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Abstract. Let k = (kn)n≥1 be the sequence given by the conditions k1 = 0

and kn+1 = (1 + k2n)/2, n ≥ 1. We prove that for any L2-martingale X =

(X1, X2, . . . , Xn) we have

E max
1≤k≤n

Xk ≤ sup
τ

EXτ + kn max
1≤k≤n

√
VarXk,

where the supremum on the right is taken over all stopping times τ of X which

are bounded by n. Furthermore, it is shown that for each n, the constant kn
is the best possible.

1. Introduction

Let X = (X1, X2, . . ., Xn) be a sequence of random variables on some common
probability space (Ω,F ,P) and let X∗n = max1≤k≤nXk denote the one-sided max-
imal function of X. Furthermore, let Mn = EX∗n and Vn = supτ EXτ , where the
latter supremum is taken over all stopping times τ of X (i.e., all τ adapted to the
natural filtration of X). In the literature, comparisons between the numbers Mn

and Vn (under various additional assumptions on X) have been called “prophet
inequalities”. This is due to the natural identification of Mn with the optimal ex-
pected return of a prophet or a player endowed with complete foresight; on the
other hand, Vn can be regarded as an optimal expected return of a player who
knows only past and present, but not the future. Prophet inequalities play a dis-
tinguished role in the theory of optimal stopping and have been studied intensively
by many mathematicians. The literature on the subject is very large, and it would
be impossible to review it here; thus we will content ourselves with a few examples.
For example, the ratio prophet inequality of Krengel, Sucheston and Garling (see
[8]) asserts that

Mn ≤ 2Vn

for all sequences X of independent nonnegative random variables. Another result
in this direction is that of Hill and Kertz [4], which states that

Mn − Vn ≤
b− a

4
,

for all sequences X of independent random variables all taking values in a given
finite interval [a, b].

The motivation for the results of this note comes from the paper of Kennedy
and Kertz [7], which contains the study of the following prophet inequality for
independent random variables with finite variances.
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Theorem 1.1. For each n ≥ 1, there exists a finite constant cn such that for any
sequence X = (X1, X2, . . . , Xn) of independent square-integrable random variables
we have

(1.1) Mn ≤ Vn + cn
√
n− 1 max

1≤k≤n

√
VarXk.

Actually, Kennedy and Kertz show the above bound with cn = 1/2 and prove

that lim infn→∞ cn ≥
√

ln 2− 1/2 = 0.439485 . . .. Thus, due to the factor
√
n− 1,

we see that if n is large, the prophet can have a large advantage over the player.
However, if one assumes additionally that X is a martingale, the situation is entirely
different. Here is the second main result of [7] (see also [3] for a related statement).

Theorem 1.2. For each n ≥ 1, let kn be the minimal constant such that for any
martingale X = (X1, X2, . . . , Xn) we have

(1.2) Mn ≤ Vn + kn max
1≤k≤n

√
VarXk.

Then the sequence k1, k2, . . . increases to 1.

The purpose of this paper is to determine the explicit formula for the constants
kn introduced in the above theorem. Quite interestingly, the definition of these
numbers turns out to involve the logistic map, a simple recurrence relation which
appears in many places in mathematics. Unfortunately, the recurrence cannot be
given a compact formula, but we also provide a good approximation. Here is our
main result.

Theorem 1.3. The sequence k = (kn)n≥1 is given by the conditions k1 = 0 and

kn+1 = (1 + k2
n)/2, n ≥ 1.

Furthermore, we have kn = 1−O(n−1); more precisely, n
2 (1− kn) increases to 1.

This should be compared to the following statement proved by Hill and Kertz
[5]: for any martingale X = (X1, X2, . . . , Xn) with values in [0, 1] we have the sharp
bound

Mn ≤ Vn +

(
n− 1

n

)n
.

Moreover, for n ≥ 2, the constants (and hence also the extremal martingales)
associated with this inequality and those arising in (1.2) are different.

This theorem will be established in the next section. Our approach rests on the
theory of moments (see e.g. [1] and [6]).

2. Proof of Theorem 1.3

It will be convenient to work with the sequence a = (an)n≥1 given by a1 = 0
and the recurrence an+1 = a2

n + 1/4 for n ≥ 1. Note that the assertion of Theorem
1.3 can be equivalently stated as kn = 2an for n ≥ 1. For the sake of clarity, we
have decided to split this section into three separate parts.
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2.1. Proof of kn ≤ 2an. To study the prophet inequality (1.1), let us introduce a
family of certain special functions. Namely, for any nonnegative integer n and any
real numbers t ≤ s, define

φn(s, t) = inf E
[
X2
n − (X∗n ∨ s)

]
,

where the infimum is taken over all martingales X = (X1, X2, . . . , Xn) satisfying
X1 = t almost surely. Clearly, we have φ1(s, t) = t2 − s and

(2.1) φ2(s, t) = inf
{
E
[
|t+X|2 −

(
(t+X) ∨ s

)]
: EX = 0

}
.

