A NOTE ON BURKHOLDER-ROSENTHAL INEQUALITY

ADAM OSESKOWSKI

Abstract. Let $d f$ be a Hilbert-space-valued martingale difference sequence. The paper is devoted to a new, elementary proof of the estimate

$$
\begin{aligned}
& \left\|\sum_{k=0}^{\infty} d f_{k}\right\|_{p} \leq C_{p}\left\{\left\|\left(\sum_{k=0}^{\infty} \mathbb{E}\left(\left|d f_{k}\right|^{2} \mid \mathcal{F}_{k-1}\right)\right)^{1 / 2}\right\|_{p}+\left\|\left(\sum_{k=0}^{\infty}\left|d f_{k}\right|^{p}\right)^{1 / p}\right\|_{p}\right\} \\
& \text { with } C_{p}=O(p / \ln p) \text { as } p \rightarrow \infty
\end{aligned}
$$

1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by $\left(\mathcal{F}_{n}\right)_{n \geq 0}$, a nondecreasing family of sub- σ-algebras of \mathcal{F}. Assume that f is an adapted martingale, taking values in a certain separable Hilbert space \mathcal{H} with norm $|\cdot|$ and scalar product $\langle\cdot, \cdot\rangle$. Then $d f=\left(d f_{n}\right)_{n \geq 0}$, the difference sequence of f, is given by $d f_{0}=f_{0}$ and $d f_{n}=f_{n}-f_{n-1}$, $n \geq 1$. We define the conditional square function of f by

$$
s(f)=\left[\sum_{k=0}^{\infty} \mathbb{E}\left(\left|d f_{k}\right|^{2} \mid \mathcal{F}_{k-1}\right)\right]^{1 / 2}
$$

(here and below, $\mathcal{F}_{-1}=\mathcal{F}_{0}$) and use the notation

$$
s_{n}(f)=\left[\sum_{k=0}^{n} \mathbb{E}\left(\left|d f_{k}\right|^{2} \mid \mathcal{F}_{k-1}\right)\right]^{1 / 2}, \quad n=0,1,2, \ldots,
$$

for the truncated conditional square function of f.
The purpose of this note is to investigate Burkholder-Rosenthal inequality

$$
\begin{equation*}
\|f\|_{p} \leq c_{p}\left(\|s(f)\|_{p}+\left\|\left(\sum_{k=0}^{\infty}\left|d f_{k}\right|^{p}\right)^{1 / p}\right\|_{p}\right) \tag{1.1}
\end{equation*}
$$

where $p \geq 2$ and c_{p} is a constant depending only on p. The special case in which the martingale f is a sum of independent mean-zero random variables forms an important extension of Khintchine inequality and was studied by Rosenthal in the 60 's . The proof from [11] gives the constant c_{p} which grows exponentially in p as $p \rightarrow \infty$. Johnson, Schechtman and Zinn [4] refined the reasoning and showed that the optimal order of c_{p} as $p \rightarrow \infty$ (still in the independent case) is $p / \ln p$. Applying difficult isoperimetric techniques, Talagrand [12] extended this statement to the case of independent Banach-space-valued random variables. Using hypercontractivity

[^0]methods, Kwapień and Szulga [7] gave a completely elementary proof of Talagrand's result.

The inequality (1.1) for general real martingales (and some c_{p}) was established by Burkholder in [1]. The validity of this estimate with $c_{p}=O(p / \ln p)$ was proved by Hitczenko [5] (see also [6]). This result was further generalized to vector-valued setting by Pinelis [10]. Consult also Nagaev [8] for a yet another approach.

