ

=

∫
E−

( ∑
Q∈T −

α−Q(〈f−〉Q + 1)χQ

)
dµ−K

∫
[0,1/2)

(
Ψ(f−) + f−

)
dµ

+

∫
E+

( ∑
Q∈T +

α+
Q(〈f+〉Q + 1)χQ

)
dµ−K

∫
[1/2,1)

(
Ψ(f+) + f+

)
dµ.

Taking the supremum over all E±, (α±Q)Q∈T ± and f±, we get the desired claim. �

Remark 2.3. Let (s, t, x) ∈ [0, 1]× [0, 1]× [−1,∞) be a �xed point. Suppose that
E ⊆ [0, 1), (αQ)Q∈T and f : [0, 1)→ [−1,∞) are the extremizers of B (s, t, x), so

B (s, t, x) =

∫
E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
[0,1]

(
Ψ(f) + f

)
dµ.

Next, de�ne s− = 2µ(E ∩ [0, 1/2)), s+ = 2µ(E ∩ [1/2, 1)), t− = 2
∑
Q∈T − αQµ(Q),

t+ = 2
∑
Q∈T + αQµ(Q) and f− = f |[0,1/2), f+ = f |[1/2,1). If α[0,1] = 0, then we

have

B (s, t, x)

=

∫
E∩[0,1/2)

( ∑
Q∈T −

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
[0,1/2)

(
Ψ(f) + f

)
dµ

+

∫
E∩[1/2,1)

( ∑
Q∈T +

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
[1/2,1)

(
Ψ(f) + f

)
dµ

≤ B(s−, t−, x−) + B(s+, t+, x+)

2

and hence, in the light of the lemma above, we actually have equality here. So,
if (s−, t−, x−) 6= (s, t, x) and α[0,1] = 0 (which, as we might hope, holds for most

points (s, t, x)), then there is a line segment passing through (s, t, x) along which B
is linear. This observation will be of fundamental importance in our search for the
explicit formula for B.

Finally, we will need the following condition.

Lemma 2.4. For any s ∈ [0, 1], 0 ≤ t < t+ δ ≤ 1 and x ∈ [−1,∞) we have

B(s, t+ δ, x) ≥ B(s, t, x) + δ(x+ 1)s.

Proof. We proceed as in the previous lemma, with s± = s, t± = t and x± = x,
and take the appropriate parameters E±, (α±Q)Q∈T ± and f±. Then E± and f± are
glued into one set and one function with the use of the same procedure; however,
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we construct a slightly di�erent Carleson sequence, setting

αQ =


δ if Q = [0, 1),

α−Q if Q ⊆ [0, 1/2),

α+
Q if Q ⊆ [1/2, 1).

It is easy to check that the Carleson constant of (αQ)Q∈T is bounded by 1 and∑
Q∈T αQµ(Q) = (t− + t+)/2 + δ = t+ δ. Therefore,

B (s, t+ δ, x)

≥
∫
E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
[0,1]

(
Ψ(f) + f

)
dµ

= α[0,1](〈f〉[0,1] + 1)µ(E)

+

∫
E−

( ∑
Q∈T −

α−Q(〈f−〉Q + 1)χQ

)
dµ−K

∫
[0,1/2)

(
Ψ(f−) + f−

)
dµ

+

∫
E+

( ∑
Q∈T +

α+
Q(〈f+〉Q + 1)χQ

)
dµ−K

∫
[1/2,1)

(
Ψ(f+) + f+

)
dµ.

However, α[0,1](〈f〉[0,1] + 1)µ(E) = δ(x+ 1)s, so taking the supremum over all E±,

(α±Q)Q∈T ± and f±, we get the claim. �

Equipped with the structural properties above, we are ready to construct a
candidate for B. We would like to stress here that the reasoning we will present
is informal, in particular we will impose some additional regularity conditions on
B, we will also guess certain formulas at some points. Thus, we will denote the
function di�erently, by B0. One should keep in mind that the primary goal of this
section is to discover the function B which will be rigorously exploited later.

We start from the observation that B(s, t, x) = −K(Ψ(x) + x) if s = 0 or t = 0.

Indeed, if st = 0, then the contribution from
∫
E

(∑
Q∈T αQ(〈f〉Q + 1)χQ

)
dµ is

zero, and the optimal choice for f is f ≡ x (other choices may only make the
expression −K

∫
X

(Ψ(f) + f)dµ smaller, since u 7→ Ψ(u) + u is a convex function).
Thus, in our considerations below, we may restrict ourselves to the domain (0, 1]×
(0, 1]× [−1,∞).

Our �rst assumption is that B0 is of class C2. Then the concavity studied in
Lemma 2.2 implies that the Hessian matrix D2B0 is nonpositive-de�nite at each
point of the domain. By Lemma 2.1, this amounts to saying that the matrix ϕss ϕst ϕs/(x+ 1)

ϕts ϕtt ϕt/(x+ 1)
ϕs ϕt −K/(x+ 1)

 ,
where ϕ(s, t) = B0(s, t, 0), is nonpositive-de�nite. In particular, we see that

(2.3) ϕss ≤ 0 and ϕtt ≤ 0,

which will be important to us later. Next, we use Remark 2.3 and assume that for
any (s, t, x), there is a (short) line segment I containing (s, t, x) such B0 is linear
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along I. This implies the partial di�erential equation

det

 ϕss ϕst ϕs/(x+ 1)
ϕts ϕtt ϕt/(x+ 1)
ϕs ϕt −K/(x+ 1)

 = 0,

the Monge-Ampère equation for B0. Therefore, for any (s, t, x), there are numbers
a = a(s, t, x), b = b(s, t, x), c = c(s, t, x) such that

aϕss + bϕst + c
ϕs
x+ 1

= 0, aϕts + bϕtt + c
ϕt
x+ 1

= 0

and

(2.4) aϕs + bϕt − c
K

x+ 1
= 0.

