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Abstract. The paper identifies optimal constants in weighted Lp inequalities

for the dyadic maximal function. The proof rests on Bellman function tech-

nique: the estimates are deduced from the existence of certain special functions
enjoying appropriate size conditions and concavity.

1. Introduction

The purpose of this paper is to study a sharp version of a very classical estimate
of harmonic analysis, the weighted Lp bound for the dyadic maximal operator.
Let us start with introducing the necessary background and notation. Recall that
the dyadic maximal operator M on Rn is an operator acting on locally integrable
functions φ : Rn → R by the formula

Mφ(x) = sup {〈|φ|〉Q : x ∈ Q, Q ⊂ Rn is a dyadic cube} .

Here the dyadic cubes are those formed by the grids 2−NZn, N = 0, 1, 2, . . ., and
〈f〉Q stands for 1

|Q|
∫
Q
fdx, the average of f over Q (|Q| denotes the Lebesgue

measure of Q). This maximal operator plays a fundamental role in analysis and
PDEs, and in many applications it is of interest to control it efficiently, i.e., to
have optimal or at least good bounds for its norms. For instance, M satisfies the
weak-type (1, 1) inequality

(1.1) λ
∣∣ {x ∈ Rn :Mφ(x) ≥ λ}

∣∣ ≤ ∫
{Mφ≥λ}

|φ(u)|du, φ ∈ L1(Rn),

which, after integration, yields the corresponding Lp estimate

(1.2) ||Mφ||Lp(Rn) ≤
p

p− 1
||φ||Lp(Rn), 1 < p ≤ ∞.

Both estimates are sharp: the constant 1 in (1.1) and the constant p/(p − 1) in
(1.2) cannot be decreased. These two results have been successfully extended in
numerous directions and applied in various contexts of harmonic analysis. See e.g.
[4, 5, 6, 7, 8, 13, 14] and the monograph [3], consult also references therein.

The primary goal of the present paper is to establish a sharp weighted version
of (1.2). In what follows, the word ‘weight’ will refer to a nonnegative, integrable
function on the underlying measure space (here, Rn with Lebesgue’s measure).
The following statement is a consequence of the classical work of Muckenhoupt [9].
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Suppose that 1 < p <∞ is given and fixed, and let w be a weight on Rn. ThenM
is bounded as an operator on the weighted space

Lp(w) =

{
f : Rn → R : ||f ||Lp(w) =

(∫
Rn

|f |pwdx

)1/p

<∞

}
if and only if w belongs to the dyadic Ap class, i.e.,

[w]Ap
:= sup〈w〉Q〈w−1/(p−1)〉p−1

Q <∞,

where the supremum is taken over all dyadic cubes in Rn. This result is a starting
point for many interesting further questions. For example, one can ask about
the dependence of ||M||Lp(w)→Lp(w) on the size of the characteristic [w]Ap . More
precisely, for a given 1 < p <∞, the problem is to find the least number α = α(p)
such that

||Mf ||Lp(w) ≤ Cp[w]
α(p)
Ap
||f ||Lp(w)

for some Cp depending only on p. This problem was solved in the nineties by
Buckley [1], who showed that the optimal exponent α(p) is equal to 1/(p− 1).

The contribution of this paper is the sharp upper bound for ||M||Lp(w)→Lp(w)

both in terms of p and [w]Ap
. Actually, we will work in the more general context

of probability spaces equipped with a tree-like structure [4]. Here is the precise
definition.

Definition 1.1. Suppose that (X,µ) is a nonatomic probability space. A set T of
measurable subsets of X will be called a tree if the following conditions are satisfied:

(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a finite subset C(Q) ⊂ T containing at least two
elements such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q,
(b) Q =

⋃
C(Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
Q∈T m C(Q).

(iv) We have limm→∞ supQ∈Tm µ(Q) = 0.

