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Abstract. Let X be a nonnegative martingale, H be a predictable process

taking values in [−1, 1] and let Y be an Itô integral of H with respect to X.
We establish the bound

|| sup
t≥0
|Yt|||1 ≤ 3|| sup

t≥0
Xt||1

and show that the constant 3 is the best possible.

1. Introduction

The purpose of the paper is to establish a sharp inequality for stochastic integrals
in which the integrator is a nonnegative martingale. Let us introduce the necessary
background and notation. Assume that (Ω,F ,P) is a complete probability space,
filtered by a nondecreasing right-continuous family (Ft)t≥0 of sub-σ-algebras of F .
In addition, let F0 contain all the events of probability 0. Suppose thatX = (Xt)t≥0

is an adapted real-valued martingale, which has right-continuous paths with limits
from the left and let H = (Ht)t≥0 be a predictable process taking values in the
interval [−1, 1]. Let Y = (Yt)t≥0 be the Itô integral of H with respect to X, that
is, for t ≥ 0,

Yt = H0X0 +

∫
(0,t]

HsdXs.

Furthermore, let X∗ = supt≥0 |Xt| denote the maximal function of X and let
||X||p = supt≥0 ||Xt||p be the p-th moment of X, for 1 ≤ p ≤ ∞.

The martingale Y can be viewed as the result of control of the martingale X
by the process H, and hence there is a natural question about the comparison of
the sizes of X and Y . An excellent source of information about this subject is the
survey [2], which contains, among other things, moment, weak-type and exponential
estimates for Y . In the present paper we will be interested in sharp bounds for the
maximal functions X∗ and Y ∗. There is a method, introduced by Burkholder in
[3], which allows to determine the optimal values of constants in inequalities of this
type. Using this technique, Burkholder proved the following.

Theorem 1.1. If X and Y are as above, then

(1.1) ||Y ||1 ≤ κ||X∗||1,
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where κ = 2.536 . . . is the unique positive solution to the equation

κ = 3− exp
1− κ

2
.

Let us mention here two further results in this direction, which are due to the
author. In [4] it was shown that if the martingale X is nonnegative (that is, Xt ≥ 0
for all t), then the best constant in (1.1) decreases to 2 + (3e)−1 = 2, 1226 . . .. In
[5], a related estimate was studied, with the first moment of Y replaced by the first
moment of Y ∗. Precisely, it was shown that if X is real valued and Y is as above,
then

(1.2) ||Y ∗||1 ≤ η||X∗||1,
with optimal η equal to 3.4351 . . .. The precise decription of η is quite complicated
and is related to solutions of certain ODE’s; for details, see [5].

In the present paper we continue this line of research and prove a sharp version
of (1.2) under the assumption that the martingale X is nonnegative. Thus we
complete the description of the optimal constants in the maximal L1 inequalities
for stochastic integrals.

Theorem 1.2. If X is a nonnegative martingale, H is a predictable process with
values in [−1, 1] and Y is the stochastic integral of H with respect to X, then

(1.3) ||Y ∗||1 ≤ 3||X∗||1
and the constant 3 is the best possible. It is already the best possible if H is assumed
to take values in {−1, 1}.

In fact, we will restrict ourselves to the discrete-time version of the result above.
Using standard approximation theorems due to Bichteler [1], one easily obtains
the above continuous time version (see [3] for analogous argumentation). Let us
reformulate our problem in this new setting. Let f = (fn)n≥0 be a discrete-time
real-valued martingale, with a difference sequence (dfn)n≥0 given by df0 = f0 and
dfn = fn − fn−1 for n ≥ 1. Let v = (vn)n≥0 be a predictable sequence taking
values in [−1, 1] and let g = (gn)n≥0 be a transform of f by v: that is, assume that
dgn = vndfn for n ≥ 0. In the particular case when vn is deterministic and takes
values in {−1, 1}, we will write dgn = ±dfn. If we have dgn = ±dfn for all n, we
will say that g is a ±1-transform of f . We will use the notation f∗ = supn≥0 |fn|
and ||f ||p = supn ||fn||p, analogous to the one used in the continuous-time setting.