To gain some intuition about the solution to this system, multiply the last equation
by ϕs/K and add it to the �rst equation; similarly, multiply (2.4) by ϕt/K and
add it to the second equation. As the result, we get the system

a(ϕss+(ϕs)
2/K)+b(ϕst+ϕsϕt/K) = 0, a(ϕts+ϕsϕt/K)+b(ϕtt+(ϕt)

2/K) = 0,

or, if we put ψ = exp(ϕ/K),

(2.5) aψss + bψst = 0, aψts + bψtt = 0.

In other words, ψ satis�es the Monge-Ampère equation detD2ψ = 0, and a, b
indicate the direction in which ψ is linear. Since ψ depends on s, t only, we assume
that a and b also have this property.

It follows from general theory of Monge-Ampère equations (see a similar dis-
cussion in [28]) that [0, 1] × [0, 1], the domain of ψ, can be foliated, i.e., split into
union of pairwise disjoint line segments along which ψ is linear. Suppose now that
s ≤ t. A little thought reveals that there is essentially only one candidate for the
foliation, consisting of the line segments {(αu, u) : u ∈ [0, 1]}, where α ∈ [0, 1] is
arbitrary. This corresponds to the choice a(s, t, x) = s, b(s, t, x) = t. In other
words, we conjecture that the function r 7→ ψ(s + sr, t + tr) is linear. Assuming
that this conjecture holds, we get that ψ(s, t) = (1 − t)ψ(0, 0) + tψ(s/t, 1). How-
ever, ψ(0, 0) = exp(B0(0, 0, 0)/K) = 1, from the very de�nition of B. Putting
ξ(u) = ψ(u, 1), we obtain

B0(s, t, x)

= (x+ 1)ϕ(s, t)−K(x+ 1) log(x+ 1) = −K(x+ 1) log

[
x+ 1

tξ(s/t) + 1− t

]
.

(2.6)

To �nd ξ, let us exploit the condition (2.4), which implies B0t(s, t, x) ≥ (x + 1)s.
We already know from the previous considerations (see (2.3)) that the function
t 7→ B0(s, t, x) is concave (for any �xed s and x), so the above bound for B0t is
equivalent to

B0t(s, 1, x) ≥ (x+ 1)s.

We assume that we have equality here, which, by (2.6), yields a di�erential equation
for ξ. A little calculation reveals that this equation is

ξ′(u) =
ξ(u)

u
− ξ(u)

K
− 1

u
.
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Since ξ(0) = 1 (this can be extracted from B0(0, t, x) = −K(x+1) log(x+1), which
follows directly from the de�nition of B) we conclude that ξ is given by

ξ(u) =
K

K − 1
u exp

(
1− u
K

)
+ u exp

(
− u

K

)∫ 1/u

1

exp

(
1

rK

)
dr, u > 0.

Coming back to (2.4), we obtain that

c(s, t, x) =
(x+ 1)t(ξ(s/t)− 1)

tξ(s/t) + 1− t
,

which completes the analysis of B0 on the set {(s, t) ∈ [0, 1]× [0, 1] : s ≤ t}.
What happens if s > t? We have showed above that B0ss ≤ 0 and it is clear from

the very de�nition that for any x and t, the function s 7→ B0(s, t, x) is nondecreasing.
However, one easily checks, exploiting the above formula for B0 on the set s ≤ t,
that

lim
s↑t

B0s(s, t, x) = 0 for any t ∈ [0, 1] and x ≥ −1.

These observations imply that B0(s, t, x) = B0(min(s, t), t, x). This also shows that
the family of line segments {(1−α+αt, t) : t ∈ [0, 1]}, α ∈ [0, 1], forms the foliation
of {(s, t) : s ≥ t}. Furthermore, a(s, t, x) = t(1− s)/(1− t), b(s, t, x) = t and

c(s, t, x) = c(t, t, x) =
(x+ 1)t

t+K − 1
.

One can prove that the function B0 we have constructed majorizes the abstract
function B (similar arguments will appear in the next section). The examples we
are going to study in Section 4 will show the reverse inequality and hence the two
functions coincide.

3. A formal proof

Throughout this section, K > 1 is a �xed number. Consider the function ξ :
[0, 1]→ (0,∞), given by ξ(0) = 1 and

ξ(u) =
K

K − 1
u exp

(
1− u
K

)
+ u exp

(
− u

K

)∫ 1/u

1

exp

(
1

rK

)
dr, u > 0.

One easily veri�es that ξ is continuous and ξ(1) = K/(K − 1).

Lemma 3.1. For any s ∈ (0, 1) we have ξ(s) > 1, ξ′(s) > 0 and

(3.1)
Kξ(s)−K

s
− 1 + log s ≤ L(K).

Proof. Observe that ξ satis�es the di�erential equation

(3.2) ξ′(u) =
ξ(u)

u
− ξ(u)

K
− 1

u
.

Suppose that there is u0 ∈ (0, 1) such that ξ(u0) ≤ 1. Then ξ′(u0) ≤ −ξ(u0)/K < 0
and hence ξ(u) < 1 for all u ∈ (u0, 1], a contradiction (we have u(1) > 1). This
establishes the �rst part of the assertion. To show the second part, note that (3.2)
implies limu→1− ξ

′(u) = 0. Therefore, we will be done if we show that ξ is concave.
To this end, we di�erentiate (3.2) and obtain

(3.3) −uξ′′(u) =
ξ(u) + uξ′(u)

K
=

2ξ(u)− uξ(u)/K − 1

K
≥ ξ(u)− 1

K
> 0.
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Finally, we turn our attention to (3.1). The equality (3.2) and the estimate ξ ≥ 1
we have just established imply that(

Kξ(s)−K
s

− 1 + log s

)′
=
K

s

(
ξ′(s)− ξ(s)

s
+

1

s

)
+

1

s
=

1− ξ(s)
s

≤ 0,

so it su�ces to show (3.1) as s→ 0. Directly from the de�nition of ξ and integration
by parts, we obtain

Kξ(s)−K
s

− 1 + log s

=
K2

K − 1
exp

(
1− s
K

)
+K exp

(
− s

K

)∫ 1/s

1

exp(1/(rK))dr − K

s
− 1 + log s

=
K

K − 1
exp

(
1− s
K

)
+ exp

(
− s

K

)∫ 1/s

1

exp(1/(rK))
dr

r
− 1 + log s.