The purpose of this paper is to present a new and elementary proof of (1.1) with $c_{p}=O(p / \ln p)$. Precisely, we will establish the following statement.
Theorem 1.1. If f is a Hilbert-space-valued martingale, then for $p \geq 4$ we have

$$
\begin{equation*}
\|f\|_{p} \leq C_{p}\left(\|s(f)\|_{p}^{p}+\left\|\left(\sum_{k=0}^{\infty}\left|d f_{k}\right|^{p}\right)^{1 / p}\right\|_{p}^{p}\right)^{1 / p} \tag{1.2}
\end{equation*}
$$

where

$$
C_{p}=2 \sqrt{2}\left(\frac{p}{4}+1\right)^{1 / p}\left(1+\frac{p}{\ln (p / 2)}\right) .
$$

In fact, using Davis' decomposition, we will be able to prove a slightly stronger estimate: see (2.10) and Remark 2.5 below.

A few words about the proof are in order. Hitczenko [5], [6] and Pinelis [10] apply the extrapolation method (good λ-inequality) of Burkholder and Gundy, combined with appropriate version of Prokhorov"arcsinh" estimate for martingales. Nagaev [8] first establishes a certain exponential bound for the tail of f and deduces Burkholder-Rosenthal estimate using a standard integration argument. Our approach is entirely different and exploits the properties of a certain special function; this type of proof can be regarded as an application of Burkholder's method (see [2] and [9] for more on the subject).

2. Proof of Theorem 1.1

The starting point is the following technical estimate proved by Kwapień and Szulga [7].

Lemma 2.1. Let $p \geq 4$ and put

$$
\eta=\eta(p):=\frac{\ln (p / 2) / p}{1+\ln (p / 2) / p}
$$

Then for any $t \geq 0$ we have

$$
\begin{equation*}
(1+t \eta)^{p}-p t \eta \leq 1+\left(\frac{p}{2}-1\right) t^{2}+t^{p} \tag{2.1}
\end{equation*}
$$

We shall require the following vector-valued version of this bound. From now on, we assume that $p \geq 4$ and that $\sigma=\sigma(p)=\eta(p) / \sqrt{2}$.
Lemma 2.2. For any $y, d \in \mathcal{H}$ we have

$$
\begin{equation*}
|y+\sqrt{2} \sigma d|^{p}-p|y|^{p-2}\langle y, \sqrt{2} \sigma d\rangle \leq|y|^{p}+\frac{p}{2}|y|^{p-2}|d|^{2}+|d|^{p} . \tag{2.2}
\end{equation*}
$$

Proof. The left-hand side can be rewritten in the form $F(\langle y, \sqrt{2} \sigma d\rangle)$, where

$$
F(s)=\left.\left||y|^{2}+2 \sigma^{2}\right| d\right|^{2}+\left.2 s\right|^{p / 2}-p|y|^{p-2} s, \quad s \in \mathbb{R} .
$$

Now keep $|y|$ and $|d|$ fixed; since the function F is convex, it suffices to prove the estimate for $\langle y, \sqrt{2} \sigma d\rangle= \pm \sqrt{2} \sigma|y||d|$, i.e. in the case when y and d are linearly
dependent. If $\langle y, \sqrt{2} \sigma d\rangle=\sqrt{2} \sigma|y||d|$, then (2.2) follows directly from (2.1); on the other hand, if $\langle y, \sqrt{2} \sigma d\rangle=-\sqrt{2} \sigma|y||d|$, we have
so the claim again follows from (2.1).
The key ingredient of the proof is the special function $U:[0, \infty) \times \mathcal{H} \times[0, \infty) \rightarrow \mathbb{R}$, given by

$$
U(x, y, z)= \begin{cases}\left(|y|^{2}-x^{2}\right)^{p / 2}-c x^{p}-z & \text { if }|y| \geq \sqrt{2} x \\ |y|^{p}-\left(2^{p / 2}-1+c\right) x^{p}-z & \text { if }|y|<\sqrt{2} x\end{cases}
$$

where

$$
c=p 2^{p / 2-2}+1 .
$$

Let us list some properties of this function.
Lemma 2.3. (i) For any $(x, y, z) \in[0, \infty) \times \mathcal{H} \times[0, \infty)$ we have

$$
\begin{equation*}
U(x, y, z)=\min \left\{\left.| | y\right|^{2}-\left.x^{2}\right|^{p / 2}-c x^{p}-z,|y|^{p}-\left(2^{p / 2}-1+c\right) x^{p}-z\right\} \tag{2.3}
\end{equation*}
$$