An important example, which links this definition with the preceding consider-
ations, is the cube X = [0, 1)n endowed with Lebesgue measure and the tree of
its dyadic subcubes. Any probability space equipped with a tree gives rise to the
corresponding maximal operatorMT , acting on integrable functions f : X → R by
the formula

MT f(x) = sup {〈|f |〉Q : x ∈ Q,Q ∈ T } ,
where this time 〈ϕ〉Q = 1

µ(Q)

∫
Q
ϕdµ is the average of ϕ over Q with respect to

the measure µ. In analogy to the dyadic setting described above, we say that a
weight w on X satisfies Muckenhoupt’s condition Ap (where 1 < p < ∞ is a fixed
parameter), if

[w]Ap
:= sup

Q∈T
〈w〉Q〈w−1/(p−1)〉p−1

Q <∞.

Furthermore, the weighted space Lp(w) is given by

Lp(w) =

{
f : X → R : ||f ||Lp(w) =

(∫
X

|f |pwdµ

)1/p

<∞

}
.
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To formulate the main result of this paper, we need to introduce a certain special
parameter d. Its geometric interpretation is explained on Figure 1 below. Let c ≥ 1
and 1 < p <∞ be fixed. Then the line, tangent to the curve wvp−1 = c at the point
(1, c1/(p−1)), intersects the curve wvp−1 = 1 at one point (if c = 1) or two points
(if c > 1). Take the intersection point with larger w-coordinate, and denote this
coordinate by 1 + d(p, c). Formally, d = d(p, c) is the unique number in [0, p − 1)
satisfying the equation

(1.3) c(1 + d)(p− 1− d)p−1 = (p− 1)p−1.

Figure 1. The geometric interpretation of the number d = d(p, c).

We are ready to state the main result of the paper.

Theorem 1.2. If 1 < p <∞ and w is an Ap weight on X, then we have the sharp
bound

(1.4) ||MT ||Lp(w)→Lp(w) ≤
p

p− 1− d(p, [w]Ap
)
.

Some remarks are in order. First, by sharpness we mean that for any ε > 0, any
probability space (X,µ), any 1 < p < ∞ and any c ≥ 1 there is an Ap weight w
with [w]Ap

≤ c such that

(1.5) ||MT ||Lp(w)→Lp(w) >
p

p− 1− d(p, [w]Ap)
− ε.

Thus, the above result is sharp also in the classical setting of [0, 1)n equipped with
Lebesgue’s measure and the tree of dyadic subcubes; by straightforward dilation and
scaling, the result extends to the whole Rn. Second, note that the above statement
contains (1.2): indeed, setting c = 1 (which corresponds to the unweighted setting),
we derive that d(p, c) = 0 and the optimal constant in (1.4) becomes equal to
p/(p− 1).

Our proof of (1.4) exploits the theory of two-weight inequalities. It follows from
the results of Sawyer in [16] that if w, v are two weights on Rn, then the (dyadic)
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maximal operatorM is bounded as an operator from Lp(v) to Lp(w) if and only if
the weights satisfy the so-called testing condition∫

Q

(
M(v−1/(p−1)χQ)

)p
wdx ≤ C

∫
Q

v−1/(p−1)dx

for all dyadic cubes Q, where C depends only on p, w and v. We will study a sharp
version of the testing condition for w = v, in the above context of probability spaces.
Then we will combine this estimate with the weighted version of Carleson embed-
ding theorem (cf. [11], [21]) and obtain the desired bound (1.4). Both these steps
(i.e., sharp testing condition and Carleson imbedding theorem) will be established
with the use of the so-called Bellman function method. The technique reduces the
problem of proving a given inequality to the search for a certain special function,
enjoying appropriate size conditions and concavity. The method originates from
the theory of optimal stochastic control, and it has been studied intensively during
the last thirty years. Its connection to the problems of martingale theory was firstly
observed by Burkholder [2], who used it to identify the unconditional constant of
the Haar system and related estimates for martingale transforms. This direction of
research was further explored by Burkholder, his PhD students and other mathe-
maticians (see [12] for the overview). In the nineties, Nazarov, Treil and Volberg
(cf. [10], [11]) described the method from a wider perspective which allowed them
to apply it to various problems of harmonic analysis. Since then, the technique has
proved to be extremely efficient in various contexts; consult e.g. [15], [17], [18], [19],
[20] and the references therein.

