A NOTE ON BURKHOLDER-ROSENTHAL INEQUALITY

ADAM OSEKOWSKI

ABSTRACT. Let df be a Hilbert-space-valued martingale difference sequence.
The paper is devoted to a new, elementary proof of the estimate
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1. INTRODUCTION

Let (92, F,P) be a probability space, filtered by (F,,)n>0, & nondecreasing family
of sub-o-algebras of F. Assume that f is an adapted martingale, taking values in
a certain separable Hilbert space H with norm |- | and scalar product (-,-). Then
df = (dfn)n>0, the difference sequence of f, is given by dfy = fo and df,, = fn—fn—1,
n > 1. We define the conditional square function of f by
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(here and below, F_1 = Fy) and use the notation
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k=0
for the truncated conditional square function of f.
The purpose of this note is to investigate Burkholder-Rosenthal inequality
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P
where p > 2 and ¢, is a constant depending only on p. The special case in which
the martingale f is a sum of independent mean-zero random variables forms an
important extension of Khintchine inequality and was studied by Rosenthal in the
60’s . The proof from [11] gives the constant ¢, which grows exponentially in p as
p — 00. Johnson, Schechtman and Zinn [4] refined the reasoning and showed that
the optimal order of ¢, as p — oo (still in the independent case) is p/Inp. Applying
difficult isoperimetric techniques, Talagrand [12] extended this statement to the case
of independent Banach-space-valued random variables. Using hypercontractivity
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methods, Kwapien and Szulga [7] gave a completely elementary proof of Talagrand’s
result.

The inequality (1.1) for general real martingales (and some c,) was established
by Burkholder in [1]. The validity of this estimate with ¢, = O(p/Inp) was proved
by Hitczenko [5] (see also [6]). This result was further generalized to vector-valued
setting by Pinelis [10]. Consult also Nagaev [8] for a yet another approach.

The purpose of this paper is to present a new and elementary proof of (1.1) with
¢p = O(p/Inp). Precisely, we will establish the following statement.

Theorem 1.1. If f is a Hilbert-space-valued martingale, then for p > 4 we have

o 1/p||P 1/p
(1.2) 1Al < Cp [ [Is(HIIF + (dekp> ;
k=0
p
where . U )
c=22(541)" (14 )

In fact, using Davis’ decomposition, we will be able to prove a slightly stronger
estimate: see (2.10) and Remark 2.5 below.

A few words about the proof are in order. Hitczenko [5], [6] and Pinelis [10] apply
the extrapolation method (good A-inequality) of Burkholder and Gundy, combined
with appropriate version of Prokhorov “arcsinh” estimate for martingales. Na-
gaev [8] first establishes a certain exponential bound for the tail of f and deduces
Burkholder-Rosenthal estimate using a standard integration argument. Our ap-
proach is entirely different and exploits the properties of a certain special function;
this type of proof can be regarded as an application of Burkholder’s method (see
[2] and [9] for more on the subject).

2. PROOF OF THEOREM 1.1

The starting point is the following technical estimate proved by Kwapien and
Szulga [7].

Lemma 2.1. Let p > 4 and put

o w2
M=) T a2

Then for any t > 0 we have
(2.1) (1+tn)P —ptn <1+ (g - 1) 1242,

We shall require the following vector-valued version of this bound. From now
on, we assume that p > 4 and that o = o(p) = n(p)/v/2.

Lemma 2.2. For any y, d € H we have

(22) g+ V2od? — plyl2(y, V3ed) < [yl + Lyl 2al + Jap.
Proof. The left-hand side can be rewritten in the form F((y,/20d)), where
F(s) = |ly|* + 20°|d|* + 25‘1)/2 — plyP~2s, seR.

Now keep |y| and |d| fixed; since the function F' is convex, it suffices to prove the
estimate for (y,v20d) = +v/20ly||d|, i.e. in the case when y and d are linearly
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dependent. If (y,v/20d) = v20]y||d|, then (2.2) follows directly from (2.1); on the
other hand, if (y,v20d) = —v/20|y||d|, we have

ly +V20d]P —plylP~>(y, vV20d) = |ly| — V20]d||" + pv20]y["~*|d|
< [lyl + V2o ldl[" —pv20lyl*~d],
so the claim again follows from (2.1). O

The key ingredient of the proof is the special function U : [0, 00) x H X [0,00) — R,
given by
Ulops) — {0 =22 —ca? == ity > Vo,
v yl? — (272 — 14 e)a? — = if Jy| < V2,
where
c=p2¥P7 4 1.