(ii) For any $x \geq 0$ and $y \in \mathcal{H}$ we have

$$
\begin{equation*}
U\left(x, \sigma y,|y|^{p}\right) \leq 0 \tag{2.4}
\end{equation*}
$$

(iii) For all $(x, y, z) \in[0, \infty) \times \mathcal{H} \times[0, \infty)$ we have

$$
\begin{equation*}
U(x, y, z) \geq 2^{-p / 2}\left[|y|^{p}-\sigma^{p} C_{p}^{p}\left(x^{p}+z\right)\right] . \tag{2.5}
\end{equation*}
$$

Proof. (i) For fixed $x, z \geq 0$, the function

$$
F(s)=s^{p}-\left(2^{p / 2}-1+c\right) x^{p}-z-\left(\left|s^{2}-x^{2}\right|^{p / 2}-c x^{p}-z\right), \quad s \geq 0
$$

vanishes at $s=\sqrt{2} x$ and is strictly increasing:

$$
F^{\prime}(s)=p s\left[s^{p-2}-\left|s^{2}-x^{2}\right|^{(p-2) / 2} \operatorname{sgn}\left(s^{2}-x^{2}\right)\right] .
$$

This yields (2.3).
(ii) This is obvious, since $\sigma \leq 1$.
(iii) Using the definitions of C_{p} and σ, we see that we must prove the bound

$$
U(x, y, z) \geq 2^{-p / 2}\left[|y|^{p}-\left(\frac{p}{4}+1\right) 2^{p}\left(x^{p}+z\right)\right] .
$$

Now, for $|y|<\sqrt{2} x$, we have

$$
U(x, y, z)=|y|^{p}-\left(\frac{p}{4}+1\right) 2^{p / 2} x^{p}-z \geq 2^{-p / 2}\left[|y|^{p}-\left(\frac{p}{4}+1\right) 2^{p}\left(x^{p}+z\right)\right]
$$

On the other hand, if $|y| \geq \sqrt{2} x$, then $|y|^{2}-x^{2} \geq|y|^{2} / 2$ and hence

$$
U(x, y, z) \geq 2^{-p / 2}\left[|y|^{p}-2^{p / 2} c x^{p}-2^{p / 2} z\right]
$$

so the majorization is clear.
We turn to the key property of the function U.
Lemma 2.4. For any $x, z \geq 0, y \in \mathcal{H}$ and any \mathcal{H}-valued, mean-zero random variable d with $\|d\|_{p}<\infty$ we have

$$
\begin{equation*}
\mathbb{E} U\left(\sqrt{x^{2}+\mathbb{E}|d|^{2}}, y+\sigma d, z+|d|^{p}\right) \leq U(x, y, z) \tag{2.6}
\end{equation*}
$$

Proof. We consider three cases separately.
1° The case $|y|^{2} \leq 2 x^{2}$. By (2.3), we have

$$
\begin{aligned}
& \mathbb{E} U\left(\sqrt{x^{2}+\mathbb{E}|d|^{2}}, y+\sigma d, z+|d|^{p}\right) \\
& \leq \mathbb{E}|y+\sigma d|^{p}-\left(2^{p / 2}-1+c\right)\left(x^{2}+\mathbb{E}|d|^{2}\right)^{p / 2}-z-\mathbb{E}|d|^{p} \\
& =\mathbb{E}\left\{|y+\sigma d|^{p}-p|y|^{p-2}\langle y, \sigma d\rangle-|d|^{p}\right\}-\left(2^{p / 2}-1+c\right)\left(x^{2}+\mathbb{E}|d|^{2}\right)^{p / 2}-z .
\end{aligned}
$$