The rest of this paper is organized as follows. In the next section we provide the
construction of an example showing that the constant in (1.4) cannot be smaller
than p/(p− 1− d(p, [w]Ap)). The final part of the paper is devoted to the proof of
(1.4).

2. An example

Throughout this section, c ≥ 1 and 1 < p <∞ are fixed parameters, and our goal
here is to prove that for each ε > 0 there is an Ap weight w with [w]Ap

≤ c such that
(1.5) holds true. We may exclude the trivial case c = 1 from our considerations: the
resulting constant in (1.5) is p/(p− 1), which is optimal in the unweighted setting.
Thus, from now on, we assume that c is strictly bigger than 1.

It is convenient to split the reasoning into a few parts.

Step 1. Auxiliary geometrical facts and parameters. Pick c̃ ∈ (1, c). There are
two lines passing through the point K = (1, c̃1/(p−1)) which are tangent to the
curve wvp−1 = c; pick the line ` which has smaller slope (equivalently: the w-
coordinate of the tangency point is smaller than 1). This line intersects the curve
wvp−1 = 1 at two points: pick the point L with bigger w-coordinate and denote
this coordinate by 1 + d(c̃). Furthermore, the line ` intersects the curve wvp−1 = c̃
at two points: one of them is K, while the second, denoted by M , is of the form(
1− δ, (c̃(1− δ))1/(1−p)). See Figure 2 below.

Let us record here two important facts. First, the points K, L, M are colinear:
some simple algebra allows to transform this observation into the equality

(2.1) (c̃(1 + d(c̃)))1/(p−1)
(
d(c̃) + δ − d(c̃)(1− δ)1/(1−p)) = δ,
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Figure 2. The crucial parameters and their geometric interpre-
tation: K = (1, c̃1/(p−1)), L =

(
1 + d(c̃), (1 + d(c̃))1/(1−p)) and

M =
(
1− δ, (c̃(1− δ))1/(1−p)).

which will be useful later. Second, it follows immediately from the geometric inter-
pretation of d(p, c) and d(c̃) that

(2.2) d(c̃) < d(p, c) < p− 1,

and d(c̃) can be made arbitrarily close to d(p, c) by picking c̃ sufficiently close to c.
Finally, we introduce a parameter r, which is assumed to be a negative number

satisfying r > −1/p − 1/(pd(p, c)). By the left estimate in (2.2), we see that for
all c̃ we have r > −1/p− 1/(pd(c̃)), which combined with the right bound in (2.2)
implies

(2.3) 1 + rd(c̃) > 0.

Step 2. Construction. Now, recall the following technical fact, which can be
found in [4].

Lemma 2.1. For every Q ∈ T and every β ∈ (0, 1) there is a subfamily F (Q) ⊂ T
consisting of pairwise disjoint subsets of Q such that

µ

 ⋃
R∈F (Q)

R

 =
∑

R∈F (Q)

µ(R) = βµ(Q).

We use this fact inductively, to construct an appropriate family A0 ⊃ A1 ⊃
A2 ⊃ . . . of sets. Namely, we start with A0 = X. Suppose we have successfully
constructed An, which is a union of pairwise almost disjoint elements of T , called
the atoms of An (this condition is satisfied for n = 0: we have A0 = X ∈ T ). Then,
for each atom Q of An, we apply the above lemma with β = d(c̃)/(d(c̃) + δ) and
get a subfamily F (Q). Put An+1 =

⋃
Q

⋃
Q′∈F (Q)Q

′, the first union taken over

all atoms Q of An. Directly from the definition, this set is a union of the family
{F (Q) : Q an atom of An}, which consists of pairwise disjoint elements of T . We
call these elements the atoms of An+1 and conclude the description of the induction
step.
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As an immediate consequence of the above construction, we see that if Q is an
atom of Am, then for any n ≥ m we have

µ(Q ∩An) = µ(Q)

(
d(c̃)

d(c̃) + δ

)n−m
and hence

(2.4) µ(Q ∩ (An \An+1)) = µ(Q)

(
d(c̃)

d(c̃) + δ

)n−m
δ

d(c̃) + δ
.