We have lims→0(exp(−s/K)−1) log s = 0, so adding (exp(−s/K)−1) log s to both
sides above yields

lim
s→0

(
Kξ(s)−K

s
− 1 + log s

)
=

K

K − 1
exp(K−1)− 1 +

∫ ∞
1

(exp(1/(rK))− 1)
dr

r

= L(K)

and the claim is proved. �

Let D = {(s, t, x) ∈ [0, 1] × [0, 1] × [0,∞) : s ≤ t} and consider B : D → R
de�ned by the formula

B(s, t, x) = Kx− s− s log(t/s) +K(x+ 1) log

[
tξ(s/t) + 1− t

x+ 1

]
,

where we use the convention 0/0 = 1 and 0 log(t/0) = 0. Extend B to the whole
set [0, 1] × [0, 1] × [0,∞), putting B(s, t, x) = B(min(s, t), t, x). The function B is
�almost� the function B constructed in the preceding section: the key di�erences
will be discussed in the last part of the paper.

The following properties of B will be needed later.

Lemma 3.2. We have Bs(s, t, x) ≥ 0 and Bt(s, t, x) ≥ xs/t in the interior of D.

Proof. We compute that

(3.4) Bs(s, t, x) = log(s/t) +
K(x+ 1)

tξ(s/t) + 1− t
ξ′(s/t) ≥ log(s/t) +

Kξ′(s/t)

ξ(s/t)
,

where the inequality follows from the assertion of the previous lemma and the
estimates K > 1, x + 1 ≥ 1, ξ ≥ 1. If we let s/t → 1, then the latter expression
converges to 0. Therefore, the inequality Bs ≥ 0 will follow once we have shown
that the function u 7→ log u + Kξ′(u)/ξ(u) is nonincreasing. If we compute its
derivative, we see that we must prove that

Kξ′′(u)

ξ(u)
− K(ξ′(u))2

(ξ(u))2
+

1

u
≤ 0.

By (3.3), this can be rewritten in the form

−uξ
′(u)

ξ(u)
− K(ξ′(u))2

(ξ(u))2
≤ 0,
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which is evident (ξ is increasing, see the previous lemma). To show the estimate
for Bt, we reformulate it as

−u+
K(x+ 1)

tξ(u) + 1− t
(ξ (u)− uξ′ (u)− 1) ≥ xu

(here, as above, we use the notation u = s/t) or, by (3.2),

−u+
x+ 1

tξ(u) + 1− t
· uξ (u) ≥ xu.

This can be further transformed into ξ(u) ≥ tξ(u) + 1− t, which holds true due to
the estimate ξ ≥ 1 established above. �

Lemma 3.3. We have B(s, 0, x) = B(0, 0, x) = −KΨ(x) for any s ∈ [0, 1] and any

x ≥ 0. Furthermore, if (s, t, x) ∈ D, then
(3.5) B(s, t, x) ≤ L(K) · s.

Proof. The �rst part is trivial. To show the majorization (3.5), note that Bt ≥ 0
by the previous lemma, and hence

B(s, t, x) ≤ B(s, 1, x) = Kx− s+ s log s+K(x+ 1) log

[
ξ(s)

x+ 1

]
.

Furthermore, we derive that Bx(s, 1, x) = K log (ξ(s)/(x+ 1)) , which is positive if
and only if x+ 1 < ξ(s). Consequently,

B(s, 1, x) ≤ B(s, 1, ξ(s)− 1) = s

[
Kξ(s)−K

s
− 1 + log s

]
≤ L(K) · s,

where in the last passage we have exploited (3.1). �

Lemma 3.4. The Hessian matrix of B is nonpositive-de�nite in the interior of D.

Proof. It su�ces to check that Bxx ≤ 0, det

[
Bxx Bxs
Bxs Bss

]
≥ 0 and detD2B ≤ 0,

in the light of Sylvester's criterion. We have Bxx(s, t, x) = −K/(x+ 1), so the �rst
inequality is obvious. To check the second one, we di�erentiate (3.4) to obtain

Bsx(s, t, x) =
Kξ′(s/t)

tξ(s/t) + 1− s/t
,

Bss(s, t, x) =
1

s
− K(x+ 1)(ξ′(s/t))2

(tξ(s/t) + 1− t)2
+
K(x+ 1)ξ′′(s/t)

t(tξ(s/t) + 1− t)
and hence

det

[
Bxx Bxs
Bxs Bss

]
= − K

(x+ 1)s
− K2ξ′′(s/t)

t(tξ(s/t) + 1− t)
.

Since x+ 1 ≥ 1, the desired positivity of the determinant will follow if we prove the
estimate

−1− Kuξ′′(u)

tξ(u) + 1− t
≥ 0,

where u = s/t. This, by (3.3), is equivalent to

−1 +
ξ(u) + uξ′(u)

tξ(u) + 1− t
≥ 0.

However, for a �xed u, the left-hand side above is the smallest for t = 1; but then
its value is equal to uξ′(u)/ξ(u) which is nonnegative due to Lemma 3.1.
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It remains to show that detD2B ≤ 0; actually, we will show that the determinant
vanishes. To this end, we compute that[s

t
Bxs +Bxt,

s

t
Bts +Btt,

s

t
Bss +Bst

]
= − (x+ 1)(ξ(u)− 1)

tξ(u) + 1− t

[
− K

x+ 1
,

uξ(u)

tξ(u) + 1− t
,

Kξ′(u)

tξ(u) + 1− t

]
= − (x+ 1)(ξ(u)− 1)

tξ(u) + 1− t
[Bxx, Bxt, Bxs] .

In other words, the rows of the Hessian are linearly dependent. This completes the
proof. �

As a consequence of the lemmas above, we get the following concavity-type
property of B.

