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Abstract

Suppose f = (fn), g = (gn) are martingales with respect to the same
filtration, satisfying

|fn − fn−1| ≤ |gn − gn−1|, n = 1, 2, . . .

with probability 1. Under some assumption on f0, g0 and an additional
condition that one of the processes is nonnegative, some sharp inequalities
between the p-th norms of f and g, 0 < p < ∞, are established. As an ap-
plication, related sharp inequalities for stochastic integrals and harmonic
functions are shown to hold.

Discipline: Probability Theory and Harmonic Analysis.

1 Introduction

Let (Ω,F ,P) be a probability space equipped with a discrete filtration (Fn)n≥0.
Let f = (fn), g = (gn) be two adapted martingales taking values in a certain
separable Hilbert space H, with

fn =
n∑

k=0

dfk, gn =
n∑

k=0

dgk.

We say that f is differentially subordinate to g, if for any nonnegative n we have

|dfn| ≤ |dgn|

almost surely.
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The main interest of this paper is to compare the moments of f and g, if f is
differentially subordinate to g. As proved by Burkholder in [1], for 1 < p < ∞
we have the following sharp estimate

||fn||p ≤ αp||gn||p, n = 0, 1, 2, . . . , (1.1)

where αp = max{p, p/(p− 1)}− 1. Furthermore, if 0 < p ≤ 1, the inequality fails
to hold for any finite αp.

But what happens if we add an extra assumption that one of the martingales
f , g is nonnegative? This question was raised and answered by Burkholder in [4]
in the case g ≥ 0. Namely, (1.1) holds for 1 < p < ∞ and the optimal constant
equals

α′p =

{
1/(p− 1) if p ∈ (1, 2],

p1/p[(p− 1)/2](p−1)/p if p ∈ (2,∞).

Hence the constant remains the same for 1 < p ≤ 2 and decreases for p > 2.
We continue this line of research in two directions. The inequality (1.1) fails

to hold if p ∈ (0, 1) and g ≥ 0. But it turns out that the reverse one is true, if
the differential subordination is replaced by a slightly different condition.

Theorem 1.1. Suppose f is a martingale taking values in H and g is a nonneg-
ative martingale. Assume that for some deterministic β > 0 we have

β|f0| ≥ g0 and |dfn| ≤ |dgn|, n = 1, 2, . . . ,

with probability 1. Then for p ∈ (0, 1),

||fn||p ≥ Cp,β||gn||p, n = 0, 1, 2 . . . , (1.2)

where Cp,β = 0 if β ≥ 1 and

Cp,β =

[(
p(1− β)

2(1 + β − p)

)1−p

· 2(1 + β)(1− p) + p2

p(1 + β − p)

]1/p

if β < 1. The inequality is sharp if 2β > p.

By sharpness we mean that for any C > Cp,β, there exists a pair (f, g)
satisfying the assumptions of the theorem and an integer n for which we have
||fn||p < C||gn||p.

The second result we obtain is the following.

Theorem 1.2. Suppose g is H-valued martingale and f is nonnegative and dif-
ferentially subordinate to g. Then for 0 < p <∞,

||fn||p ≤ Cp||gn||p, n = 0, 1, 2 . . . , (1.3)
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where

Cp =


∞ if p ∈ (0, 1)

1 if p = 1,

p−1/p[2/(p− 1)](p−1)/p if p ∈ (1, 2),

p− 1 if p ∈ [2,∞).

The inequality is sharp.

Therefore, compared to the general case, the constant decreases for p ∈ [1, 2).

Let us comment upon the method of the proof. In [1] (see also [2]) Burkholder
proves the inequality (1.1) for general f , g constructing quite complicated special
function Up satisfying some convex-type properties. It turns out that a certain
integration trick is available, which enables to build Up from much simpler func-
tions and to reduce significantly the complexity of the proof (cf. [5]). In [4], the
proof of the inequality (1.1) for nonnegative g follows the same pattern and the
special function U ′

p is even more complicated than Up. In this paper we discover
integral identity which expresses U ′

p in terms of much simpler objects. Related
identities yield special functions leading to the inequalities (1.2) and (1.3).

The paper is organized as follows. In the next section we introduce the simple
special functions, study their properties and present the crucial integral identities.
Section 3 contains the proof of Theorems 1.1 and 1.2. The last two sections are
devoted to applications of these theorems to stochastic integrals and harmonic
functions on Euclidean domains.

2 The special functions

For a fixed number s > 1, consider a set D given by

D = {(x, y) ∈ R2
+ : y ≤ min

(
x+ 1,

s+ 1

s− 1
− x

)
}.

Define functions u1,s : H× R+ → R, u2,s : R+ ×H → R, u∞,s : H× R+ → R by

u1,s(x, y) =

{
s−1
s+1

(|x|2 − y2)− 2
s+1
|x|+ 2s

s+1
y if (|x|, y) ∈ D,

1 if (|x|, y) /∈ D,

u2,s(x, y) =

{
s−1
s+1

(x2 − |y|2) if (x, |y|) ∈ D,
2

s+1
x− 2s

s+1
|y|+ 1 if (x, |y|) /∈ D,

u∞,s(x, y) =

{
0 if (y, |x|) ∈ D,
s−1
s+1

(|x|2 − y2) + 2
s+1

y − 2s
s+1
|x|+ 1 if (y, |x|) /∈ D.
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It is easy to check that these functions are continuous. Furthermore, let φ1,s, ψ1,s,
φ2,s, ψ2,s, φ∞,s, ψ∞,s be defined by