Now, introduce the weight w on X by the formula

w =

∞∑
n=0

χAn\An+1
(1 + d(c̃))(1− δ)n

and let f : X → R be given by

f =

∞∑
n=0

χAn\An+1
(1 + rd(c̃))(1− rδ)n,

where r is the number fixed at the previous step.

Step 3. Verification of Muckenhoupt’s condition. First we will check that w is
an Ap weight satisfying [w]Ap

≤ c. To this end, we use (2.4) to obtain that for each
atom Q of Am we have

(2.5) 〈w〉Q =

∞∑
n=m

(
d(c̃)

d(c̃) + δ

)n−m
(1− δ)n(1 + d(c̃)) · δ

d(c̃) + δ
= (1− δ)m

and

〈w−1/(p−1)〉Q =

∞∑
n=m

(
d(c̃)

d(c̃) + δ

)n−m
(1− δ)n/(1−p)(1 + d(c̃))1/(1−p) · δ

d(c̃) + δ

=
(1 + d(c̃))1/(1−p)δ

d(c̃) + δ
(1− δ)m/(1−p) ·

(
1− d(c̃)

d(c̃) + δ
(1− δ)1/(1−p)

)−1

= c1/(p−1)(1− δ)m/(1−p),

where in the last passage we have exploited (2.1). Suppose that R is an arbitrary
element of T . Then there is an integer m such that R ⊆ Am−1 and R 6⊆ Am. We
have

〈w〉R =
1

µ(R)

∫
R\Am

wdµ+
1

µ(R)

∫
R∩Am

wdµ

=
1

µ(R)

∫
R\Am

(1 + d(c̃))(1− δ)m−1dµ+
1

µ(R)

∫
R∩Am

wdµ.

By (2.5), applied to each atom Q of Am contained in R, we get∫
R∩Am

wdµ = µ(R ∩Am)(1− δ)m

and hence, setting η := µ(R ∩ Am)/µ(R), we rewrite the preceding equality in the
form

〈w〉R = (1− η)(1 + d(c̃))(1− δ)m−1 + η(1− δ)m.
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A similar calculation shows that

〈w−1/(p−1)〉R
= (1− η)(1 + d(c̃))1/(1−p)(1− δ)(m−1)/(1−p) + ηc1/(p−1)(1− δ)m/(1−p)

and therefore

〈w〉R〈w−1/(p−1)〉p−1
R

=

(
η(1− δ) + (1− η)(1 + d(c̃))

)(
η(1− δ)1/(1−p) + (1− η)(1 + d(c̃))1/(1−p)

)p−1

.

This number does not exceed c. To see this, rewrite the right-hand side in the form

(ηMw + (1− η)Lw)(ηMv + (1− η)Lv)
p−1,

where Mw, Mv and Lw, Lv are the coordinates of the points M and L (see Figure 2).
As η ranges from 0 to 1, the point ηM + (1− η)L runs over the line segment ML
which is entirely contained in {(w, v) : wvp−1 ≤ c}. Since R was arbitrary, we
obtain the desired Ap condition: [w]Ap ≤ c.

Step 4. Completion of the proof. In the same manner as above, one verifies that
if Q is an atom of Am, then

〈f〉Q =

∞∑
n=m

(
d(c̃)

d(c̃) + δ

)n−m
(1− rδ)n(1 + rd(c̃)) · δ

d(c̃) + δ
= (1− rδ)m

(the ratio of the geometric series, equal to d(c̃)(1 − rδ)/(d(c̃) + δ)), is less than 1:
this is equivalent to (2.3)). Consequently, we see that MT f ≥ (1 − rδ)m on Am
and hence, by the definition of f , we obtainMT f ≥ (1 + rd(c̃))−1f on Am \Am+1.
The latter bound does not depend on m, so we can rewrite it uniformly as

MT f ≥ (1 + rd(c̃))−1f on X.