By (2.2), the expression in the parentheses does not exceed $|y|^{p}+p|y|^{p-2}|d|^{2} / 2$; furthermore, we have

$$
\begin{aligned}
\left(2^{p / 2}-1+c\right)\left(x^{2}+\mathbb{E}|d|^{2}\right)^{p / 2} & \geq\left(2^{p / 2}-1+c\right)\left(x^{p}+\frac{p}{2} x^{p-2} \mathbb{E}|d|^{2}\right) \\
& \geq\left(2^{p / 2}-1+c\right) x^{p}+\frac{p}{2} 2^{(p-2) / 2} x^{p-2} \mathbb{E}|d|^{2} \\
& \geq\left(2^{p / 2}-1+c\right) x^{p}+\frac{p}{2}|y|^{p-2} \mathbb{E}|d|^{2}
\end{aligned}
$$

Combining these estimates, we obtain

$$
\mathbb{E} U\left(\sqrt{x^{2}+\mathbb{E}|d|^{2}}, y+\sigma d, z+|d|^{p}\right) \leq|y|^{p}-\left(2^{p / 2}-1+c\right) x^{p}-z
$$

which is precisely the desired bound.
$\mathfrak{2}^{\circ}$ The case $2 x^{2}<|y|^{2} \leq 2\left(x^{2}+\mathbb{E}|d|^{2}\right)$. We start as previously: by (2.3) and then (2.2),

$$
\begin{aligned}
& \mathbb{E} U\left(\sqrt{x^{2}+\mathbb{E}|d|^{2}}, y+\sigma d, z+|d|^{p}\right) \\
& \leq|y|^{p}+\frac{p}{2}|y|^{p-2} \mathbb{E}|d|^{2}-\left(2^{p / 2}-1+c\right)\left(x^{2}+\mathbb{E}|d|^{2}\right)^{p / 2}-z .
\end{aligned}
$$

The latter expression decreases as $\mathbb{E}|d|^{2}$ increases; indeed, the function

$$
F(s)=|y|^{p}+\frac{p}{2}|y|^{p-2} s-\left(2^{p / 2}-1+c\right)\left(x^{2}+s\right)^{p / 2}-z, \quad s \geq \frac{|y|^{2}}{2}-x^{2}
$$

satisfies

$$
F^{\prime}(s) \leq \frac{p}{2}\left[|y|^{p-2}-2^{p / 2-1}\left(x^{2}+s\right)^{p / 2-1}\right] \leq 0
$$

In consequence, we have

$$
\begin{aligned}
\mathbb{E} U & \left(\sqrt{x^{2}+\mathbb{E}|d|^{2}}, y+\sigma d, z+|d|^{p}\right) \\
& \leq F\left(\frac{|y|^{2}}{2}-x^{2}\right) \\
& =\frac{p}{2}|y|^{p-2}\left(\frac{|y|^{2}}{2}-x^{2}\right)-(c-1)\left(\frac{y^{2}}{2}\right)^{p / 2}-z \\
& =-\frac{p}{2}|y|^{p-2} x^{2}-z \\
& =\left(\frac{|y|^{2}}{2}\right)^{p / 2-1} x^{2}-\left(\frac{p}{2}+2^{1-p / 2}\right)|y|^{p-2} x^{2}-z \\
& \leq\left(\frac{|y|^{2}}{2}\right)^{p / 2}-c\left(\frac{|y|^{2}}{2}\right)^{p / 2-1} x^{2}-z \\
& \leq\left(|y|^{2}-x^{2}\right)^{p / 2}-c x^{p}-z,
\end{aligned}
$$

and we are done.
3° The case $|y|^{2}>2\left(x^{2}+\mathbb{E}|d|^{2}\right)$. Here the reasoning is a bit more complicated. First we show the pointwise estimate

In fact, we will establish a slightly stronger inequality:

$$
\begin{aligned}
|\mid y+ & \left.\sigma d\right|^{2}-x^{2}-\left.\mathbb{E}|d|^{2}\right|^{p / 2}-\left.p| | y\right|^{2}-x^{2}-\left.\mathbb{E}|d|^{2}\right|^{p / 2-1}\langle y, \sigma d\rangle \\
\leq & \left(|y|^{2}-x^{2}-\mathbb{E}|d|^{2}+\sigma^{2}|d|^{2}+\left.2 \sqrt{2}| | y\right|^{2}-x^{2}-\left.\mathbb{E}|d|^{2}\right|^{1 / 2} \sigma|d|\right)^{p / 2} \\
& \quad-\left.p| | y\right|^{2}-x^{2}-\left.\mathbb{E}|d|^{2}\right|^{(p-1) / 2} \sqrt{2} \sigma|d|
\end{aligned}
$$

