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Abstract

Let f = (fn) be an adapted sequence of integrable Banach-space valued random variables
and g = (gn) denote its predictable projection. We prove that, for 1 ≤ p ≤ ∞,

∣∣∣∣ sup
n
||gn||

∣∣∣∣
p
≤
(

1 +
(p− 1)p−1

pp

) ∣∣∣∣ sup
n
||fn||

∣∣∣∣
p

and the constant 1 + (p−1)p−1

pp is the best possible.
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1. Introduction

Let (Ω,F , P) be a fixed probability space, filtered by a nondecreasing sequence (Fn)
of sub-σ-algebras of F . Let f = (fn)n≥0 be an adapted sequence of integrable real-valued
random variables and let g = (gn) stand for the predictable projection of the sequence
f , that is, g0 = f0 and gn = E(fn|Fn−1), for n = 1, 2, . . .. For 1 ≤ p, q ≤ ∞ we define

||f ||p,q = ||f ||Lp(`q) =

E

( ∞∑
k=1

|fn|q
)p/q

1/p

,

with the usual convention if p or q is infinite. The problem of comparing the norms of f
and g was first studied by Stein (1970), who showed that for 1 < p < ∞ and 1 ≤ q ≤ ∞
there is a universal Cp,q < ∞ (not depending on f , g or the probability space) such that

||g||p,q ≤ Cp,q||f ||p,q. (1)

In fact, Stein established the inequality for q = 2 only, but the proof works for other
values of q as well. It is also worth to mention that the result is true for the sequences
f which are not necessarily adapted.
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A number of authors studied various extensions of the inequality (1). Johnson et
al. (1979) extended it by replacing Lp by a rearrangement invariant space X with Boyd
indices satisfying 0 < βX ≤ αX < 1. Bourgain (1983) showed the estimate for p = 1
and q = 2 with C1,2 = 3 and Lépingle (1978) decreased this constant to 2. Delbaen &
Schachermayer (1994) needed the version of (1) with p = 2 and q = ∞, and in Delbaen
& Schachermayer (1995) they proved the estimate for 1 ≤ p ≤ q ≤ ∞ with Cp,q = 2
(in fact the proof yields Cp,q = 21/p). The constant 21/p, for p ∈ {1,∞} and q = ∞,
turns out to be the best possible. The case q = 1 was studied by Burkholder (1973)
and Garsia (1973); finally, Wang (1991) proved that the best constant Cp,1 equals p.
Let us finish the short overview by noting that the inequality (1) can be investigated
using decoupled conditionally independent tangent sequences; for details, see the book
by Kwapień & Woyczyński (1992).

The contribution of this paper is to provide the optimal values of the constants Cp,∞
for p ∈ (1,∞). Let f∗n = max0≤k≤n ||fk|| and f∗ = supn ||fn||. Here is our main result.

Theorem 1.1. For any 1 < p < ∞ we have

||g∗||p ≤
(

1 +
(p− 1)p−1

pp

)
||f∗||p. (2)

The inequality is sharp.

The inequality generalizes to the sequences f of strongly integrable Banach space
valued variables; see Remark 3.2 below.

2. Technical lemmas

Throughout the paper, the number p is fixed and belongs to the interval (1,∞). Let

Cp = 1 +
(p− 1)p−1

pp
, Ap = Cp ·

p− 1
p

·
[
1−

(
p− 1

p

)p]1/(p−1)

.

Lemma 2.1. We have Cp
p − 1 ≥ Ap−1

p .

Proof. One can easily verify that the inequality is equivalent to J
(
(p−1

p )p
)
≥ 1, where

J(x) =
(

1 +
x

p− 1

)p−1(
1− x +

px2

p− 1

)
, x ≥ 0.

Since J(0) = 1, we will be done if we show that J is nondecreasing. It suffices to note
that

J ′(x) =
(

1 +
x

p− 1

)p−2 [
px

p− 1
+

px2

p− 1
+

2px2

(p− 1)2

]
> 0

for x > 0.