Now if we choose r sufficiently close to −1/p − 1/(pd(p, c)) and then c̃ sufficiently
close to c, then the number (1 + rd(c̃))−1 can be made arbitrarily close to p/(p −
1− d(p, c)), the constant in (1.4). Thus, it is enough to show that for such choices,
the function f belongs to Lp(w). To this end, we compute that

||f ||pLp(w) =

∞∑
n=0

(1 + d(c̃))(1− δ)n(1 + rd(c̃))p(1− rδ)np
(

d(c̃)

d(c̃) + δ

)n
δ

d(c̃) + δ

and the ratio of this geometric series is equal to (1−δ)(1−rδ)pd(c̃)/(d(c̃)+δ). Now
recall that we have taken r close to (but larger than) −1/p − 1/(pd(p, c)); hence
1 + pr+ 1/d(p, c) > 0. If we make c̃ sufficiently close to c (then δ approaches 0: see
Figure 2), we see that the ratio is

1− δ
(

1 + pr +
1

d(p, c)

)
+ o(δ) < 1.

This establishes the desired sharpness.



8 ADAM OSȨKOWSKI

3. Proof of (1.4)

Throughout this section, p ∈ (1,∞) is given and fixed. For any c ≥ 1, introduce
the domain

D = Dp,c = {(u, v, w) ∈ (0,∞)3 : 1 ≤ wvp−1 ≤ c}
and let B : Dp,c → R be the function given by the formula

B(u, w, v) =

(
1 +

1

d(p, c)

)
upw+

p− 1

d(p, c)

(
c(1+d(p, c))

)p/(p−1)
v− pu

d(p, c)
c(1+d(p, c)).

We will prove that this object has the following properties.

Lemma 3.1. (i) If up−1w ≤ c, then

(3.1)
∂B

∂u
(u, w, v) ≤ 0.

(ii) For any positive w, v satisfying wvp−1 ≤ c we have

(3.2) B(v, w, v) ≤ (c(1 + d(p, c)))p/(p−1)v.

(iii) We have

(3.3) B(u, w, v) ≥ upw.

Proof. (i) We easily compute that

∂B

∂u
(u, w, v) = p

(
1 +

1

d(p, c)

)(
up−1w− c

)
≤ 0.

(ii) Plugging u = v in the formula for B gives

B(v, w, v)

=

(
1 +

1

d(p, c)

)
vpw +

p− 1

d(p, c)

(
c(1 + d(p, c))

)p/(p−1)
v− pv

d(p, c)
c(1 + d(p, c))

≤ c
(

1 +
1

d(p, c)

)
v +

p− 1

d(p, c)

(
c(1 + d(p, c))

)p/(p−1)
v− pv

d(p, c)
c(1 + d(p, c))

= c(p− 1)

(
1 +

1

d(p, c)

)[(
c(1 + d(p, c))

)1/(p−1) − 1

]
v.

It remains to apply (1.3): we have
(
c(1 +d(p, c))

)1/(p−1)
= (p−1)/(p−1−d(p, c)),

so

c(p− 1)

(
1 +

1

d(p, c)

)[(
c(1 + d(p, c))

)1/(p−1) − 1

]
= c(p− 1)

(
1 +

1

d(p, c)

)
d(p, c)

p− 1− d(p, c)

=
c(1 + d(p, c))(p− 1)

p− 1− d(p, c)

= (c(1 + d(p, c)))p/(p−1).

(iii) The majorization is equivalent to

upw + (p− 1)
(
c(1 + d(p, c))

)p/(p−1)
v− pc(1 + d(p, c))u ≥ 0.

Let u > 0 be fixed. Since wvp−1 ≥ 1, the left-hand side above is not smaller than

G(v) := upv1−p + (p− 1)
(
c(1 + d(p, c))

)p/(p−1)
v− pc(1 + d(p, c))u.



