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Abstract. Let df be a Hilbert-space-valued martingale difference sequence.
The paper is devoted to a new, elementary proof of the estimate∣∣∣∣∣
∣∣∣∣∣
∞∑

k=0

dfk

∣∣∣∣∣
∣∣∣∣∣
p

≤ Cp


∣∣∣∣∣∣
∣∣∣∣∣∣
( ∞∑

k=0

E(|dfk|2|Fk−1)

)1/2
∣∣∣∣∣∣
∣∣∣∣∣∣
p

+

∣∣∣∣∣∣
∣∣∣∣∣∣
( ∞∑

k=0

|dfk|p
)1/p

∣∣∣∣∣∣
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with Cp = O(p/ ln p) as p→∞.

1. Introduction

Let (Ω,F ,P) be a probability space, filtered by (Fn)n≥0, a nondecreasing family
of sub-σ-algebras of F . Assume that f is an adapted martingale, taking values in
a certain separable Hilbert space H with norm | · | and scalar product 〈·, ·〉. Then
df = (dfn)n≥0, the difference sequence of f , is given by df0 = f0 and dfn = fn−fn−1,
n ≥ 1. We define the conditional square function of f by

s(f) =

[ ∞∑
k=0

E(|dfk|2|Fk−1)

]1/2

(here and below, F−1 = F0) and use the notation

sn(f) =

[
n∑

k=0

E(|dfk|2|Fk−1)

]1/2

, n = 0, 1, 2, . . . ,

for the truncated conditional square function of f .
The purpose of this note is to investigate Burkholder-Rosenthal inequality

(1.1) ||f ||p ≤ cp

||s(f)||p +

∣∣∣∣∣∣
∣∣∣∣∣∣
( ∞∑

k=0

|dfk|p
)1/p

∣∣∣∣∣∣
∣∣∣∣∣∣
p


where p ≥ 2 and cp is a constant depending only on p. The special case in which
the martingale f is a sum of independent mean-zero random variables forms an
important extension of Khintchine inequality and was studied by Rosenthal in the
60’s . The proof from [11] gives the constant cp which grows exponentially in p as
p→∞. Johnson, Schechtman and Zinn [4] refined the reasoning and showed that
the optimal order of cp as p→∞ (still in the independent case) is p/ ln p. Applying
difficult isoperimetric techniques, Talagrand [12] extended this statement to the case
of independent Banach-space-valued random variables. Using hypercontractivity
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methods, Kwapień and Szulga [7] gave a completely elementary proof of Talagrand’s
result.

The inequality (1.1) for general real martingales (and some cp) was established
by Burkholder in [1]. The validity of this estimate with cp = O(p/ ln p) was proved
by Hitczenko [5] (see also [6]). This result was further generalized to vector-valued
setting by Pinelis [10]. Consult also Nagaev [8] for a yet another approach.

The purpose of this paper is to present a new and elementary proof of (1.1) with
cp = O(p/ ln p). Precisely, we will establish the following statement.

Theorem 1.1. If f is a Hilbert-space-valued martingale, then for p ≥ 4 we have

(1.2) ||f ||p ≤ Cp

||s(f)||pp +

∣∣∣∣∣∣
∣∣∣∣∣∣
( ∞∑

k=0

|dfk|p
)1/p

∣∣∣∣∣∣
∣∣∣∣∣∣
p

p

1/p

,

where

Cp = 2
√

2
(p

4
+ 1
)1/p

(
1 +

p

ln(p/2)

)
.

In fact, using Davis’ decomposition, we will be able to prove a slightly stronger
estimate: see (2.10) and Remark 2.5 below.

A few words about the proof are in order. Hitczenko [5], [6] and Pinelis [10] apply
the extrapolation method (good λ-inequality) of Burkholder and Gundy, combined
with appropriate version of Prokhorov “ arcsinh” estimate for martingales. Na-
gaev [8] first establishes a certain exponential bound for the tail of f and deduces
Burkholder-Rosenthal estimate using a standard integration argument. Our ap-
proach is entirely different and exploits the properties of a certain special function;
this type of proof can be regarded as an application of Burkholder’s method (see
[2] and [9] for more on the subject).

2. Proof of Theorem 1.1

The starting point is the following technical estimate proved by Kwapień and
Szulga [7].

Lemma 2.1. Let p ≥ 4 and put

η = η(p) :=
ln(p/2)/p

1 + ln(p/2)/p
.