Corollary 3.5. Let n ≥ 2 be an integer and suppose that (si, ti, xi) ∈ [0, 1]× [0, 1]×
[0,∞), i = 1, 2, . . . , n, be arbitrary points. Assume further that α1, α2, . . ., αn
are nonnegative numbers summing up to 1 and set s =

∑n
i=1 αisi, x =

∑n
i=1 αixi.

If t ∈ [0, 1] satis�es t ≥
∑n
i=1 αiti, then

B(s, t, x) ≥
n∑
i=1

αiB(si, ti, xi) +

(
t−

n∑
i=1

αiti

)
x ·min(s, t)

t
.(3.6)

Proof. Set s̃ =
∑n
i=1 αi min(si, ti), t̃ =

∑n
i=1 αiti and observe that

s̃ ≤
n∑
i=1

αisi = s, s̃ ≤
n∑
i=1

αiti ≤ t̃.

By the previous lemma, the function B is concave on D, so
n∑
i=1

αiB(si, ti, xi) =

n∑
i=1

αiB(min(si, ti), ti, xi) ≤ B(s̃, t̃, x).

Now consider two cases. If s ≤ t̃, then by Lemma 3.2,

B(s̃, t̃, x) ≤ B(s, t̃, x) = B(s, t, x)−
∫ t

t̃

Bt(s, u, x)du

≤ B(s, t, x)−
∫ t

t̃

xs

u
du

≤ B(s, t, x)−
∫ t

t̃

xs

t
du

= B(s, t, x)− (t− t̃)xmin(s, t)

t
,

which combined with the previous estimate yields (3.6). On the other hand, if
t̃ < s, then we apply Lemma 3.2 to get B(s̃, t̃, x) ≤ B(t̃, t̃, x). If we consider the
function

η(u) = B
(
t̃+ u(min(s, t)− t̃), t̃+ u(t− t̃), x

)
,
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then we see that

B(s, t, x)−B(t̃, t̃, x) = η(1)− η(0)

=

∫ 1

0

η′(u)du

=

∫ 1

0

(
Bs(. . .)(min(s, t)− t̃) +Bt(. . .)(t− t̃)

)
du

≥
∫ 1

0

Bt(. . .)(t− t̃)du

≥ x(t− t̃)
∫ 1

0

t̃+ u(min(s, t)− t̃)
t̃+ u(t− t̃)

du,

where in the last line we have exploited Lemma 3.2 again. It su�ces to note that
for any u ∈ [0, 1] we have

t̃+ u(min(s, t)− t̃)
t̃+ u(t− t̃)

≥ min(s, t)

t
,

since the left-hand side is concave in u and the inequality holds for u ∈ {0, 1}. �

We are ready to establish the logarithmic estimate.

Proof of (1.4). Fix a sequence (αQ)Q∈T with a Carleson constant less or equal to 1,
a measurable set E and a nonnegative function f . By a simple limiting argument,
we may assume that all the terms αQ corresponding to su�ciently small Q vanish
(i.e., there is M such that αQ = 0 if Q ∈

⋃
n>M T n). We will use the following

notation: for Q ∈ T we will write

sQ =
µ(E ∩Q)

µ(Q)
, tQ =

1

µ(Q)

∑
Q′∈T (Q)

αQ′µ(Q′), xQ = 〈f〉Q.

Observe that if Q1, Q2, . . ., Qn are direct children of Q, then

sQ =

n∑
i=1

µ(Qi)

µ(Q)
sQi

, tQ = αQ +

n∑
i=1

µ(Qi)

µ(Q)
tQi

and xQ =

n∑
i=1

µ(Qi)

µ(Q)
xQi

.

Therefore, if we apply the inequality (3.6) with (s, t, x) = (sQ, tQ, xQ), (si, ti, xi) =
(sQi

, tQi
, xQi

) and αi = µ(Qi)/µ(Q), then we get

B(sQ, tQ, xQ)

≥
n∑
i=1

µ(Qi)

µ(Q)
B
(
sQi

, tQi
, xQi

)
+ αQ〈f〉Q ·

min(sQ, tQ)

tQ

≥
n∑
i=1

µ(Qi)

µ(Q)
B
(
sQi

, tQi
, xQi

)
+ αQ〈f〉QsQ.

(3.7)
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Multiply throughout by µ(Q) and sum the obtained inequalities over all Q ∈ T N
(for some �xed N ≥ 0) to get∑

Q∈T N

B(sQ, tQ, xQ)µ(Q) ≥
∑

Q∈T N+1

B(sQ, tQ, xQ)µ(Q)

+
∑
Q∈T N

αQ〈f〉Qµ(E ∩Q).

Writing this estimate for N = 0, 1, 2, . . . , M and summing, we obtain

B(sX , tX , xX)

≥
∑

Q∈TM+1

B(sQ, tQ, xQ)µ(Q) +

M∑
N=0

∑
Q∈T N

αQ〈f〉Qµ(E ∩Q).

By (3.5), we have B(sX , tX , xX) ≤ L(K)·min(sX , tX) ≤ L(K)·µ(E). Furthermore,
we have assumed that αQ = 0 for Q ∈

⋃
n>M T n, which implies that the second

sum above is equal to ∑
Q∈T

αQ〈f〉Qµ(E ∩Q) =

∫
E

Afdµ.

Furthermore, we have tQ = 0 for Q ∈ T M+1, so Lemma 3.3 and Jensen's inequality
give ∑

Q∈TM+1

B(sQ, tQ, xQ)µ(Q) = −K
∑

Q∈TM+1

Ψ(〈f〉Q)µ(Q) ≥ −K
∫
X

Ψ(f)dµ.

Putting all the above facts together, we obtain the desired estimate (1.4). �

Finally, we turn our attention to Theorem 1.3.

Proof. It su�ces to show the claim for nonnegative functions f . Pick K > 1,
M > 0, f : X → [0, 1] and let

g = exp

(
min (Af/K,M)

)
− 1.