Furthermore, conditioning on X2, we get the recurrence

(2.2) φn+1(s, t) = inf
{
Eφn((t+X) ∨ s, t+X) : EX = 0

}
for n = 2, 3, . . . . Both (2.1) and (2.2) involve evaluating inf Eh(X) over all random
variables X with EX = 0, where h is a given function. This is a standard problem
of the theory of moments and can be solved graphically as follows. The required
infimum is given by the height, at location x = 0, of the lower boundary of the
convex hull of the graph of h. See [1], [2] and [6] for more on the subject.

Keeping the above observations in mind, we turn to the explicit formula for φn.

Theorem 2.1. For any n = 1, 2, . . . and any t ≤ s we have

(2.3) φn(s, t) =

{
(2s− 2an)t− s− (s− an)2 if s− t < an,

t2 − s if s− t ≥ an.

Proof. We proceed using induction. If n = 1, then the identity (2.3) holds true,
since a1 = 0. Suppose that (2.3) is valid for some nonnegative n and let us try to
compute φn+1 with the use of (2.2). To this end, introduce the function h : R→ R
by h(x) = φn((t+ x) ∨ s, t+ x). A direct computation shows that h is given by

h(x) =


(t+ x)2 − s if x ≤ s− t− an,
(2s− 2an)(t+ x)− (s− an)2 − s if s− t− an < x ≤ s− t,
(t+ x)2 − (t+ x)− a2

n if x > s− t.

Let us describe the convex hull of the graph of h. We easily check that

• h is continuous,
• h is convex and of class C1 on each of the intervals (−∞, s− t), (s− t,∞),
• its one-sided derivatives at x = s− t satisfy h′(s− t−) ≥ h′(s− t+),
• h is linear on (s− t− an, s− t).

Thus, we need to find a common tangent line to the parabolas γ1 : x 7→ (t+x)2− s
and γ2 : x 7→ (t+ x)2 − (t+ x)− a2

n. A little calculation gives that this line is

{(x, y) : y = (2s− 2an+1)(t+ x)− s− (s− an+1)2},

and the tangency points are

(x1, γ1(x)) =
(
s− t− an+1, γ1(s− t− an+1)

)
,

(x2, γ2(x2)) =
(
s− t− an+1 + 1/2, γ2(s− t− an+1 + 1/2)

)
.
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Therefore, the lower boundary Γ of the convex hull of the graph of h is the union
of Γ1, Γ2 and Γ3, where

Γ1 = {(x, y) : x ≤ x1, y = (t+ x)2 − s},
Γ2 = {(x, y) : x1 < x ≤ x2, y = (2s− 2an+1)(t+ x)− s− (s− an+1)2},
Γ3 = {(x, y) : x > x2, y = (t+ x)2 − (t+ x)− a2

n}.

Thus, by the above graphical interpretation of φn+1 and the fact that x2 is nonneg-
ative, we obtain that φn+1(s, t) = t2− s if x ≤ x1 and φn+1(s, t) = (2s− 2an+1)t−
s− (s− an+1)2 if x > x1. This is precisely the claim. �

Now we will prove that for any L2-bounded martingale X = (X1, X2, . . . , Xn),

(2.4) EX∗n ≤ EX1 + 2an
√

VarXn.

This is precisely (1.2) with the constant 2an, because of the martingale property

of X. To show the bound, let us introduce the modified centered martingale X̃ =
(X1−EX1, X2−EX1, . . . , Xn−EX1). Applying the definition of φn conditionally

with respect to X̃1, we get

E
(
X̃2
n − X̃∗n

)
≥ Eφn(X̃1, X̃1) = EX̃2

1 − EX̃1 − a2
n.

However, X̃1 has expectation 0, so the latter expression is not smaller than −a2
n.

Consequently,

EX∗n − EX1 = EX̃∗n ≤ EX̃2
n + a2

n = VarXn + a2
n.

Applying this inequality to the rescaled martingale X/λ (where λ is a fixed positive
constant), we obtain

EX∗n − EX1 ≤ λ−1 VarXn + λa2
n.

The right-hand side, as a function of λ, attains its minimum for the choice λ =(
VarXn

)1/2
/an. Plugging this value of λ above, we obtain the desired estimate

(2.4).