The discrete-time version of Theorem 1.2 can be stated as follows.

Theorem 1.3. Assume that f is a nonnegative martingale and g is its transform
by a predictable sequence bounded in absolute value by 1. Then

(1.4) ||g∗||1 ≤ 3||f∗||1
and the constant 3 is the best possible. It is already the best possible even if g is
assumed to be a ±1-transform of f .

A few words about the proof and the organization of the paper. We will make
a heavy use of Burkholder’s technique, described in the next section. The method
turns the problem of proving a given maximal inequality for martingales into the
problem of finding an upper solution to a certain nonlinear problem (see also [2]
for discussion in the case of non-maximal inequallities). Comparing to the results
mentioned above, the estimate (1.4) turns out to be much more difficult. Namely,
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in most of the inequalities where the Burkholder’s method has been succesfully
implemented, the corresponding nonlinear problems were two-dimensional; in the
present paper we will have to find a special function of three variables, and this
makes a significant complication. The function is constructed in Section 3, and the
final part of the paper concerns the optimality of the constant 3.

2. Burkholder’s method

Our goal is to determine the least β such that

(2.1) ||g∗||1 ≤ β||f∗||1
for f and g as in the statement of Theorem 1.3. Let us start with some reductions.
First, by Lebesgue’s monotone convergence theorem, it suffices to show that

(2.2) ||g∗n||1 ≤ β||f∗n||1
for all nonnegative integers n. Here f∗n = supk≤n fk and g∗n = supk≤n |gk|. The
second reduction is that we may assume that f is simple: for any n the random
variable fn takes only a finite number of values. Moreover, adding a small ε > 0 if
necessary, we may consider only these f , for which f0 is strictly positive with prob-
ability 1. The final observation is that we may restrict ourselves to ±1 transforms.
To see this, let us use the following modification of Lemma A.1 from [2].

Lemma 2.1. Let g be the transform of a nonnegative martingale f by a real-
valued predictable sequence v uniformly bounded in absolute value by 1. Then there
exist nonnegative martingales F j = (F j

n)n≥0 and Borel measurable functions ϕj :
[−1, 1]→ {−1, 1} such that, for j ≥ 1 and n ≥ 0,

fn = F j
2n+1, f∗n = (F j

2n+1)∗,

gn =

∞∑
j=1

2−jϕj(v0)Gj
2n+1,

where Gj is the transform of F j by ε = (εk)k≥0 with εk = (−1)k.

The proof of this fact goes along the same lines as in [2], and hence is omitted.
Now, if we have (2.2) for ±1 transforms, and g is a transform of f as in the lemma
above, then

||g∗n||1 ≤
∞∑
j=1

2−j ||(Gj
2n+1)∗||1 ≤ β

∞∑
j=1

2−j ||(F j
2n+1)∗||1 = β||f∗n||1,

as needed.
To study (2.2) for ±1 transforms, we introduce the class U(β) which consists of

those functions U : [0,∞)× R× (0,∞)× (0,∞)→ R, which satisfy

(2.3) U(x, y, z, w) = U(x, y, x ∨ z, |y| ∨ w),

(2.4) U(x, y, x, |y|) ≤ 0 if x ≥ |y| > 0,

(2.5) |y| ∨ w − βx ∨ z ≤ U(x, y, z, w),

and, furthermore, for any z, w > 0, x ∈ [0, z], y ∈ [−w,w], ε ∈ {−1, 1}, α ∈ (0, 1)
and t1, t2 ≥ −x such that αt1 + (1− α)t2 = 0,

(2.6) αU(x+ t1, y + εt1, z, w) + (1− α)U(x+ t2, y + εt2, z, w) ≤ U(x, y, z, w).
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By straightforward induction, the latter condition implies the following. If
x, y, z, w and ε are as above, then for any simple mean-zero random variable T ,

(2.7) EU(x+ T, y + εT, z, w) ≤ U(x, y, z, w).