MAXIMAL INEQUALITIES 9

We compute that G′(v) = (p − 1)
(
− (u/v)p + (c(1 + d(p, c)))p/(p−1)

)
and hence

G attains its minimum at the point v = u(c(1 + d(p, c)))−1/(p−1). We easily check
that this point is a root of G and hence the assertion follows. �

Now we will establish a sharp version of Sawyer’s dyadic testing condition.

Theorem 3.2. Suppose that a weight w satisfies [w]Ap
= c. Then for any R ∈ T ,

(3.4)

∫
R

(
MT (w−1/(p−1)χR)

)p
wdµ ≤

(
c(1 + d(p, c))

)p/(p−1)
∫
R

w−1/(p−1)dµ.

The constant is the best possible.

Proof. We split the reasoning into three parts.

Step 1. Auxiliary notation. The set R belongs to some generation of the tree T :
say, R ∈ T m. For any n and any x ∈ X, let Qn(x) be the element of T n which
contains x; such a set is uniquely defined for almost all x. Next, introduce the
notation

wn = 〈w〉Qn(x), vn =
〈
w−1/(p−1)

〉
Qn(x)

, un = max
m≤k≤n

vk.

In the probabilistic language, the functional sequences (wn)n≥m and (vn)n≥m are

martingales corresponding to the terminal variables w and w−1/(p−1), while (un)n≥m
is the maximal function of (vn)n≥m. Note that for any n ≥ m and any Q ∈ T n,
the functions un, wn and vn are constant on Q and we have

(3.5)

∫
Q

wn+1dµ = µ(Q)wn|Q,
∫
Q

vn+1dµ = µ(Q)vn|Q.

Furthermore, the sequence (un)n≥m is nondecreasing and satisfies

lim
n→∞

un(x) = sup
n≥m

〈
w−1/(p−1)

〉
Qn(x)

= sup
n≥m

〈
w−1/(p−1)χR

〉
Qn(x)

= sup
n≥0

〈
w−1/(p−1)χR

〉
Qn(x)

=MT (w−1/(p−1)χR)

(3.6)

almost everywhere.

Step 2. Monotonicity property. The main part of the proof is to show that the
sequence

(∫
R
B(un, wn, vn)dµ

)
n≥m is nondecreasing. It follows from (3.5) that if

n ≥ m and Q is an element of T n, then

(3.7)

∫
Q

B(un, wn, vn)dµ = µ(Q)B(un, wn, vn)|Q =

∫
Q

B(un, wn+1, vn+1)dµ,

since the dependence of B on w and v is linear. Now we will show that

(3.8) B(un, wn+1, vn+1) ≥ B(un+1, wn+1, vn+1).

This is clear if un = un+1. On the other hand, the inequality un+1 > un implies
vn+1 = un+1 > un (since un+1 = un ∨ vn+1). Therefore, we have up−1

n wn+1 ≤
up−1
n · cv1−p

n+1 < c and u
p−1
n+1wn+1 = v

p−1
n+1wn+1 ≤ c, so for any u ∈ [un, un+1] we have

the estimate up−1wn+1 ≤ c. Combining this observation with (3.1) immediately
yields (3.8) and hence (3.7) gives∫

Q

B(un, wn, vn)dµ ≥
∫
Q

B(un+1, wn+1, vn+1)dµ.
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Summing over all Q ∈ T n contained in R, we get the aforementioned monotonicity
property of the sequence

(∫
R
B(un, wn, vn)dµ

)
n≥m.

Step 3. Completion of the proof. For a given n ≥ m, let us apply (3.3) to get

(3.9)

∫
R

upnwndµ ≤
∫
R

B(un, wn, vn)dµ ≤
∫
R

B(um, wm, vm)dµ.

Since R ∈ T m, the functions wm and vm are constant on R and um = vm. Therefore,
by (3.2), ∫

R

B(um, wm, vm)dµ ≤ µ(R)(c(1 + d(p, c)))p/(p−1)vm|R

= (c(1 + d(p, c)))p/(p−1)

∫
R

w−1/(p−1)dµ.