2.2. Proof of kn ≥ 2an. Let us now describe the examples which yield the sharp-
ness of (1.2). Let n ≥ 2 be a fixed integer and consider the sequence ξ =
(ξ1, ξ2, . . . , ξn) of independent mean-zero random variables with the distributions
uniquely determined by P(ξ1 = 0) = 1 and ξk ∈ {−an+2−k, 1/2 − an+2−k} for
k = 2, 3, . . . , n. Introduce the stopping time τ = inf{k : ξk < 0} (with the
convention inf ∅ =∞) and the sequence X = (X1, X2, . . . , Xn) given by

Xk = ξ1 + ξ2 + . . .+ ξτ∧k.

Since the variables ξ1, ξ2, . . ., ξn are independent and centered, Doob’s optional
sampling theorem implies that X is a mean-zero martingale. Directly from the
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definition, we derive that for k = 2, 3, . . . , n,

P
(
Xn =

n− k
2
− an − an−1 − . . .− ak

)
= P

(
X∗n =

n− k
2
− an − an−1 − . . .− ak+1

)
= P(τ = n+ 2− k)

= P(ξ2 ≥ 0, ξ3 ≥ 0, . . . , ξn+1−k ≥ 0, ξn+2−k < 0)

= 2n−kanan−1 . . . ak+1(1− 2ak−1)

(if k = n, the expression in the second line is understood to be P(X∗n = 0)) and,
similarly,

P
(
Xn =

n− 1

2
− an − an−1 − . . .− a2

)
= P

(
X∗n =

n− 1

2
− an − an−1 − . . .− a2

)
= P(ξk ≥ 0 for all k)

= 2n−1anan−1 . . . a2.

Therefore, we derive that

EX∗n =

n∑
k=2

(
n− k

2
− an − an−1 − . . .− ak+1

)
· 2n−kanan−1 . . . ak+1(1− 2ak−1)

+

(
n− 1

2
− an − an−1 − . . .− a2

)
· 2n−1anan−1 . . . a2

and

VarXn =

n∑
k=2

(
n− k

2
− an − an−1 − . . .− ak

)2

· 2n−kanan−1 . . . ak+1(1− 2ak−1)

+

(
n− 1

2
− an − an−1 − . . .− a2

)2

· 2n−1anan−1 . . . a2.

Some tedious, but rather straightforward calculations show the following two re-
currence relations for EX∗n and VarXn:

(2.5) EX∗n+1 = 2an+1(EX∗n − an+1 + 1/2)

and

(2.6) VarXn+1 = 2an+1 VarXn + an+1(1− 2an+1)/2.

These two equations imply that EX∗n = 2a2
n and VarXn = a2

n for all n. This
is clear for n = 1, and for larger n we use an easy induction. Consequently,

EX∗n = 2an
(

VarXn

)1/2
and we are done.

2.3. Asymptotics. We turn to the final part of Theorem 1.3, concerning the ap-
proximation of the size of kn. It will be more convenient to work with the sequence
b = (bn)n≥1 given by bn = (1 − kn)/2; note that b1 = 1/2 and bn+1 = bn − b2n for
n ≥ 1. We will be done if we establish the following.
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Lemma 2.2. The sequence b satisfies the following.
(i) We have bn ≤ 1/(n+ 1) for all n ≥ 1.
(ii) The sequence (nbn)n≥1 increases to 1.

Proof. (i) This follows by straightforward induction.
(ii) By the recursion defining b and the condition (i) proved above, we have

(n+ 1)bn+1

nbn
=

(n+ 1)(1− bn)

n
≥ 1.

Therefore, the sequence (nbn)n≥1 is nondecreasing and bounded by 1, so it con-
verges to a certain limit g ∈ [0, 1]. In particular, we get that bn ≤ g/n for all n.
Thus, for any nonnegative integers n, m such that n > m, we have

bn = bn−1(1− bn−1) = bn−2(1− bn−2)(1− bn−1) = . . .

= bm(1− bm)(1− bm+1) . . . (1− bn−1)

≥ bm
(

1− g

m

)(
1− g

m+ 1

)
. . .

(
1− g

n− 1

)
.

Suppose that g < 1 and pick a number η ∈ (g, 1). Then, if k is sufficiently large, we
have 1− g/k ≥ exp(−η/k) and hence, if the above numbers m, n are large enough,
we get

bn ≥ exp

(
−η
(

1

m
+

1

m+ 1
+ . . .+

1

n− 1

))
≥ exp(−η ln(n− 1)) · c

for some constant c > 0 depending on m and η, but not on n. This implies

nbn ≥
nc

(n− 1)η
n→∞−−−−→∞,

a contradiction. Thus g = 1 and the proof is complete. �
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