Since A is self-adjoint, we may write∫
X

Af
K
gdµ =

1

K

∫
X

fAgdµ

=
1

K

∫
{f 6=0}

fAgdµ ≤
∫
X

Ψ(g)dµ+
L(K)

K
µ({f 6= 0}),

by virtue of (1.4). After simple manipulations, this can be shown to be equivalent
to the estimate∫

X

(
exp

(
min (Af/K,M)

)
− 1− Af

K

)
dµ

+

∫
{Af>KM}

(
Af
K
−M

)
exp

(
min (Af/K,M)

)
dµ ≤ L(K)

K
µ({f 6= 0}).

Letting M →∞ and applying Fatou's lemma, we get (1.5). Let us now show how
to deduce the optimality of L(K)/K from the fact that (1.4) is sharp (which will
be proved later below). Suppose that (1.5) holds with some constant L′(K)/K on
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the right. Then for any nonnegative f and any measurable E we have, by Young's
inequality, ∫

E

Afdµ =

∫
X

fAχEdµ

≤ K
∫
X

Ψ(f)dµ+

∫
X

Φ(AχE/K)dµ

≤ K
∫
X

Ψ(f)dµ+
L′(K)

K
µ(E).

Therefore L′(K) ≥ L(K) for each K and hence the sharpness is proved. It remains
to show that for K ≤ 1 the exponential bound does not hold with any �nite
constant; this follows immediately from the facts that the left-hand side of (1.5)
decreases as K increases, and L(K)→∞ as K ↓ 1. �

4. Sharpness and the formula for B

Throughout this section we return to the context of general probability space
(X,µ) equipped with some tree of its subsets. We will use the following fact which
can be found in [13].

Lemma 4.1. For every Q ∈ T and every β ∈ (0, 1) there is a subfamily F (Q) ⊂ T
consisting of pairwise almost disjoint subsets of Q such that

µ

 ⋃
R∈F (Q)

R

 =
∑

R∈F (Q)

µ(R) = βµ(Q).

The purpose of this section is to complete the analysis of (1.4), by constructing
examples which imply the sharpness of this estimate and �nding the formula for B
(used in Section 3). As we have mentioned above, we expect the examples to be
related to the extremizers of the function B discovered above. These extremizers,
in turn, are �encoded� in the formula for B0, as we shall explain now. The rough
idea can be described as follows. Suppose that γ1, γ2, . . ., γn are nonnegative
numbers summing up to 1 and suppose that (si, ti, xi) ∈ [0, 1] × [0, 1] × [−1,∞),
i = 1, 2, . . . , n satisfy

B0(s, t, x) =

n∑
i=1

γiB0(si, ti, xi) + α(x+ 1)s,

where α ≥ 0 and s =
∑n
i=1 γisi, t = α+

∑n
i=1 γiti ≤ 1 and x =

∑n
i=1 γixi. Assume

further that for each i, any probability space and any tree, we know how to construct
the extremizers Ei, (αiQ)Q and f i of B0(si, ti, xi). Then these extremizers, after

an appropriate splicing, yield the extremizers E, (αQ)Q and f corresponding to

B0(s, t, x). We have already seen a similar phenomenon in the proofs of Lemmas
2.2 and 2.4, so we will be brief. Apply Lemma 4.1 to obtain a family A1, A2, . . . ,
An of pairwise disjoint subsets of X such that µ(Ai) = γi and such that each Ai
can be written as a union

⋃
j Q

i
j of pairwise disjoint elements of T (called the atoms

of Ai). Now, on each atom Qij of Ai, we construct the extremizers Ei,j , (αi,jQ )Q

and f i,j of B(si, ti, xi). Set E =
⋃
i,j E

i,j , f =
∑
i,j f

i,jχQi
j
and consider the union

of all (αi,jQ )Q, completing the sequence to the full (αQ)Q∈T by taking αX = α and
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αQ = 0 for remaining Q's. Then E, (αQ)Q∈T and f have all the properties required

in the de�nition of B(s, t, x) and∫
E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
X

(
Ψ(f) + f

)
dµ =

n∑
i=1

γiB0(si, ti, xi) + αxs,

so they are indeed the extremizers of B(s, t, x).
It is convenient to split the reasoning into a few intermediate parts.

4.1. Extremizers corresponding to B(1, 1, x). Let x ≥ −1 be a given number.

Step 1. Indication from B0. Let us look at the de�nition of B(1, 1, x). As
the set E, we (must) take E = X, so that µ(E) = s = 1. Furthermore, since
B0t(1, 1, x) = x+ 1, we have, for small δ > 0,

(4.1) B0(1, 1, x) = B0(1, 1− δ, x) + δ(x+ 1) + o(δ).

Next, we know from the above construction that B0 is linear along the line segment

(1, 1− δ, x) +
(
a(1, 1− δ, x), b(1, 1− δ, x), c(1, 1− δ, x)

)
u

= (1, 1− δ, x) +

(
0, 1− δ, (x+ 1)(1− δ)

K − δ

)
u, u ∈ [−1, δ/(1− δ)],

so

B0(1, 1− δ, x)

= δB0

(
1, 0, x− (x+ 1)(1− δ)

K − δ

)
+ (1− δ)B0

(
1, 1, x+

(x+ 1)(1− δ)
K − δ

· δ

1− δ

)
.

Putting the two steps above together, we see that for δ small enough,

B0(1, 1, x) ≈ δ(x+ 1) + δB0

(
1, 0, x− (x+ 1)(1− δ)

K − δ

)
+ (1− δ)B0

(
1, 1, x+

(x+ 1)(1− δ)
K − δ

· δ

1− δ

)
= δ(x+ 1) + δB0

(
1, 0,

(K − 1)(x+ 1)

K − δ
− 1

)
+ (1− δ)B0

(
1, 1,

K(x+ 1)

K − δ
− 1

)
(4.2)

Now the reader is urged to recall the discussion from the beginning of this section.
The above almost equality indicates how to construct the extremizers corresponding

to B(1, 1, x) if we know how to produce them for the values B
(

1, 0, (x+1)(K−1)
K−δ − 1

)
and B

(
1, 1, K(x+1)

K−δ − 1
)
. The �rst value is evident: since s = 1, we must take E

to be the entire space (so that µ(E) = s = 1); the condition t = 0 forces (αQ)Q
to contain only zeros; �nally, we must take f ≡ (K−1)(x+1)

K−δ − 1, since other choices
make the expression∫

E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
X

(
Ψ(f) + f

)
dµ = −K

∫
X

(
Ψ(f) + f

)
dµ

smaller (the function x 7→ Ψ(x) + x is convex). To handle the second value, we

observe that the �rst two coordinates of the point
(

1, 1, K(x+1)
K−δ − 1

)
are equal to



18 ADAM OS�KOWSKI

1, so we may repeat the splitting described in (4.2), with x replaced by K(x+1)
K−δ − 1.