Let us describe the connection between the class U(β) and the estimate (2.2).

Theorem 2.2. If U(β) is nonempty, then (2.2) is valid.

Proof. Let U ∈ U(β). The key fact is that the sequence (U(fk, gk, f
∗
k , g
∗
k))k≥0 is a

supermartingale. Indeed, we have

E[U(fk, gk, f
∗
k , g
∗
k)|Fk−1] = E[U(fk, gk, f

∗
k−1, g

∗
k−1)|Fk−1]

= E[U(fk−1 + dfk, gk−1 + εkdfk, f
∗
k−1, g

∗
k−1)|Fk−1]

≤ U(fk−1, gk−1, f
∗
k−1, g

∗
k−1),

where in the first passage we have used (2.3) and in the latter we have exploited
(2.7) conditionally on Fk−1. Therefore, by (2.5) and then (2.4),

E
{
g∗n − βf∗n

}
≤ EU(fn, gn, f

∗
n, g
∗
n) ≤ EU(f0, g0, f

∗
0 , g
∗
0) ≤ 0. �

We have the following result in the reverse direction, Theorem 2.2 from [3],
which will be useful in providing the lower bound for the constant β. For x ≥ 0 and
y ∈ R, let M(x, y) be the class of all pairs (f, g) of simple martingales such that f
is nonnegative and starts from x, g starts from y and dgn = ±dfn for all n ≥ 1.

Theorem 2.3. Suppose that the inequality (2.2) holds for all n and all pairs (f, g)
such that f is a simple nonnegative martingale and g is its ±1-transform. Then the
class U(β) is nonempty. Furthermore, let U0 : [0,∞)×R× (0,∞)× (0,∞)→ R be
given by

(2.8) U0(x, y, z, w) = sup{E(g∗n ∨ w − βf∗n ∨ z)},
where the supremum is taken over all n and all pairs (f, g) ∈M(x, y). Then U0 is
the least element in U(β).

Thus an equivalent reformulation of our goal is to determine the least β for which
the class U(β) is nonempty. This is the purpose of the next section.

3. Proof of (1.4)

This section contains of two parts. First we shall exhibit a special function which
belongs to U(3) (and thus establish (1.4)); in the second we will sketch some steps
which lead to its discovery.

3.1. An element of U(3). Let S = {(x, y, w) : x ∈ [0, 1], |y| ≤ w} and consider
the following subsets of S:

D1 = {(x, y, w) ∈ S : |y| ≤ x},
D2 = {(x, y, w) ∈ S : x ≤ |y| ≤ x+ w − 1},
D3 = {(x, y, w) ∈ S : x+ w − 1 < |y| ≤ w}.

Let u : S → R be given as follows. First, if w ≥ 1, then u(x, y, w) equals
2
3 exp[ 1

2 (1− w)]
{

2 + (2x+ |y| − 2)(−x+ |y|+ 1)1/2
}

+ w − 3 on D1,

2x exp[ 1
2 (−x+ |y| − w + 1)] + w − 3 on D2,

2x− x log(x− |y|+ w) + w − 3 on D3
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(with the convention 0 log 0 = 0). If w < 1, then we set u(x, y, w) = u(x, y, 1).
The key properties of the function u are studied in the lemma below.

Lemma 3.1. Let w > 0 be fixed.
(i) If y ∈ [−w − 1, w], then the function G = Gy,w : [0, 1] → R, given by

G(t) = u(t, y + t, w ∨ |y + t|), is concave and nondecreasing.
(ii) The function J = Jw : R → R, given by J(t) = u(1, t, w ∨ |t|), is even and

convex.
(iii) We have u(x, y, w) ≥ w − 3 on S.

Proof. (i) Since u(t, y + t, w ∨ |y + t|) = u(t, y + t, 1 ∨ |y + t|) for w < 1, we may
assume that w ≥ 1. We will consider three cases separately.