Then for any t ≥ 0 we have

(2.1) (1 + tη)p − ptη ≤ 1 +
(p

2
− 1
)
t2 + tp.

We shall require the following vector-valued version of this bound. From now
on, we assume that p ≥ 4 and that σ = σ(p) = η(p)/

√
2.

Lemma 2.2. For any y, d ∈ H we have

(2.2) |y +
√

2σd|p − p|y|p−2
〈
y,
√

2σd
〉
≤ |y|p +

p

2
|y|p−2|d|2 + |d|p.

Proof. The left-hand side can be rewritten in the form F (〈y,
√

2σd〉), where

F (s) =
∣∣|y|2 + 2σ2|d|2 + 2s

∣∣p/2 − p|y|p−2s, s ∈ R.
Now keep |y| and |d| fixed; since the function F is convex, it suffices to prove the

estimate for 〈y,
√

2σd〉 = ±
√

2σ|y||d|, i.e. in the case when y and d are linearly
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dependent. If 〈y,
√

2σd〉 =
√

2σ|y||d|, then (2.2) follows directly from (2.1); on the

other hand, if 〈y,
√

2σd〉 = −
√

2σ|y||d|, we have

|y +
√

2σd|p − p|y|p−2
〈
y,
√

2σd
〉

=
∣∣|y| − √2σ|d|

∣∣p + p
√

2σ|y|p−1|d|

≤
∣∣|y|+√2σ|d|

∣∣p − p√2σ|y|p−1|d|,
so the claim again follows from (2.1). �

The key ingredient of the proof is the special function U : [0,∞)×H×[0,∞)→ R,
given by

U(x, y, z) =

{
(|y|2 − x2)p/2 − cxp − z if |y| ≥

√
2x,

|y|p − (2p/2 − 1 + c)xp − z if |y| <
√

2x,

where
c = p 2p/2−2 + 1.

Let us list some properties of this function.

Lemma 2.3. (i) For any (x, y, z) ∈ [0,∞)×H× [0,∞) we have

(2.3) U(x, y, z) = min
{∣∣|y|2 − x2

∣∣p/2 − cxp − z, |y|p − (2p/2 − 1 + c)xp − z
}
.

(ii) For any x ≥ 0 and y ∈ H we have

(2.4) U(x, σy, |y|p) ≤ 0.

(iii) For all (x, y, z) ∈ [0,∞)×H× [0,∞) we have

(2.5) U(x, y, z) ≥ 2−p/2
[
|y|p − σpCp

p (xp + z)
]
.

Proof. (i) For fixed x, z ≥ 0, the function

F (s) = sp − (2p/2 − 1 + c)xp − z −
(
|s2 − x2|p/2 − cxp − z

)
, s ≥ 0,

vanishes at s =
√

2x and is strictly increasing:

F ′(s) = ps
[
sp−2 − |s2 − x2|(p−2)/2 sgn (s2 − x2)

]
.

This yields (2.3).
(ii) This is obvious, since σ ≤ 1.
(iii) Using the definitions of Cp and σ, we see that we must prove the bound

U(x, y, z) ≥ 2−p/2
[
|y|p −

(p
4

+ 1
)

2p(xp + z)
]
.

Now, for |y| <
√

2x, we have

U(x, y, z) = |y|p −
(p

4
+ 1
)

2p/2xp − z ≥ 2−p/2
[
|y|p −

(p
4

+ 1
)

2p(xp + z)
]
.

On the other hand, if |y| ≥
√

2x, then |y|2 − x2 ≥ |y|2/2 and hence

U(x, y, z) ≥ 2−p/2
[
|y|p − 2p/2cxp − 2p/2z

]
,

so the majorization is clear. �

We turn to the key property of the function U .

Lemma 2.4. For any x, z ≥ 0, y ∈ H and any H-valued, mean-zero random
variable d with ||d||p <∞ we have

(2.6) EU
(√

x2 + E|d|2, y + σd, z + |d|p
)
≤ U(x, y, z).
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Proof. We consider three cases separately.

1◦ The case |y|2 ≤ 2x2. By (2.3), we have

EU
(√

x2 + E|d|2, y + σd, z + |d|p
)

≤ E|y + σd|p − (2p/2 − 1 + c)(x2 + E|d|2)p/2 − z − E|d|p

= E
{
|y + σd|p − p|y|p−2〈y, σd〉 − |d|p

}
− (2p/2 − 1 + c)(x2 + E|d|2)p/2 − z.