On the other hand, wn is the conditional expectation of w on T n, so
∫
R
upnwndµ =∫

R
upnwdµ

n→∞−−−−→
∫
R

(M(w−1/(p−1)χR))pwdµ, where in the last passage we have
exploited (3.6) and Lebesgue’s monotone convergence theorem. Combining these
observations with (3.9) yields (3.4). The sharpness of this estimate will follow
immediately from the sharpness of (1.4). See Remark 3.4 below. �

We are ready to establish our main result. It follows from the sharp weighted
version of Carleson embedding theorem (cf. [21]), which we prove here for the sake
of completeness.

Theorem 3.3. Suppose that w is an Ap weight. Let K be a positive constant and
assume that nonnegative numbers αQ, Q ∈ T , satisfy

(3.10)
1

µ(R)

∑
Q⊆R

αQ〈w−1/(p−1)〉pQ ≤ K〈w
−1/(p−1)〉R

for all R ∈ T . Then for any integrable and nonnegative function f on X we have

(3.11)
∑
Q∈T

αQ〈f〉pQ ≤ K
(

p

p− 1

)p ∫
X

fpwdµ.

Proof. By homogeneity, we may and do assume thatK = 1. Consider the functional
sequences (xn)n≥0, (yn)n≥0, (zn)n≥0 and (tn)n≥0 given by

xn(x) = 〈fpw〉Qn(x), yn(x) = 〈f〉Qn(x), zn = 〈w−1/(p−1)〉Qn(x)

and

tn(x) =
1

µ(Qn(x))

∑
Q⊆Qn(x),Q∈T

αQ〈w−1/(p−1)〉pQ.

Note that

(3.12) yn ≤ x1/p
n z1−1/p

n and tn ≤ zn,

where the first estimate follows from the Hölder inequality and the second is due
to (3.3). Introduce the function B : [0,∞)2 × (0,∞)2 → R by

B(x, y, z, t) =

(
p

p− 1

)p [
x− yp

(
z +

t

p− 1

)1−p
]
.
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This function is concave: it is easy to check that the Hessian D2B is nonpositive-
definite in the interior of the domain. Therefore for any nonnegative numbers x, y,
any positive numbers z, t and any h ≥ −x, k ≥ −y, l > −z and m > −t we have

B(x + h, y + k, z + l, t + m)

≤ B(x, y, z, t) +
∂B

∂x
B(x, y, z, t)h +

∂B

∂y
B(x, y, z, t)k +

∂B

∂z
B(x, y, z, t)l

+
∂B

∂t
B(x, y, z, t)m.

(3.13)

Now we will show that the sequence (
∫
X
B(xn, yn, zn, tn)dµ)n≥0 enjoys a certain

monotonicity property. To this end, fix n ≥ 0, Q ∈ T n and pairwise disjoint
elements Q1, Q2, . . ., Qm of T n+1 whose union is Q. Put x = xn|Q, y = yn|Q,
z = zn|Q and t = tn|Q. Furthermore, for any j = 1, 2, . . . , m, let hj , kj , lj
and mj be given by x + hj = xn+1|Qj , y + kj = yn+1|Qj , z + lj = zn+1|Qj and
t + mj = tn+1|Q. It is easy to check that

(3.14)

m∑
j=1

µ(Qj)

µ(Q)
hj =

m∑
j=1

µ(Qj)

µ(Q)
kj =

m∑
j=1

µ(Qj)

µ(Q)
lj = 0.

Concerning the dynamics of the sequence (tn)n≥0, we see that

t =
1

µ(Q)

∑
R⊆Q,R∈T

αR〈w−1/(p−1)〉pR

=
αQ〈w−1/(p−1)〉pQ

µ(Q)
+

m∑
j=1

µ(Qj)

µ(Q)
· 1

µ(Qj)

∑
R⊆Qj , R∈T

αR〈w−1/(p−1)〉pR

=
αQ〈w−1/(p−1)〉pQ

µ(Q)
+

m∑
j=1

µ(Qj)

µ(Q)
(t + mj),

which is equivalent to

(3.15)

m∑
j=1

µ(Qj)

µ(Q)
mj = −

αQ〈w−1/(p−1)〉pQ
µ(Q)

.