Lemma 2.2. We have

−(p + 1)Cp +
(

p

p− 1

)p−1

C2
p + p ≥ 0. (3)
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Proof. The left hand side equals

p(1− Cp)− Cp +
(

p

p− 1

)p−1

C2
p = −

(
p− 1

p

)p−1

+ Cp

[(
p

p− 1

)p−1

+
1
p
− 1

]
.

Now, if p ≥ 2, then the estimate is a consequence of(
p− 1

p

)p−1

≤ 1, Cp ≥ 1 and
(

p

p− 1

)p−1

≥ 2.

If p < 2, then, by Bernoulli’s inequality,(
p− 1

p

)p−1

≤ 1− p− 1
p

=
1
p
≤ Cp

[(
p

p− 1

)p−1

+
1
p
− 1

]
.

Lemma 2.3. (i) We have Ap < Cp · p−1
p < 1.

(ii) For any q ∈ [0, 1], we have q(1− q)p−1 < Ap−1
p .

Proof. (i) The first inequality is trivial. To show the second one, note that

Cp ·
p− 1

p
≤
(

1 +
1
p

)
· p− 1

p
= 1− 1

p2
.

(ii) The function q 7→ q(1 − q)p−1, q ∈ [0, 1], attains its maximum at q = 1/p and

hence it suffices to show that (p−1)p−1

pp < Ap−1
p , or, equivalently, 1 < pCp−1

p

[
1−

(
p−1

p

)p]
.

However, we have 1−
(

p−1
p

)p

> 1−
(

p−1
p

)
= 1

p , which yields the desired estimate.

Lemma 2.4. For any s ∈ [Ap−1
p , 1] we have

(Cp
p − s)

(
sp/(p−1) − s + Ap−1

p

)p−1

≥ Ap(p−1)
p . (4)

Proof. Denote the left hand side of (4) by F (s). We have that

F ′(s) =
(
sp/(p−1) − s + Ap−1

p

)p−2

f(s),

where f : [0,∞) → R is given by

f(s) = −(p + 1)sp/(p−1) + ps + pCp
ps1/(p−1) − (p− 1)Cp

p −Ap−1
p .

Some information about F and f : by Lemma 2.3 (i), we have (Cp
p−1

p )p−1 ∈ [Ap−1
p , 1],

F

((
Cp

p− 1
p

)p−1
)
−Ap(p−1)

p = 0 and f

((
Cp

p− 1
p

)p−1
)

= 0. (5)

In addition,
f(0) < 0 and lim

s→∞
f(s) = −∞. (6)
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Furthermore, f ′(s) = p
p−1s(2−p)/(p−1)(−(p + 1)s + Cp

p ) + p, so

f ′(0+) = lim
s↓0

f ′(s) ∈ [0,∞] and f ′

((
Cp

p− 1
p

)p−1
)
≥ 0, (7)

the latter being equivalent to (3). Finally, we have

f ′′(s) =
p

(p− 1)2
s−2+1/(p−1)

[
−(p + 1)s + (2− p)Cp

p

]
. (8)

Now let us put (5) – (8) together; it is evident that there exists s > (Cp
p−1

p )p−1 such
that f > 0 on ((Cp

p−1
p )p−1, s) and f ≤ 0 on the compliment of this interval. Since F ′

and f have the same sign on (Ap−1
p , 1), the estimate (4) will be established once we have

shown that F (1) ≥ 0. However, we have proved this inequality in Lemma 2.1.

Lemma 2.5. For any q ∈ [0, 1] and any w ≥ 1 we have

q
{[

(q + (1− q)w)p − Cp
p

]
∨ (−Ap−1

p )
}
− (1− q)wpAp−1

p ≤ −Ap−1
p . (9)

Proof. It is easy to see that the inequality holds if q = 0 or q = 1, so we may assume that
q lies in the interior of [0, 1]. Since q(−Ap−1

p )− (1−q)wpAp−1
p = Ap−1

p (−q− (1−q)wp) ≤
−Ap−1

p , it suffices to show that q
[
(q + (1− q)w)p − Cp

p

]
− (1 − q)wpAp−1

p ≤ −Ap−1
p .