Let us list some properties of this function.
Lemma 2.3. (i) For any (z,y,z) € [0,00) x H X [0,00) we have
(2.3) Ulx,y,2) = min{“y|2 — x2’p/2 —cxP — 2, |y|P — (2P/2 — 1 + ¢)aP — z} .

(i) For any x > 0 and y € H we have

(2.4) Uz, 09, y?) < 0.
(#ii) For all (z,y,z) € [0,00) X H x [0,00) we have
(2.5) Uz,y,z) > 2-P/2 [|y|p — ang(xp + z)] .
Proof. (i) For fixed z, z > 0, the function
F(s)=s"— (2?2 =14 ¢)aP — 2z — (]s* - 2P/ — cxP — z), s >0,

vanishes at s = v/2z and is strictly increasing:
F'(s) =ps [s”i2 — |5 — 2?|P=2D /2 ggn (52 — xZ)} .

This yields (2.3).
(ii) This is obvious, since o < 1.
(iii) Using the definitions of C}, and o, we see that we must prove the bound

U(z,y,2) > 2772 [\y|p - (g + 1> 2P (2P + z)] .
Now, for |y| < v/2x, we have
Uz, y,2) = y” — (% +1) 220 — 2> 270 [y (g +1) 2 (a” +2)]
On the other hand, if |y| > /2, then |y|> — 22 > |y|?/2 and hence
Ulz,y,z) > 27P/2 [\y|p — 2P/ 2¢qP — 2p/22] )
so the majorization is clear. [l

We turn to the key property of the function U.

Lemma 2.4. For any x, 2z > 0, y € H and any H-valued, mean-zero random
variable d with ||d||, < co we have

(2.6) EU (\/mZ TER,y +od, 2+ |d|p) < Ulz,y, 2).
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Proof. We consider three cases separately.
1° The case |y|*> < 222. By (2.3), we have

EU (\/g;2 YE|d2,y+od, 2+ |d|p)
< Ely+ od|P — (2P/2 — 1 + ¢)(2® + E|d|*)?/? — z — E|d|?
=E{ly+od” —ply[P*(y,0d) — [P} — (27> =1+ ¢)(a® + E|d]*)"/* — 2.

By (2.2), the expression in the parentheses does not exceed |y|P + p|y[P~2|d|?/2;
furthermore, we have

(2°/2 — 1+ o) (2 + E|dP)P/? > (272 — 1 +¢) (zp + ngEW)
> (2°/2 = 1+ )P + £2=2)/207 2| g
> (2P/2 — 14 ¢)aP + §|y\p’2]E|d\2.
Combining these estimates, we obtain
U ( 22+ Eld]?,y+ od,z + |d|p) < |ylP — (272 =14 ¢)aP — 2,

which is precisely the desired bound.

2° The case 222 < |y|? < 2(2? + E|d|?). We start as previously: by (2.3) and
then (2.2),

EU (x/m, y+od, 2+ |d|1’)
< Iyl + Syl Bl - (27 = 14+ ¢)(@® + EldPP? - 2.
The latter expression decreases as E|d|? increases; indeed, the function
F(s)=|y|” + §|y\p_25 —(2P2 14 ¢)(a? 4 5)P/? - 2, 5> % — 22,

satisfies
F/(S) < g [|y|p—2 _ 2p/2—1(x2 + S)p/Q—l] < 0.

In consequence, we have

IEU( x2+E|d|2,y+ad,z+|d|p)
2
p/2
72 p—2 ‘y|27 2 _ _ yfz _
e (M -2) - - (%) -

= gl

2 p/271
() A G

2\ P/2 2\ P/2-1
()" -o(1£)" -

< (jy? = 22?2 — ca? — 2,
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and we are done.

5 The case |y|*> > 2(z% + E|d|?). Here the reasoning is a bit more complicated.
First we show the pointwise estimate

lly + odf? — 2* ~EldP["* — p|ly* — 2* ~ EldP["* " (g, 0d)
< (|lyl? - 2* — BldP["* + V2old))" - pllyl? - 2 — Bl " V20l
In fact, we will establish a slightly stronger inequality:
[y + od? - * — Bl = pllyl* - * — E|a?[""* " (y, o)
< (of? - o — BJdf + ol + 2v2lyi? — * ~ Bla?[2old))””
—pllyl? - 2* — EldP[" """ Vaold)
To do this, divide throughout by ||y|? — 22 — E|d|?|P/? and substitute

Iyl — a? — Bl + 0?d]?

y
Y —
ly|* —a? —Eld]>

A? —
ly|? — 2 — Eld]?|'/2

and
d

D= :
ly|* — 22 — Eld[?|'/2

The estimate becomes
(28)  |A2+2(Y,oD)|"? —p(Y,0D) < |42 + 2v20|D||" — pv20|D.
However, the reasoning presented in the proof of (2.2) gives

|4% + 2(Y,0D)|"”* = p(Y,0D) < (A% + 20|Y(|D|)"'* = polY||D|.