1◦ If y ≥ w − 1, then

G(t) =

{
2t− t log(−y + w) + w − 3 for t ≤ w − y,
3t− t log t+ y − 3 for t > w − y

is a concave and nondecreasing function.
2◦ If y ∈ [0, w − 1), then G(t) = 2t exp[ 1

2 (y − w + 1)] + w − 3 is linear and
nondecreasing.

3◦ Suppose that y ∈ [−w − 1, 0). Then G(t) equals

t− t log t− y − 3 if t < −w − y,
2t− t log(2t+ y + w) + w − 3 if − w − y ≤ t ≤ −y−w+1

2 ,

2t exp[ 1
2 (−2t− y − w + 1)] + w − 3 if −y−w+1

2 < t < −y/2,
2
3 exp[ 1

2 (1− w)]×
×{2 + (t− y − 2)(−2t− y + 1)1/2}+ w − 3 if − y/2 ≤ t ≤ −y,
2
3 exp[ 1

2 (1− w)]{2 + (3t+ y − 2)(y + 1)1/2}+ w − 3 if − y < t ≤ 1.

It is evident that G is concave in the interiors of the intervals above; morevore,
one easily checks that the one-sided derivatives of G match at the endpoints of
these intervals, and this yields the concavity on whole [0, 1]. The monotonicity of
G follows from the fact that G′(1−) < 0 for y > −1, and G′(1−) = 0 for remaining
values of y.

(ii) As previously, we may assume that w ≥ 1. Clearly, J(t) = J(−t) for all t.
Furthermore, it is easy to check that J is convex on [−w,w], linear on the halflines
(−∞,−w] and [w,∞), and J ′(w−) = J ′(w+) = 1, J ′(−w−) = J ′(−w+) = −1.
This proves the claim.

(iii) By (i), it suffices to establish the majorization only on the set {(x, y, w) :
x ∈ {0, 1} or |y| = w}. Moreover, since u(x, y, w) = u(x,−y, w), we may assume
that y ≥ 0. Now if x = 0, then both sides are equal. If y = w, then the inequality
reduces to 2x− x log x ≥ 0, which is trivial. Finally, if x = 1, we use (ii) to obtain

u(1, y, w) ≥ u(1, 0, w) =
4

3
exp

[
1

2
(1− w)

]
+ w − 3 ≥ w − 3. �

Let U : [0,∞)× R× (0,∞)× (0,∞)→ R be defined by

(3.1) U(x, y, z, w) = (x ∨ z)u
(

x

x ∨ z
,

y

x ∨ z
,
|y| ∨ w
x ∨ z

)
.

Lemma 3.2. The function U belongs to the class U(3).
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Proof. The condition (2.3) follows directly from the definition. To check (2.4), note
that by Lemma 3.1 (ii),

U(x, y, x, |y|) = xu(1, y/x, |y|/x) ≤ xu(1, 1, 1) = 0.

The majorization (2.5) is an immediate consequence of lemma 3.1 (iii). It remains
to establish (2.6). We will prove a slightly stronger statement: for x, y, z, w, ε as
in (2.6), there is a linear function Ψ such that Φ(t) := U(x+ t, y + εt, z, w) ≤ Ψ(t)
for all t ≥ −x and Ψ(0) = Φ(0). This will follow from the two conditions below:

(3.2) Φ is concave and nondecreasing on [−x,−x+ z],

(3.3) Φ is convex and nonincreasing on [−x+ z,∞).

To prove these properties, observe that we may assume that ε = 1, since U is
symmetric with respect to the variable y. Now the condition (3.2) is an immediate
consequence of Lemma 3.1 (i). To prove (3.3), let us first use the second part of
that lemma. Suppose that t1, t2 ≥ −x+ z and α1, α2 ∈ (0, 1) satisfy α1 + α2 = 1.
For α′i = αi(x+ ti)/(α1(x+ t1) + α2(x+ t2)),

α1Φ(t1) + α2Φ(t2) = (α1(x+ t1) + α2(x+ t2))

[
α′1J

(
y + t1
x+ t1

)
+ α′2J

(
y + t2
x+ t2

)]
≥ (α1(x+ t1) + α2(x+ t2))J

(
α′1
y + t1
x+ t1

+ α′2
y + t2
x+ t2

)
= (α1(x+ t1) + α2(x+ t2))J

(
y + α1t1 + α2t2

α1(x+ t1) + α2(x+ t2)

)
= Φ(α1t1 + α2t2).