Substitute x = (1− q)wp ≥ 1− q. The inequality takes form

q
[
(q + (1− q)1−1/px1/p)p − Cp

p

]
≤ Ap−1

p (x− 1). (10)

For a fixed q, the function Gq : [0,∞) → R, given by

Gq(s) = q
[
(q + (1− q)1−1/ps1/p)p − Cp

p

]
−Ap−1

p (s− 1),

is concave and, by Lemma 2.3 (ii), tends to −∞ as s →∞. Furthermore, it is increasing
for s < s0 and decreasing for s > s0, where s0 = s0(q) satisfies

q1/(p−1)

[
q(1− q)1/p

s
1/p
0

+ (1− q)

]
= Ap (11)

(such s0 exists, as Ap > q1/(p−1)(1 − q) in view of Lemma 2.3 (ii)). Now if q < Ap−1
p ,

then, by (11), we have s0(q) < 1− q, and so Gq(x) ≤ Gq(1− q) = q(1 + Ap−1
p −Cp

p ) ≤ 0,
by Lemma 2.1. Suppose then, that q ≥ Ap−1

p and let s = Ap−1
p /q ∈ [Ap−1

p , 1]. By (11),

Gq(x)
q

≤ Gq(s0)
q

=
s0

1− q

(
q(1− q)1/p

s0
+ 1− q

)p

− ss0 − (Cp
p − s)

=
s0

1− q

[
Ap

p

qp/(p−1)
− s + qs

]
− (Cp

p − s) =
s0

1− q
(sp/(p−1) − s + Ap−1

p )− (Cp
p − s)

=
A

p(p−1)
p

(sp/(p−1) − s + Ap−1
p )p

· (sp/(p−1) − s + Ap−1
p )− (Cp

p − s),

which is nonpositive by (4). The proof is complete.
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3. The proof of the main theorem

Let Up : [0,∞)× [0,∞) → R be given by Up(x, y) =
(
yp − Cp

pxp
)
∨ (−Ap−1

p xp).

Lemma 3.1. For any x, y ≥ 0 and any nonnegative integrable variable X we have

EUp(x ∨X, y ∨ EX) ≤ Up(x, y). (12)

Proof. We start from some reductions. First, we may assume x = 1. Secondly, ob-
serve that it suffices to show the estimate for simple variables X, that is, taking only
a finite number of values. Moreover, we may assume that X takes at most two val-
ues. To see this, note that there exists a finite sequence of pairwise disjoint events
A1, A2, . . . , An of positive probability such that for any i, X takes at most two values
on Ai and E(XIAi |Ai) = EX. The existence can be easily shown by induction on the
number of values taken by X. Applying (12) to the variable XIAi , conditionally on Ai,
we obtain

E
[
Up(1 ∨XIAi

, y ∨ E(XIAi
|Ai))

∣∣Ai

]
≤ Up(1, y),

or E(Up(1 ∨ X, y ∨ EX)IAi) ≤ P(Ai)Up(1, y). Now if we sum these inequalities for i =
1, 2, . . . , n, we obtain (12). The next reduction is that we may assume P(X ≥ 1) = 1,
replacing X by 1∨X, if necessary. Furthermore, we may restrict ourselves to the variables
X satisfying EX ≥ y, since if it is not the case, we have

EUp(1 ∨X, y ∨ EX) = EUp(X, y) = E
[
(yp − Cp

pXp) ∨ (−Ap−1
p Xp)

]
≤ E

[
(yp − Cp

p ) ∨ (−Ap−1
p )

]
= Up(1, y).

As Up(1, y) ≥ Up(1, 1) = −Ap−1
p in view of Lemma 2.1, the proof will be complete if we

show that
EUp(X, EX) ≤ −Ap−1

p (13)

and note that we may drop the assumption EX ≥ y.
Summarizing, we have reduced the problem of proving (12) to the problem of showing

(13) for any nonnegative variable X taking at most two values not smaller than 1.
Now, if X is constant, say, X = a ≥ 1, then (13) is evident; indeed,

EUp(X, EX) = Up(a, a) = apUp(1, 1) ≤ Up(1, 1).