To do this, divide throughout by $\left.\left.\left||y|^{2}-x^{2}-\mathbb{E}\right| d\right|^{2}\right|^{p / 2}$ and substitute

$$
A^{2}=\frac{|y|^{2}-x^{2}-\mathbb{E}|d|^{2}+\sigma^{2}|d|^{2}}{|y|^{2}-x^{2}-\mathbb{E}|d|^{2}}, \quad Y=\frac{y}{\left.\left.\left||y|^{2}-x^{2}-\mathbb{E}\right| d\right|^{2}\right|^{1 / 2}}
$$

and

$$
D=\frac{d}{\left.\left.\left||y|^{2}-x^{2}-\mathbb{E}\right| d\right|^{2}\right|^{1 / 2}}
$$

The estimate becomes

$$
\begin{equation*}
\left|A^{2}+2\langle Y, \sigma D\rangle\right|^{p / 2}-p\langle Y, \sigma D\rangle \leq\left.\left|A^{2}+2 \sqrt{2} \sigma\right| D\right|^{p}-p \sqrt{2} \sigma|D| \tag{2.8}
\end{equation*}
$$

However, the reasoning presented in the proof of (2.2) gives

$$
\left|A^{2}+2\langle Y, \sigma D\rangle\right|^{p / 2}-p\langle Y, \sigma D\rangle \leq\left(A^{2}+2 \sigma|Y \| D|\right)^{p / 2}-p \sigma|Y \| D|
$$

It suffices to use the bounds $|Y| \leq \sqrt{2}$ and $A^{2} \geq 1$ to obtain (2.8), because the function $s \mapsto\left(A^{2}+2 s\right)^{p / 2}-p s$ is increasing on $[0, \infty)$. Thus (2.7) follows. We turn to (2.6): applying (2.3), we get

$$
\begin{aligned}
& \mathbb{E} U\left(\sqrt{x^{2}+\mathbb{E}|d|^{2}}, y+\sigma d, z+|d|^{p}\right) \\
& \leq\left.\left.\mathbb{E}\left||y+\sigma d|^{2}-x^{2}-\mathbb{E}\right| d\right|^{2}\right|^{p / 2}-c\left(x^{2}+\mathbb{E}|d|^{2}\right)^{p / 2}-z-\mathbb{E}|d|^{p} \\
&= \mathbb{E}\left\{\left.\left.\left||y+\sigma d|^{2}-x^{2}-\mathbb{E}\right| d\right|^{2}\right|^{p / 2}-\left.p| | y\right|^{2}-x^{2}-\left.\mathbb{E}|d|^{2}\right|^{p / 2-1}\langle y, \sigma d\rangle\right\} \\
&-c\left(x^{2}+\mathbb{E}|d|^{2}\right)^{p / 2}-z-\mathbb{E}|d|^{p} \\
& \leq \mathbb{E}\left\{\left(\left.\left.\left||y|^{2}-x^{2}-\mathbb{E}\right| d\right|^{2}\right|^{1 / 2}+\sqrt{2} \sigma|d|\right)^{p}-\left.p| | y\right|^{2}-x^{2}-\left.\mathbb{E}|d|^{2}\right|^{(p-1) / 2} \sqrt{2} \sigma|d|\right\} \\
&-c x^{p}-z-\mathbb{E}|d|^{p} .
\end{aligned}
$$

Now we apply (2.2) (in the real case) to obtain

This completes the proof.