Let us apply (3.13), with h = hj , k = kj , l = lj and m = mj , multiply throughout
by µ(Qj)/µ(Q) and sum the obtained estimates over j. By (3.14) and (3.15), we
get

n∑
j=1

µ(Qj)

µ(Q)
B(x + hj , y + kj , z + lj , t + mj)

≤ B(x, y, z, t)− ∂B

∂t
(x, y, z, t) ·

αQ〈w−1/(p−1)〉pQ
µ(Q)

.

However, we have

∂B

∂t
(x, y, z, t) =

(
p

p− 1

)p
yp
(
z +

t

p− 1

)−p
≥ yp

zp
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(in the last passage we have exploited the second estimate in (3.12)), so the pre-
ceding estimate implies

1

µ(Q)

∫
Q

B(xn+1, yn+1, zn+1, tn+1)dµ ≤ 1

µ(Q)

∫
Q

B(xn, yn, zn, tn)dµ−
αQ〈f〉pQ
µ(Q)

.

Multiply both sides by µ(Q) and sum over all Q ∈ T n to obtain∫
X

B(xn+1, yn+1, zn+1, tn+1)dµ ≤
∫
X

B(xn, yn, zn, tn)dµ−
∑
Q∈T n

αQ〈f〉pQ

and hence for each n we have∫
X

B(xn+1, yn+1, zn+1, tn+1)dµ ≤
∫
X

B(x0, y0, z0, t0)dµ−
∑

Q∈T k, k≤n

αQ〈f〉pQ.

Now, by the first inequality in (3.12), we have

B(xn+1, yn+1, zn+1, tn+1) ≥
(

p

p− 1

)p
(xn+1 − y

p
n+1z

1−p
n+1) ≥ 0

and, obviously,

B(x0, y0, z0, t0) ≤
(

p

p− 1

)p
x0 =

(
p

p− 1

)p ∫
X

fpwdµ.

Combining these observations with the previous estimate and letting n→∞ yields
the assertion. �

Proof of (1.4). Take an arbitrary Ap weight w and a function f , and set c = [w]Ap .
We may assume that f is nonnegative, since the passage from f to |f | does not
change the Lp norm of the function and may only increase the the maximal function
MT f . Furthermore, by a simple approximation argument, we may assume that
f is measurable with respect to a σ-algebra generated by some generation T N .
Then we have MT f = maxQ∈T n, n≤N 〈f〉QχQ and hence for each x ∈ X there is
an element Q = Q(x) belonging to

⋃
n≤N T n such thatMT f(x) = 〈f〉Q. Such a Q

may not be unique: in such a case we pick the set belonging to T n with n as small
as possible.

For any Q ∈ T , take E(Q) = {x ∈ Q : Q(x) = Q} and put αQ = w(E(Q)). We

will prove that the inequality (3.4) implies (3.10) with K = (c(1 + d(p, c)))p/(p−1).
To this end, observe that for any R we have

1

µ(R)

∑
Q⊂R

αQ〈w−1/(p−1)〉pQ =
1

µ(R)

∫
R

∑
Q∈R

χE(Q)〈w−1/(p−1)〉pQwdµ.

Notice that the sets E(Q) are pairwise disjoint and E(Q) ⊂ Q; therefore, from the
very definition of MT , we have the pointwise bound

∑
Q∈R χE(Q)〈w−1/(p−1)〉pQ ≤

MT (w−1/(p−1)χR)p on R and hence (3.10) follows. Consequently, (3.11) is also
true and this is precisely the desired weighted bound (1.4). �

Remark 3.4. It is now evident that the inequality (3.4) is sharp. Indeed, otherwise
we would be able to improve the constant in the estimate (1.4) which, as we have
seen in Section 2, is impossible.
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72, Birkhäuser, 2012.
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