Thus Φ is convex; therefore, for any t ≥ −x+ z,

Φ′(t+) ≤ lim
s→∞

Φ(s)

s
= lim

s→∞

(x+ s)u(1, y+s
x+s ,

y+s
x+s )

s
= u(1, 1, 1) = 0,

which completes the proof. �

3.2. On the search of a suitable function. Now we will present a reasoning
which leads to the optimal constant β = 3 and produces the special function U .
We start with the function U0 defined by (2.8). For any x, y, z, w we have

(3.4) U0(x, y, z, w) = U0(x,−y, z, w),

(3.5) U0(λx, λy, λz, λw) = λU0(x, y, z, w), λ > 0,

and

(3.6) U0(0, y, z, w) = w − βz.
The first two properties follow immediately from the definition of U0 and the fact
that (f, g) ∈ M(x, y) implies (f,−g) ∈ M(x,−y) and (λf, λg) ∈ M(λx, λy); the
third holds sinceM(0, y) contains only the constant pair (0, y). We shall search for
U in the class of functions satisfying these three conditions. In fact, we shall find
u : (x, y, w) 7→ U(x, y, 1, w) (for x ∈ [0, 1] and y ∈ [0, w]) and recover U using (3.1)
and (3.4). It is convenient to split the remaining part into two steps.

Step 1. Assumptions. We impose the following conditions on u:

(A1) u is of class C1.
(A2) limy↓0 uy(x, y, w) = 0 for x ∈ [0, 1] and w > 0.
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(A3) For any w > 0, the function u(·, ·, w) is linear along the line segments of
slope 1 contained in [0, 1]× [0, w].

(A4) We have uw(x,w,w) = 0 for any x ∈ (0, 1] and w > 0.
(A5) We have ux(1, y, w) = uy(1, y, w).

These conditions come from the following reasoning. It is natural to expect that the
special function U will be smooth: this gives rise to (A1) and then (3.4) enforces
(A2). Next, (2.6) implies that for any w > 0, u(·, ·, w) is concave along any line
segment of slope ±1 contained in [0, 1] × [0, w]. Since u corresponds to a sharp
estimate and thus is extremal in some sense, it seems reasonable to conjecture
that for any (x, y) ∈ (0, 1) × (0, w), u(·, ·, w) is (at least, locally) linear along a
line segment of slope 1 or −1 passing through (x, y). Some experiments and the
formulas for the special functions appearing in [3] and [5] lead to (A3). Next, apply
(2.6) to x ∈ (0, 1), y = w, z = 1, ε = 1 and t1 = −t2 = t > 0 close to 0 (then we
are forced to take α = 1/2). As the result,

u(x,w + t, w) + u(x,w − t, w) ≤ 2u(x,w,w).

Since u(x,w + t, w) = u(x,w + t, w + t) in virtue of (2.3), letting t → 0 yields
uw(x,w,w) ≤ 0. We assume equality and arrive at (A4). Finally, apply (2.6) to
x = z = 1, y ∈ [0, w), ε = −1 and t1, t2 such that y − w < t1 < 0 < t2. We get

t2
t2 − t1

u(1 + t1, y − t1, w) +
−t1
t2 − t1

U(1 + t2, y − t2, 1, w) ≤ u(1, y, w),

or, using (2.3), (3.4) and (3.5),

t2
t2 − t1

u(1 + t1, y − t1, w) +
−t1(1 + t2)

t2 − t1
u

(
1,
t2 − y
1 + t2

,
w

1 + t2

)
≤ u(1, y, w).