It suffices to use the bounds |Y| < v/2 and A? > 1 to obtain (2.8), because the
function s — (A% +2s)P/2 — ps is increasing on [0, 00). Thus (2.7) follows. We turn
to (2.6): applying (2.3), we get

EU (\/m, y+od,z+ |d|p)
< Elly + od? — 2> — E|dP["* = c(a? + E|d|*)/? — 2 — E|d]?
= E{|ly+od? - 2* — EldP"" — pllyl? - 2* — Eldl2|"* " (y,0d)}
— c(2® + E|d|?)P/? — z — E[d|P
<E{(|lyl? - 2* ~ElaP|"* + V2old))" - pllyl? - 2 — ElaP| " V20l
—ca? — z — E|d|P.
Now we apply (2.2) (in the real case) to obtain
EU (\/m,y—kad,z—k |d|p)

< |lyl? —2* = EldP[""” + 2|lyf> - 2* — EJaP [

E|d]* — ca? — 2

< |y =22 = ca? — 2 = Ula,y,2).

This completes the proof. (I



6 ADAM OSEKOWSKI

Proof of (1.2). It suffices to prove that for any nonnegative integer n,

(2.9) E|fulP < CPE (sﬁ(f) +) dfﬂ) :
k=0

Of course, we may assume that dfy, df1, ..., df, (and hence also f,,) belong to LP,
since otherwise there is nothing to prove. The key observation is that the process

ooy r)),.

is a supermartingale with respect to (Fy,)n>0. Indeed, the integrability follows from
the above assumption on df; furthermore, for any n > 0 we have

n+1
U><3n+1(f)7afh+l7§£:|dﬁJp> ‘Fh]

k=0
u <\/331(f) + E(|df 12| Fn), 0 fn + odfnia, Z |df|? + |dfn+lp> ]_—n] :
k=0

which does not exceed U(sn(f),0fn, > peo|df|F), by (2.6) applied conditionally
with respect to F,,—1. Next, we have U(so(f), o fo,|dfo|?) < 0, in view of (2.4).
Combining these two facts with (2.5) yields the claim:

ful? = C2 (sﬁ(f) £y |dfk|P>] <2 U <sn<f>,afm§j |dfk|P> <0. O
k=0

k=0

E

=E

E

Remark 2.5. Using Davis’ decomposition (see e.g. Davis [3] or Burkholder [1]), one
can deduce a slightly stronger form of (1.2). Namely, for all f as in the statement
of Theorem 1.1 and p > 4 we have

(2.10) £l < 2C, (IIsCHIIE + 11df*]12) 7

where df* = sup,,~(|dfn|- Indeed, fix a martingale f and consider the random
variables d, = dfnli{|dfn|<2df;71}, dr = dfnlyiap, | >2dr: 3> m=0,1,2, ... Here, as
usual, df*; = 0 and df} = maxo<k<pn |dfx|. Note that on the set {|df,| > 2df}_,}
we have

(27 = Dd, |7 + (2df; 1) < (2ldfu])? < (2df7)",
which implies

n 2p i
Z|dg|p§2p,1(dfn)p> n=0,1,2,....
k=0

Next, observe that for any n,

EY |d? <ES|dfil*(2df;_ )P
k=0 k=0

=EY E(dfi|*| Fe1)(2df;_)">
k=0

sn(f)(2df;)P 2

p__2 *
[lsn (HIIF + THQdani,

E
2
<=
p
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where in the last line we have exploited Young’s inequality. Combining the above
estimates for the sums of d/, and d! we get

L 2 1
EY |l < plsn(f)||§+2p(
k=0

2r —1

p_2 *
+p)|dfn||§

2 *
< EHSn(f)IIZ + 27||df 115

Plugging this into (2.9) and using the fact that n is an arbitrary nonnegative integer,
we obtain (2.10).
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