This will imply that the appropriate extremizers can be constructed from those

corresponding to B
(

1, 0, K(K−1)(x+1)
(K−δ)2 − 1

)
and B

(
1, 1, K

2(x+1)
(K−δ)2 − 1

)
. For the �rst

value the extremizers are clear, while for the second value we use the splitting (4.2)
again, and so on. So, the construction has the following inductive algorithm:

1◦ Start with n = 0 and put A0 = X: this set has only one atom, A0 itself.
2◦ For any atom Q of An, set αQ = δ.
3◦ Apply Lemma 4.1 to each atom Q of An, splitting it into two sets Q− and

Q+ = Q\Q−, with µ(Q−) = (1−δ)µ(Q). De�ne An+1 =
⋃
Q atom of An

Q−.

By Lemma 4.1, each Q− can be expressed as a union of pairwise disjoint
elements of T and hence An+1 also has this property; call the corresponding
elements of T the atoms of An+1.

4◦ For all Q ∈ T which are proper subsets of some atom of An and are not
contained in any atom of An+1, set αQ = 0.

5◦ Put f ≡ K−1
K−δ

(
K
K−δ

)n
(x+ 1)− 1 on An \An+1, increase n by 1 and go to

2◦.

It is clear from the above construction that X = A0 ⊃ A1 ⊃ A2 ⊃ . . .. Actually,
we see that each atom Q of Ak (k = 0, 1, 2, . . .) is split in the same ratio, so
µ(Q ∩Ak+1) = (1− δ)µ(Q) and in particular, µ(Ak) = (1− δ)k.

As the result of the above construction, we get the following explicit candidates
for the sequence (αQ)Q∈T and the function f : X → [−1,∞). Namely, the sequence
contains only the terms 0 and δ, and αQ = δ if and only if Q is an atom of some
An. The function is given by

f =

∞∑
n=0

(
K − 1

K − δ

(
K

K − δ

)n
(x+ 1)− 1

)
χAn\An+1

.

Let us make a comment which will be used in the study of the sharpness of (1.4).

Remark 4.2. If x ≥ 1/(K − 1), then f is nonnegative.

Step 2. Formal veri�cation of the properties of (αQ)Q∈T and f . The above
construction was based on the almost equality (4.2), which, in addition, was applied
in�nitely many times. Thus it is not clear whether the objects we obtained satisfy
the required conditions, and we need to check them rigorously. We start with the
function. By straightforward manipulations on geometric series,

〈f〉X =

∞∑
n=0

(
K − 1

K − δ

(
K

K − δ

)n
(x+ 1)− 1

)
(1− δ)nδ = x+ 1− 1 = x

and, more generally, for any atom Q of Ak,

〈f〉Q =
1

µ(Q)

∞∑
n=k

(
K − 1

K − δ

(
K

K − δ

)n
(x+ 1)− 1

)
µ(Q ∩ (An \An+1))

=

∞∑
n=k

(
K − 1

K − δ

(
K

K − δ

)n
(x+ 1)− 1

)
(1− δ)n−kδ =

(
K

K − δ

)k
(x+ 1)− 1.
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Now let us turn our attention to (αQ)Q∈T . To check that the Carleson constant is
bounded by 1, observe �rst that∑

Q∈T
αQµ(Q) =

∞∑
n=0

∑
Q atom
of An

δµ(Q) =

∞∑
n=0

δµ(An) =

∞∑
n=0

δ(1− δ)n = 1 = µ(X).

Next, for a given Q ∈ T di�erent from X, let n be the largest number such that a
certain atom Q′ of An is a proper superset of Q. Using the aforementioned fractal
properties of (Ak)k≥0, we get∑

R⊆Q

αRµ(R) =

∞∑
k=n+1

∑
R⊆Q∩Ak,

R atom of Ak

δµ(R) =

∞∑
k=n+1

δµ(Q ∩Ak)

= µ(Q ∩An+1)

∞∑
k=n+1

δ(1− δ)n+1−k = µ(Q ∩An+1) ≤ µ(Q).

Thus, the set E = X, (αQ)Q∈T and the function f has all the properties required

in the de�nition of B(1, 1, x).

Step 3. Checking the value of B(1, 1, x). It remains to note that∑
Q∈T

αQ(〈f〉Q + 1)µ(E ∩Q) =
∑
Q∈T

αQ(〈f〉Q + 1)µ(Q)

=

∞∑
n=0

∑
Q atom
of An

δ

(
K

K − δ

)n
(x+ 1)µ(Q)

=

∞∑
n=0

δ

(
K

K − δ

)n
(x+ 1)µ(An)

=
(K − δ)(x+ 1)

K − 1

and∫
X

(f + 1) log(f + 1)dµ

=

∞∑
n=0

K − 1

K − δ

(
K

K − δ

)n
(x+ 1) log

[
K − 1

K − δ

(
K

K − δ

)n
(x+ 1)

]
(1− δ)nδ

= (x+ 1) log

[
K − 1

K − δ
(x+ 1)

]
+ δ

K − 1

K − δ
(x+ 1) log

K

K − δ

∞∑
n=0

n

(
K(1− δ)
K − δ

)n
= (x+ 1) log

[
K − 1

K − δ
(x+ 1)

]
+
K(x+ 1)

(K − 1)δ
log

K

K − δ
.