By (2.2), the expression in the parentheses does not exceed |y|p + p|y|p−2|d|2/2;
furthermore, we have

(2p/2 − 1 + c)(x2 + E|d|2)p/2 ≥ (2p/2 − 1 + c)
(
xp +

p

2
xp−2E|d|2

)
≥ (2p/2 − 1 + c)xp +

p

2
2(p−2)/2xp−2E|d|2

≥ (2p/2 − 1 + c)xp +
p

2
|y|p−2E|d|2.

Combining these estimates, we obtain

EU
(√

x2 + E|d|2, y + σd, z + |d|p
)
≤ |y|p − (2p/2 − 1 + c)xp − z,

which is precisely the desired bound.

2◦ The case 2x2 < |y|2 ≤ 2(x2 + E|d|2). We start as previously: by (2.3) and
then (2.2),

EU
(√

x2 + E|d|2, y + σd, z + |d|p
)

≤ |y|p +
p

2
|y|p−2E|d|2 − (2p/2 − 1 + c)(x2 + E|d|2)p/2 − z.

The latter expression decreases as E|d|2 increases; indeed, the function

F (s) = |y|p +
p

2
|y|p−2s− (2p/2 − 1 + c)(x2 + s)p/2 − z, s ≥ |y|

2

2
− x2,

satisfies

F ′(s) ≤ p

2

[
|y|p−2 − 2p/2−1(x2 + s)p/2−1

]
≤ 0.

In consequence, we have

EU
(√

x2 + E|d|2, y + σd, z + |d|p
)

≤ F
(
|y|2

2
− x2

)
=
p

2
|y|p−2

(
|y|2

2
− x2

)
− (c− 1)

(
y2

2

)p/2

− z

= −p
2
|y|p−2x2 − z

=

(
|y|2

2

)p/2−1

x2 −
(p

2
+ 21−p/2

)
|y|p−2x2 − z

≤
(
|y|2

2

)p/2

− c
(
|y|2

2

)p/2−1

x2 − z

≤ (|y|2 − x2)p/2 − cxp − z,
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and we are done.

3◦ The case |y|2 > 2(x2 + E|d|2). Here the reasoning is a bit more complicated.
First we show the pointwise estimate∣∣|y + σd|2 − x2 − E|d|2

∣∣p/2 − p
∣∣|y|2 − x2 − E|d|2

∣∣p/2−1〈y, σd〉

≤
(∣∣|y|2 − x2 − E|d|2

∣∣1/2
+
√

2σ|d|
)p
− p
∣∣|y|2 − x2 − E|d|2

∣∣(p−1)/2√
2σ|d|.

(2.7)

In fact, we will establish a slightly stronger inequality:∣∣|y + σd|2 − x2 − E|d|2
∣∣p/2 − p

∣∣|y|2 − x2 − E|d|2
∣∣p/2−1〈y, σd〉

≤
(
|y|2 − x2 − E|d|2 + σ2|d|2 + 2

√
2
∣∣|y|2 − x2 − E|d|2

∣∣1/2
σ|d|

)p/2

− p
∣∣|y|2 − x2 − E|d|2

∣∣(p−1)/2√
2σ|d|.

To do this, divide throughout by ||y|2 − x2 − E|d|2|p/2 and substitute

A2 =
|y|2 − x2 − E|d|2 + σ2|d|2

|y|2 − x2 − E|d|2
, Y =

y

||y|2 − x2 − E|d|2|1/2

and

D =
d

||y|2 − x2 − E|d|2|1/2
.

The estimate becomes

(2.8)
∣∣A2 + 2〈Y, σD〉

∣∣p/2 − p〈Y, σD〉 ≤
∣∣A2 + 2

√
2σ|D|

∣∣p − p√2σ|D|.

However, the reasoning presented in the proof of (2.2) gives∣∣A2 + 2〈Y, σD〉
∣∣p/2 − p〈Y, σD〉 ≤

(
A2 + 2σ|Y ||D|

)p/2 − pσ|Y ||D|.