If t2 − y ≥ w, then we get, by (2.3),

t2
t2 − t1

u(1 + t1, y − t1, w) +
−t1(1 + t2)

t2 − t1
u

(
1,
t2 − y
1 + t2

,
t2 − y
1 + t2

)
≤ u(1, y, w)

and letting t2 →∞ gives u(1 + t1, y− t1, w)− t1u(1, 1, 1) ≤ u(1, y, w). This further
implies ux(1, y, w) − uy(1, y, w) ≥ u(1, 1, 1). However, u(1, 1, 1) = U(1, 1, 1, 1) ≤ 0
by (2.4); we assume that equalities hold in the last two estimates, and this is
precisely (A5).

Step 2. Deriving the formula for u. Assume first that w ≥ 1 and denote Aw(x) =
u(x, 1, w), Bw(y) = u(1, y, w) for x ∈ [0, 1] and y ∈ [0, w]. By (A3), we have

(3.7) u(x, y, w) =
y

−x+ y + 1
Bw(−x+ y + 1) +

−x+ 1

−x+ y + 1
Aw(x− y)

when 0 ≤ y ≤ x ≤ 1. An application of (A2) gives

(3.8)
Bw(1− x)−Aw(x)

1− x
= A′w(x), x ∈ (0, 1),

while the use of (A5) yields

Bw(y)−Aw(1− y)

y
= 2B′w(y), y ∈ (0, 1).

It is easy to solve this system of differential equations: substitute y = 1 − x to
get 2B′w(1 − x) − A′w(x) = 0, so −2Bw(1 − x) − Aw(x) = c1 for some constant c1
depending only on w. Since Bw(0) = Aw(1) = u(1, 0, 1), we obtain c1 = −3Aw(1).
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Thus, 2Bw(1− x) = −Aw(x) + 3Aw(1), so plugging this into (3.8) and solving the
differential equation gives

(3.9) Aw(x)−Aw(1) = c2(1− x)3/2 and Bw(y)−Bw(0) = −c2y3/2/2

for some constant c2 depending only on w. Next, use (A3) to obtain

u(x, y, w) = xBw(−x+ y + 1) + (1− x)u(0,−x+ y, w)

= xBw(−x+ y + 1) + (1− x)(w − β)
(3.10)

for any x, y such that x ≤ y ≤ x+w− 1 (the latter equality above is due to (3.6)).
Applying (A5) gives the differential equation 2B′w(y) = Bw(y)−w+ β and solving
it we obtain Bw(y) = c3e

y/2 + w − β, for some c3 depending only on w. By (A4),
we get c′3(w) = −e−w/2 and hence

(3.11) Bw(y) = 2 exp

(
y − w

2

)
+ w − β.

Now put w = y = 1: then B1(1) = u(1, 1, 1) = 0 (see the above explanation leading
to (A5)) and hence we obtain β = 3. Next, note that Bw is differentiable at 1, in
virtue of (A2). Comparing the left and right limits of Bw and B′w at 1 (see (3.9)
and (3.11)), we get

c2 = −4

3
exp

(
1− w

2

)
and Bw(0) =

4

3
exp

(
1− w

2

)
+ w − 3.

This determines the functions Aw and Bw, and (3.7) and (3.10) give u on y ≤ x+
w−1. The formula for u on {(x, y) : y > x+w−1} is obtained in a similar manner,
by the use of (A3) and (A4): we obtain u(x, y, w) = 2x−x log(x−y+w)+w−3. We
leave the details to the reader. The final assumption is to put u(x, y, w) = u(x, y, 1)
for w < 1. It is easy to check that the function we have just constructed leads to
that from the previous subsection.

4. Sharpness of (1.4)

Obviously, it suffices to prove the optimality of the constant in the discrete-time
case. One could try to provide an appropriate example, but this would lead to quite
involved calculations; to avoid them, we take a different approach and use Theorem
2.3 instead.