Therefore, if we let δ → 0, then∑
Q∈T

αQ(〈f〉Q + 1)µ(E ∩Q)−K
∫
X

(
f + 1) log(f + 1)dµ

→ K(x+ 1)

K − 1
−
{
K(x+ 1) log

[
(K − 1)(x+ 1)

K

]
+
K(x+ 1)

K − 1

}
= B(1, 1, x).
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Thus the function B0 coincides with B at all points of the form (1, 1, x), x ≥ −1.
Our �nal comment concerns the functions B and B studied in the previous sec-

tions. As we have discussed above, we expect B and B to have the same extremizers.
Let us plug E, (αQ)Q∈T and f constructed above into the de�nition of B. Since∑

Q∈T
αQµ(E ∩Q) =

∑
Q∈T

αQµ(Q) = 1,

we obtain in the limit that∑
Q∈T

αQ〈f〉Qµ(E ∩Q)−K
∫
X

Ψ(f)dµ
δ→0−−−→ B(1, 1, x)− 1 +Kx.

The latter is precisely the value B(1, 1, x).

4.2. Extremizers corresponding to B(s, 1, x). Let s ∈ (0, 1) and x ≥ −1 be
given numbers. This time the reasoning will be a little di�erent.

Step 1. Indication from B0. LetN be a large positive integer and set δ = 1−s1/N ,
so that s/(1− δ)N = 1. Since B0t(s, 1, x) = (x+ 1)s, we have

B0(s, 1, x) = δ(x+ 1)s+ B0(s, 1− δ, x) + o(δ)

= δ(x+ 1)s+ δB0 (0, 0, x− c(s, 1− δ, x))

+ (1− δ)B0

(
s

1− δ
, 1, x+ c(s, 1− δ, x) · δ

1− δ

)
+ o(δ)

= δ(x+ 1)s+ δB0

(
0, 0,

x+ 1

(1− δ)ξ(s/(1− δ)) + δ
− 1

)
+ (1− δ)B0

(
s

1− δ
, 1,

(x+ 1)ξ(s/(1− δ))
(1− δ)ξ(s/(1− δ)) + δ

− 1

)
+ o(δ).

(4.3)

Here the second passage is a consequence of the linearity of B0 over the appropriate
line segment. By induction, after N steps, the above identity yields

B0(s, 1, x) =

N−1∑
k=0

δ(xk + 1)s+

N−1∑
k=0

δ(1− δ)kB0

(
0, 0,

xk + 1

(1− δ)ξ(sk+1) + δ
− 1

)
+ (1− δ)NB0(1, 1, xN ) +O(δ),

(4.4)

where sk = s/(1− δ)k and the sequence (xk)Nk=0 is given inductively by x0 = x and

xk+1 + 1 =
(xk + 1)ξ(sk+1)

(1− δ)ξ(sk+1) + δ
.

Let us stress that the summand O(δ) in (4.4) comes from N ≈ δ−1 terms o(δ)
appearing in (4.3).

Analogous reasoning to that from the previous case enables to translate the
above identities for B into the inductive construction of an appropriate Carleson
sequence (αQ)Q∈T and a function f . Let A0 ⊃ A1 ⊃ A2 ⊃ . . . ⊃ AN be sets
given by the same construction as in the previous case. The set AN has measure
(1− δ)N = s and the behavior of E ∩AN , (αQ)Q∈T ,Q⊆AN

and f |AN
must code the

value B(1, 1, xN ). So, for any atom Q of AN , we repeat the construction from the
previous case (with a di�erent �xed δ′) and �glue� the corresponding sets, sequences
and functions (corresponding to di�erent atoms) into one set, one sequence and one
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function on AN . Clearly, for each Q the set E we take is equal to Q; this implies
E ∩ AN = AN , and hence we are forced to take E = AN , so that µ(E) = s. To
complete the construction, we proceed as follows. If Q is an atom of one of the sets
A0, A1, . . ., AN−1, set αQ = δ. If Q ∈ T does not have this property and is not
contained in any atom of AN , put αQ = 0. Finally, the restriction f to X \AN is
given by

(4.5) f |X\AN
=

N−1∑
k=0

(
xk + 1

(1− δ)ξ(sk+1) + δ
− 1

)
χAk\Ak+1

,

as indicated by the terms appearing under the second sum in (4.4).
The following fact will be useful later.

Lemma 4.3. If x+ 1 = ξ(s), then f is nonnegative.

Proof. Fix s. Let us �rst show that for any k = 0, 1, 2, . . . , N − 1 we have

(4.6) ξ(sk) ≥ (1− δ)ξ(sk+1) + δ.

To this end, we consider the function

F (u) = ξ(u(1− δ)−k)−
(
(1− δ)ξ(u(1− δ)−k−1) + δ

)
, u ∈ [0, s].

We have F (0) = 0 and

F ′(u) = (1− δ)−k
(
ξ′(u(1− δ)−k)− ξ′(u(1− δ)−k−1)

)
≥ 0,

since ξ is concave, as shown in the proof of Lemma 3.1. This shows F (s) ≥ 0 and
hence (4.6) follows.

Now, to show the nonnegativity of f on AN , we prove inductively the bound

(4.7) xk + 1 ≥ ξ(sk), k = 0, 1, 2, . . . , N.

When k = 0, both sides are equal. Assuming the validity of the above bound for
some k, we obtain

xk+1 + 1 =
(xk + 1)ξ(sk+1)

(1− δ)ξ(sk+1) + δ
≥ ξ(sk)

(1− δ)ξ(sk+1) + δ
· ξ(sk+1) ≥ ξ(sk+1),

where the last passage is due to (4.6), and hence (4.7) follows. This estimate
combined with (4.6) immediately yields f ≥ 0 on X \AN (see (4.5)). It also implies
the nonnegativity on AN : indeed, plugging k = N we get xN + 1 ≥ K/(K− 1) and
it su�ces to apply Remark 4.2. �

Step 2. Formal veri�cation of the properties of E, (αQ)Q∈T and f . We have
already checked that µ(E) = µ(AN ) = (1− δ)N = s. The corresponding properties
of (αQ)Q∈T and f are proved with the same reasoning as previously; we leave the
details to the reader.