Proof of (1.2). It suffices to prove that for any nonnegative integer n,

$$
\begin{equation*}
\mathbb{E}\left|f_{n}\right|^{p} \leq C_{p}^{p} \mathbb{E}\left(s_{n}^{p}(f)+\sum_{k=0}^{n}\left|d f_{k}\right|^{p}\right) \tag{2.9}
\end{equation*}
$$

Of course, we may assume that $d f_{0}, d f_{1}, \ldots, d f_{n}$ (and hence also f_{n}) belong to L^{p}, since otherwise there is nothing to prove. The key observation is that the process

$$
\left(U\left(s_{n}(f), \sigma f_{n}, \sum_{k=0}^{n}\left|d f_{k}\right|^{p}\right)\right)_{n \geq 0}
$$

is a supermartingale with respect to $\left(\mathcal{F}_{n}\right)_{n \geq 0}$. Indeed, the integrability follows from the above assumption on $d f$; furthermore, for any $n \geq 0$ we have

$$
\begin{aligned}
& \mathbb{E}\left[U\left(s_{n+1}(f), \sigma f_{n+1}, \sum_{k=0}^{n+1}\left|d f_{k}\right|^{p}\right) \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}\left[U\left(\sqrt{s_{n}^{2}(f)+\mathbb{E}\left(\left|d f_{n+1}\right|^{2} \mid \mathcal{F}_{n}\right)}, \sigma f_{n}+\sigma d f_{n+1}, \sum_{k=0}^{n}\left|d f_{k}\right|^{p}+\left|d f_{n+1}\right|^{p}\right) \mid \mathcal{F}_{n}\right],
\end{aligned}
$$

which does not exceed $U\left(s_{n}(f), \sigma f_{n}, \sum_{k=0}^{n}\left|d f_{k}\right|^{p}\right)$, by (2.6) applied conditionally with respect to \mathcal{F}_{n-1}. Next, we have $U\left(s_{0}(f), \sigma f_{0},\left|d f_{0}\right|^{p}\right) \leq 0$, in view of (2.4). Combining these two facts with (2.5) yields the claim:

$$
\mathbb{E}\left[\left|f_{n}\right|^{p}-C_{p}^{p}\left(s_{n}^{p}(f)+\sum_{k=0}^{n}\left|d f_{k}\right|^{p}\right)\right] \leq \frac{2^{p / 2}}{\sigma^{p}} \mathbb{E} U\left(s_{n}(f), \sigma f_{n}, \sum_{k=0}^{n}\left|d f_{k}\right|^{p}\right) \leq 0
$$

Remark 2.5. Using Davis' decomposition (see e.g. Davis [3] or Burkholder [1]), one can deduce a slightly stronger form of (1.2). Namely, for all f as in the statement of Theorem 1.1 and $p \geq 4$ we have

$$
\begin{equation*}
\|f\|_{p} \leq 2 C_{p}\left(\|s(f)\|_{p}^{p}+\left\|d f^{*}\right\|_{p}^{p}\right)^{1 / p} \tag{2.10}
\end{equation*}
$$

where $d f^{*}=\sup _{n \geq 0}\left|d f_{n}\right|$. Indeed, fix a martingale f and consider the random variables $d_{n}^{\prime}=d f_{n} 1_{\left\{\left|d f_{n}\right|<2 d f_{n-1}^{*}\right\}}, d_{n}^{\prime \prime}=d f_{n} 1_{\left\{\left|d f_{n}\right| \geq 2 d f_{n-1}^{*}\right\}}, n=0,1,2, \ldots$. Here, as usual, $d f_{-1}^{*} \equiv 0$ and $d f_{n}^{*}=\max _{0 \leq k \leq n}\left|d f_{k}\right|$. Note that on the set $\left\{\left|d f_{n}\right| \geq 2 d f_{n-1}^{*}\right\}$ we have

$$
\left(2^{p}-1\right)\left|d_{n}^{\prime \prime}\right|^{p}+\left(2 d f_{n-1}^{*}\right)^{p} \leq\left(2\left|d f_{n}\right|\right)^{p} \leq\left(2 d f_{n}^{*}\right)^{p}
$$

which implies

$$
\sum_{k=0}^{n}\left|d_{k}^{\prime \prime}\right|^{p} \leq \frac{2^{p}}{2^{p}-1}\left(d f_{n}^{*}\right)^{p}, \quad n=0,1,2, \ldots
$$