Suppose that the constant β > 0 is such that the inequality (2.1) holds for
any martingale f and its ±1 transform g. Let U0 be the function guaranteed by
Theorem 2.3. The function U0 satisfies (2.3)–(2.6) and (3.5). Furthermore, it enjoys
the following property.

Lemma 4.1. For any x ≥ 0, z > 0 and y1, y2 ∈ R, w1, w2 > 0 we have

|U0(x, y1, z, w1)− U0(x, y2, z, w2)| ≤ max{|y1 − y2|, |w1 − w2|}.

Proof. By the triangle inequality, for any numbers a0, a1, a2, . . . , an,

|y1 + a0| ∨ |y1 + a1| ∨ . . .∨ |y1 + an| ∨w1 − |y2 + a0| ∨ |y2 + a1| ∨ . . .∨ |y2 + an| ∨w2

≤ max{|y1 − y2|, |w1 − w2|}.
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In consequence, if f , g are martingales such that f starts from x, g starts from 0
and dgn = ±dfn for all n ≥ 1, then

E((y1 + g)∗n ∨ w1 − βf∗n)− U0(x, y2, z, w2)

≤ E
[
((y1 + g)∗n ∨ w1 − βf∗n ∨ z)− ((y2 + g)∗n ∨ w2 − βf∗n ∨ z)

]
≤ max{|y1 − y2|, |w1 − w2|}.

It suffices to take supremum over f , g and n to obtain

U0(x, y1, z, w1)− U0(x, y2, z, w2) ≤ max{|y1 − y2|, |w1 − w2|},

and the claim follows by symmetry. �

Lemma 4.2. Let w > 0 and δ ∈ (0, 1). Then

(4.1) U0(1, w, 1, w) ≥ U0(1− δ, w + δ, 1, w + δ) + δU0(1, 1, 1, 1)

and

(4.2) U0(1− δ, w + δ, 1, w + δ) ≥ (1− δ)U0(1, w + 2δ, 1, w + 2δ) + δ(w + δ − β).

Proof. Apply (2.6) to (x, y, z, w) := (1, w, 1, w), ε = −1 and t1 = −δ, t2 > 0 (the
numbers α1, α2 are uniquely determined by t1 and t2). We obtain

t2
t2 + δ

U0(1− δ, w + δ, 1, w) +
δ

t2 + δ
U0(1 + t2, w − t2, 1, w) ≤ U0(1, w, 1, w),

or, using (2.3) and (3.5),

t2
t2 + δ

U0(1− δ, w + δ, 1, w) +
δ(1 + t2)

t2 + δ
U0

(
1,
w − t2
1 + t2

, 1,
w

1 + t2

)
≤ U0(1, w, 1, w).

If we let t2 →∞ and use the previous lemma, together with the equality U0(1,−1, 1, 1) =
U0(1, 1, 1, 1), we get (4.1). To obtain (4.2), simply apply (2.6) to (x, y, z, w) :=
(1− δ, w + δ, 1, w + δ) and t1 = δ − 1, t2 = δ. �

Now we are ready to show that the constant 3 is the best possible.

Sharpness of (1.4). Combining (4.1) and (4.2), we get

U0(1, w, 1, w) ≥ (1− δ)U0(1, w + 2δ, 1, w + 2δ) + δU0(1, 1, 1, 1) + δ(w + δ − β).

Substituting F (w) = U0(1, w, 1, w) − U0(1, 1, 1, 1) − (w − β + 2), we rewrite the
above inequality in the form F (w) ≥ (1 − δ)F (w + 2δ) − δ2. This, by induction,
yields

F (w) ≥ (1− δ)nF (w + 2nδ)− nδ2.

Now fix z > 1 and take w = 1, δ = (z − 1)/(2n) (here n must be sufficiently large
so that δ < 1). Letting n→∞ gives

β − 3 = F (1) ≥ F (z) exp

(
1− z

2

)
.

However, by Lemma 4.1, F has at most linear growth; thus, letting z → ∞, we
obtain β − 3 ≥ 0. This completes the proof. �
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