Step 3. Checking the value of B(s, 1, x). Let N be �xed. We know from the
analysis of the preceding case that if we let δ′ → 0 (recall that δ′ was the parameter
used in the construction of the extremizers on AN ), then for each atom R of AN
we have

1

µ(R)

∑
Q∈T ,Q⊆R

αQ(〈f〉Q + 1)µ(E ∩Q)− K

µ(R)

∫
R

(Ψ(f) + f)dµ→ B(1, 1, xN ),
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uniformly in R (more precisely, the left-hand side does not depend on R, but only
on δ′). If we multiply throughout by µ(R) and sum over all R, we get∑
Q∈T ,Q⊆R,
R atom of AN

αQ(〈f〉Q + 1)µ(E ∩Q)−K
∫
AN

(Ψ(f) + f)dµ→ µ(AN )B(1, 1, xN )

= (1− δ)NB(1, 1, xN ).

Furthermore, if T ′ = {Q ∈ T : Q is not contained in any atom of AN}, then

∑
Q∈T ′

αQ(〈f〉Q + 1)µ(E ∩Q) =

N−1∑
k=0

∑
Q atom
of Ak

δ(xk + 1)µ(AN ∩Q)

=

N−1∑
k=0

δ(xk + 1)µ(AN ) =

N−1∑
k=0

δ(xk + 1)s

and

−K
∫
X\AN

(f + 1) log(f + 1)dµ

=

∫
X\AN

B(0, 0, f)dµ

=

N−1∑
k=0

B
(

0, 0,
xk + 1

(1− δ)ξ(sk+1) + δ
− 1

)
µ(Ak \Ak+1)

=

N−1∑
k=0

δ(1− δ)kB
(

0, 0,
xk + 1

(1− δ)ξ(sk+1) + δ
− 1

)
.

Putting all the above facts together (i.e., summing the three equations above), we
get∫

E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
X

(
Ψ(f) + f

)
dµ

=

N−1∑
k=0

δ(xk + 1)s+

N−1∑
k=0

δ(1− δ)kB
(

0, 0,
xk + 1

(1− δ)ξ(sk+1) + δ
− 1

)
+ (1− δ)NB(1, 1, xN ) + o(δ′).

This should be compared to (4.4); if we let δ′ → 0 and then δ → 0, then the
expression ∫

E

( ∑
Q∈T

αQ(〈f〉Q + 1)χQ

)
dµ−K

∫
X

(
Ψ(f) + f

)
dµ

approaches B(s, 1, x); hence B0 = B for all points of the form (s, 1, x). Furthermore,
the extremizers we have constructed give rise to the formula for the function B
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studied in Section 3. Since E = AN , we have E ∩Ak = Amax{k,N} and hence

∑
Q∈T

αQµ(E ∩Q) =

N−1∑
k=0

δµ(AN ) +

∞∑
k=N

δµ(Ak)

= Nδ(1− δ)N + (1− δ)N N→∞−−−−→ −s log s+ s.

(4.8)

Consequently, if δ′ → 0 and N →∞, we get∫
E

( ∑
Q∈T

αQ〈f〉QχQ
)
dµ−K

∫
X

Ψ(f)dµ→ B(s, 1, x) + s log s− s+Kx,

and the limit is precisely B(s, 1, x).

4.3. Extremizers corresponding to B(s, t, x). Suppose that t < 1. We will
brie�y discuss the case s ≤ t only; if s > t, the reasoning is similar. In this case the
argument is very simple: we have

(4.9) B(s, t, x) = (1− t)B(0, 0, x− c(s, t, x)) + tB
(
s

t
, 1, x+ c(s, t, x) · 1− t

t

)
.

Let us split X = A ∪ (X \ A), where µ(A) = t. On the set X \ A we set f ≡
x − c(s, t, x) and E = ∅ (formally, we require E ∩ (X \ A) = ∅). Next, if Q is not
contained in any atom of A, we let αQ = 0 (in particular, αX = 0). On the other
hand, on each atom Q of A we use the construction of the preceding subsection,
corresponding to B

(
s
t , 1, x+ c(s, t, x) · 1−tt

)
. Now we glue all the sets, sequences

and functions (corresponding to di�erent Q's) into one set, sequence and function
(on A). Together with the preceding requirements, this de�nes us the desired
candidates for the (almost) extremizers. We conclude by deriving the formula for
B. For E, (αQ)Q∈T and f as above, we have, by (4.8), that if R is an atom of A,
then

1

µ(R)

∑
Q∈T ,Q⊆R

αQµ(E ∩Q)→ −(s/t) log(s/t) + s/t.

Therefore∑
Q∈T

αQµ(E ∩Q) =
∑

Q∈T ,Q⊆A

αQµ(E ∩Q)→ µ(A) ·
(
− (s/t) log(s/t) + s/t

)
= −s log(s/t) + s

and hence∫
E

( ∑
Q∈T

αQ〈f〉QχQ
)
dµ−K

∫
X

Ψ(f)dµ→ B(s, t, x) + s log(s/t)− s+Kx,

and the limit is precisely B(s, t, x).

4.4. Sharpness of (1.4). Clearly, it su�ces to prove that L(K) is the best for
K > 1; since L(K) → ∞ as K ↓ 1, this will automatically imply the sharpness
for K ≤ 1 as well. Fix small ε > 0, s > 0 and suppose that the inequality (1.4)
holds with some constant L′(K) in the place of L(K). Consider the extremizers
corresponding to B(s, 1, ξ(s) − 1). As we have shown in Lemma 4.3 above, the
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(almost) extremal function f is nonnegative and if we take δ, δ′ (the parameters of
the construction) su�ciently small, then

L′(K)s ≥
∫
E

( ∑
Q∈T

αQ〈f〉QχQ
)
dµ−K

∫
X

Ψ(f)dµ > B(s, 1, ξ(s)− 1)− εs.

Dividing throughout by s and letting s → 0 gives L′(K) ≥ L(K) − ε (see the last
display in the proof of Lemma 3.1). Since ε was arbitrary, the sharpness follows.
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