If X takes two values: 1 and w > 1, and we denote P(X = 1) by q, then the inequality
(13) is precisely the estimate (9). Finally, if X takes two values: a > 1 and w > a, then

EUp(X, EX) = apEUp (X/a, EX/a) .

Observe that X/a takes two values, one of which equals 1; hence we may use the previous
case and write EUp(X, EX) ≤ apUp(1, 1) < Up(1, 1). This completes the proof.

Proof of the inequality (2). Clearly, it suffices to show the estimate for the se-
quences f , for which the right hand side of (2) is finite. Furthermore, we may restrict
ourselves to the case of finite sequences f , that is, such that there exists N for which we
have 0 = fN = fN+1 = fN+2 = . . .. Since Up(x, y) ≥ yp − Cp

pxp, we will be done once
we have shown that EUp(f∗n, g∗n) ≤ 0 for any nonnegative integer n. We will prove a bit
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more, namely, that the process (Up(f∗n, g∗n)) is a supermartingale with respect to (Fn).
To this end, apply the inequality (12) conditionally on Fn−1, n ≥ 1, to get

E [Up(f∗n, g∗n)|Fn−1] = E
[
Up(f∗n−1 ∨ fn, g∗n−1 ∨ E(fn|Fn−1))|Fn−1

]
≤ Up(f∗n−1, g

∗
n−1).

Therefore EUp(f∗n, g∗n) ≤ EUp(f∗0 , g∗0) = EUp(f0, g0) ≤ 0, as Up(x, x) ≤ 0 for any x ≥ 0.
The estimate follows.

Remark 3.1. As we have Up(x, y) = yp ∨
[
(Cp

p −Ap−1
p )xp

]
− Cp

pxp ≥ (x ∨ y)p − Cp
pxp,

we see that a stronger estimate is valid: for any sequence f as in Theorem 1.1,

||f∗ ∨ g∗||p ≤ Cp||f∗||p, 1 < p < ∞.

Since Cp is optimal in (2) (as proved below), the inequality above is also sharp.

Remark 3.2. The inequality (2) extends to the case of strongly integrable sequences f
taking values in a certain Banach space (B, || · ||B). Indeed, in such a case consider real
valued f = (||f1||B , ||f2||B , . . .) and observe that ||f ||p,∞ = ||f ||p,∞, ||g||p,∞ ≤ ||g||p,∞.

Sharpness of (2). We will construct appropriate examples on the interval [0, 1] equipped
with its Borel subsets and Lebesgue’s measure. To this end, fix p ∈ (1,∞) and let

q = 1−
(

p−1
p

)p

, w = p
p−1 > 1. Define the sequence (fn) by f0 = I[0,1] and

fn = wnI[0,(1−q)n] + wn−1I((1−q)n,(1−q)n−1], n = 1, 2, . . . ,

and let (Fn) be a filtration generated by the sequence (fn). Then g0 = I[0,1] and gn =
wn−1(w(1− q) + q)I[0,(1−q)n−1] = Cpw

n−1I[0,(1−q)n−1], n = 1, 2, . . .. Therefore,

f∗n = wnI[0,(1−q)n] +
n∑

k=1

wk−1I((1−q)k,(1−q)k−1],

g∗n = Cpw
n−1I[0,(1−q)n] + Cp

n∑
k=1

wk−1I((1−q)k,(1−q)k−1].

Since (1− q)wp = 1, it can be easily verified that we have ||f∗n||pp = 1 + qn and ||g∗n||pp =

Cp
p

[(
p−1

p

)p

+ qn
]
. Letting n →∞ we see that the constant Cp in (2) can not be replaced

by a smaller one.
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process. Séminaire de Probabilités XXIX, Lecture Notes in Math. 1613, 17–24.
Garsia, A.M., 1973. Martingale inequalities: Seminar notes on recent progress. Mathematics Lecture

Notes Series, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam.
Johnson, W. B., Maurey, B., Schechtman, G. and Tzafriri, L., 1979. Symmetric structures in Banach

spaces, Mem. AMS no. 217, vol. 19.
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