It suffices to use the bounds |Y | ≤
√

2 and A2 ≥ 1 to obtain (2.8), because the
function s 7→ (A2 + 2s)p/2− ps is increasing on [0,∞). Thus (2.7) follows. We turn
to (2.6): applying (2.3), we get

EU
(√

x2 + E|d|2, y + σd, z + |d|p
)

≤ E
∣∣|y + σd|2 − x2 − E|d|2

∣∣p/2 − c(x2 + E|d|2)p/2 − z − E|d|p

= E
{∣∣|y + σd|2 − x2 − E|d|2

∣∣p/2 − p
∣∣|y|2 − x2 − E|d|2

∣∣p/2−1〈y, σd〉
}

− c(x2 + E|d|2)p/2 − z − E|d|p

≤ E
{(∣∣|y|2 − x2 − E|d|2

∣∣1/2
+
√

2σ|d|
)p
− p
∣∣|y|2 − x2 − E|d|2

∣∣(p−1)/2√
2σ|d|

}
− cxp − z − E|d|p.

Now we apply (2.2) (in the real case) to obtain

EU
(√

x2 + E|d|2, y + σd, z + |d|p
)

≤
∣∣|y|2 − x2 − E|d|2

∣∣p/2
+
p

2

∣∣|y|2 − x2 − E|d|2
∣∣p/2−1E|d|2 − cxp − z

≤
∣∣|y|2 − x2

∣∣p/2 − cxp − z = U(x, y, z).

This completes the proof. �
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Proof of (1.2). It suffices to prove that for any nonnegative integer n,

(2.9) E|fn|p ≤ Cp
pE

(
spn(f) +

n∑
k=0

|dfk|p
)
.

Of course, we may assume that df0, df1, . . ., dfn (and hence also fn) belong to Lp,
since otherwise there is nothing to prove. The key observation is that the process(

U
(
sn(f), σfn,

n∑
k=0

|dfk|p
))

n≥0

is a supermartingale with respect to (Fn)n≥0. Indeed, the integrability follows from
the above assumption on df ; furthermore, for any n ≥ 0 we have

E

[
U

(
sn+1(f), σfn+1,

n+1∑
k=0

|dfk|p
)∣∣∣∣∣Fn

]

= E

[
U

(√
s2
n(f) + E(|dfn+1|2|Fn), σfn + σdfn+1,

n∑
k=0

|dfk|p + |dfn+1|p
)∣∣∣∣∣Fn

]
,

which does not exceed U(sn(f), σfn,
∑n

k=0 |dfk|p), by (2.6) applied conditionally
with respect to Fn−1. Next, we have U(s0(f), σf0, |df0|p) ≤ 0, in view of (2.4).
Combining these two facts with (2.5) yields the claim:

E

[
|fn|p − Cp

p

(
spn(f) +

n∑
k=0

|dfk|p
)]
≤ 2p/2

σp
EU

(
sn(f), σfn,

n∑
k=0

|dfk|p
)
≤ 0. �

Remark 2.5. Using Davis’ decomposition (see e.g. Davis [3] or Burkholder [1]), one
can deduce a slightly stronger form of (1.2). Namely, for all f as in the statement
of Theorem 1.1 and p ≥ 4 we have

(2.10) ||f ||p ≤ 2Cp

(
||s(f)||pp + ||df∗||pp

)1/p
,

where df∗ = supn≥0 |dfn|. Indeed, fix a martingale f and consider the random
variables d′n = dfn1{|dfn|<2df∗

n−1}, d
′′
n = dfn1{|dfn|≥2df∗

n−1}, n = 0, 1, 2, . . .. Here, as

usual, df∗−1 ≡ 0 and df∗n = max0≤k≤n |dfk|. Note that on the set {|dfn| ≥ 2df∗n−1}
we have

(2p − 1)|d′′n|p + (2df∗n−1)p ≤ (2|dfn|)p ≤ (2df∗n)p,

which implies
n∑

k=0

|d′′k |p ≤
2p

2p − 1
(df∗n)p, n = 0, 1, 2, . . . .

Next, observe that for any n,

E
n∑

k=0

|d′k|p ≤ E
n∑

k=0

|dfk|2(2df∗k−1)p−2

= E
n∑

k=0

E(|dfk|2|Fk−1)(2df∗k−1)p−2

≤ Es2
n(f)(2df∗n)p−2

≤ 2

p
||sn(f)||pp +

p− 2

p
||2df∗n||pp,
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where in the last line we have exploited Young’s inequality. Combining the above
estimates for the sums of d′n and d′′n we get

E
n∑

k=0

|dfk|p ≤
2

p
||sn(f)||pp + 2p

(
1

2p − 1
+
p− 2

p

)
||df∗n||pp

≤ 2

p
||sn(f)||pp + 2p||df∗n||pp.

Plugging this into (2.9) and using the fact that n is an arbitrary nonnegative integer,
we obtain (2.10).
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