Next, observe that for any n,

$$
\begin{aligned}
\mathbb{E} \sum_{k=0}^{n}\left|d_{k}^{\prime}\right|^{p} & \leq \mathbb{E} \sum_{k=0}^{n}\left|d f_{k}\right|^{2}\left(2 d f_{k-1}^{*}\right)^{p-2} \\
& =\mathbb{E} \sum_{k=0}^{n} \mathbb{E}\left(\left|d f_{k}\right|^{2} \mid \mathcal{F}_{k-1}\right)\left(2 d f_{k-1}^{*}\right)^{p-2} \\
& \leq \mathbb{E} s_{n}^{2}(f)\left(2 d f_{n}^{*}\right)^{p-2} \\
& \leq \frac{2}{p}\left\|s_{n}(f)\right\|_{p}^{p}+\frac{p-2}{p}\left\|2 d f_{n}^{*}\right\|_{p}^{p}
\end{aligned}
$$

where in the last line we have exploited Young's inequality. Combining the above estimates for the sums of d_{n}^{\prime} and $d_{n}^{\prime \prime}$ we get

$$
\begin{aligned}
\mathbb{E} \sum_{k=0}^{n}\left|d f_{k}\right|^{p} & \leq \frac{2}{p}\left\|s_{n}(f)\right\|_{p}^{p}+2^{p}\left(\frac{1}{2^{p}-1}+\frac{p-2}{p}\right)\left\|d f_{n}^{*}\right\|_{p}^{p} \\
& \leq \frac{2}{p}\left\|s_{n}(f)\right\|_{p}^{p}+2^{p}\left\|d f_{n}^{*}\right\|_{p}^{p}
\end{aligned}
$$

Plugging this into (2.9) and using the fact that n is an arbitrary nonnegative integer, we obtain (2.10).

References

[1] D. L. Burkholder, Distribution functions inequalities for martingales, Ann. Probab. 1 (1973), 19-42.
[2] D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Ete de Probabilités de Saint-Flour XIX—1989, pp. 1-66, Lecture Notes in Math., 1464, Springer, Berlin, 1991.
[3] B. Davis, On the integrability of the martingale square function, Israel J. Math. 8, 187-190.
[4] W. B. Johnson, G. Schechtman and J. Zinn, Best constants in moment inequalities for linear combination of independent and exchangeable random variables, Ann. Probab. 13 No. 1 (1985), 234-243.
[5] P. Hitczenko, Best constants in martingale version of Rosenthal inequality, Ann. Probab. 18 No. 4 (1990), 1656-1668.
[6] P. Hitczenko, On a domination of sums of random variables by sums of conditionally independent ones, Ann. Probab. 22 No. 1 (1994), 453-468.
[7] S. Kwapień and J. Szulga, Hypercontraction methods in moment inequalities for series of independent random variables in normed spaces, Ann. Probab. 19 No. 1 (1991), 369-379.
[8] S. V. Nagaev, On probability and moment inequalities for supermartingales and martingales, Acta Appl. Math. 79 (2003), 35-46.
[9] A. Osȩkowski, Sharp martingale and semimartingale inequalities, to appear in Monografie Matematyczne, Birkhäuser.
[10] I. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces, Ann. Probab. 22, No. 4 (1994), 1679-1706.
[11] H. P. Rosenthal, On the subspaces of $L^{p}(p>2)$ spanned by the sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
[12] M. Talagrand, Isoperimetry and integrability of the sum of independent Banach-space-valued random variables, Ann. Probab. 17 No. 4 (1989), 1546-1570.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, BaNACHA 2, 02-097 WARSAW, Poland

E-mail address: ados@mimuw.edu.pl

[^0]: 2010 Mathematics Subject Classification. Primary: 60G42.
 Key words and phrases. martingale, conditional square function.
 Partially supported by MNiSW Grant N N201 397437.