(φ1,s(x, y), ψ1,s(x, y)) =

{(
2(s−1)

s+1
x− 2

s+1
x′,−2(s−1)

s+1
y + 2s

s+1

)
if (|x|, y) ∈ D,

(0, 0) if (|x|, y) ∈ D,

(φ2,s(x, y), ψ2,s(x, y)) =

{(2(s−1)
s+1

x,−2(s−1)
s+1

y
)

if (x, |y|) ∈ D,
( 2

s+1
,− 2s

s+1
y′) if (x, |y|) ∈ D,

(φ∞,s(x, y), ψ∞,s(x, y)) =

{
(0, 0) if (y, |x|) ∈ D,(2(s−1)

s+1
x− 2s

s+1
x′,−2(s−1)

s+1
y + 2

s+1

)
if (y, |x|) ∈ D,

where x′ = x/|x| for x 6= 0 and x′ = 0 if x = 0.

The key properties of the functions above are described in the following lemma.

Lemma 2.1. Let s > 1 be a fixed number.
(i) We have

u1,s(x, y) ≤ 1, (2.1)

u2,s(x, y) ≤
2

s+ 1
x− 2s

s+ 1
|y|+ 1, (2.2)

u∞,s(x, y) ≤
s− 1

s+ 1
(|x|2 − y2) +

2

s+ 1
y − 2s

s+ 1
|x|+ 1. (2.3)

(ii) Suppose x, h ∈ H, y, y + k ≥ 0 and |h| ≤ |k|. Then

u1,s(x+ h, y + k) ≤ u1,s(x, y) + φ1,s(x, y) · h+ ψ1,s(x, y)k, (2.4)

u∞,s(x+ h, y + k) ≤ u∞,s(x, y) + φ∞,s(x, y) · h+ ψ∞,s(x, y)k. (2.5)

Suppose x, x+ h ≥ 0, y, k ∈ H and |h| ≤ |k|. Then

u2,s(x+ h, y + k) ≤ u2,s(x, y) + φ2,s(x, y)h+ ψ2,s(x, y) · k. (2.6)

Proof. (i) It is easy to see that the inequalities (2.1), (2.2), (2.3) are equivalent and
therefore it suffices to prove the first one. To this end, note that for (|x|, y) ∈ D
the partial derivative of u1,s with respect to y equals

2(s− 1)

s+ 1

( s

s− 1
− y

)
≥ 0

and the inequality follows by the continuity of u1,s.
(ii) This is done by a well-known procedure (cf. [2], [3], [4]). Consider a

function
G1,s(t) = u1,s(x+ th, y + tk),
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defined on {t : y + tk ≥ 0}. The inequality (2.4) is equivalent to

G1,s(1) ≤ G1,s(0) +G′
1,s(0)

(with (G1,s)
′
−(0), (G1,s)

′
+(0) or 0 instead of G′

1,s(0) if the latter does not exist)
and will follow once we have established the concavity of G1,s. Consider the sets

E1,s = {t : (|x+ th|, y + tk) /∈ D}, F1,s = {t : (|x+ th|, y + tk) ∈ D}. (2.7)

On E1,s we have G1,s ≡ 1, which is clearly concave, while on F1,s, G1,s(t)
equals

s− 1

s+ 1
(|h|2−k2)t2 +

s− 1

s+ 1
[|x|2 +2tx ·h−y2−2tyk]− 2

s+ 1
|x+ th|+ 2s

s+ 1
(y+ tk)

and concavity follows from |h|2 ≤ k2 and concavity of the function t 7→ −|x+ th|.
It remains to note that E1,s, F1,s are intervals and, by (2.1), G(t) ≤ 1 on F1,s.

For the functions u2,s, u∞,s the argument is essentially the same; we introduce
the functions G2,s and G∞,s in the similar manner and reduce the proof of (2.5),
(2.6) to the concavity of these functions. The concavity is clear on the sets
E2,s, F2,s and E∞,s, F∞,s, defined as in (2.7), and the inequality for one-sided
derivatives follows from (2.2), (2.3). The sets E2,s, E∞,s may happen to be a sum
of two intervals, but this does not change the argument.

Now let us introduce the special functions corresponding to the moment in-
equalites. For p ∈ (0, 1), x ∈ H, y ≥ 0, let

Up,s(x, y) =
p(1− p)(2− p)(s+ 1)

2

∫ ∞

0

tp−1u1,s(x/t, y/t)dt, (2.8)

while for p ∈ (1, 2), x ≥ 0, y ∈ H,

Up,s(x, y) =
p(p− 1)(2− p)(s+ 1)

2

∫ ∞

0

tp−1u2,s(x/t, y/t)dt. (2.9)

Finally, for p ∈ (2,∞), x ∈ H, y ≥ 0, set

Up,s(x, y) =
p(p− 1)(p− 2)(s+ 1)

2

∫ ∞

0

tp−1u∞,s(x/t, y/t)dt. (2.10)

The formulas for Up,s are as follows. Suppose p ∈ (0, 1). If y ≤ s|x|, then

Up,s(x, y) =

(
s− 1

s+ 1

)p−1

(|x|+ y)p−1
[
y(s− 1 + p) + |x|(s− sp− 1)

]
,

while for y ≥ s|x|,

Up,s(x, y) = (y − |x|)p−1
[
y(s+ 1− p) + |x|(sp− s− 1)

]
.
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In case p ∈ (1, 2), if |y| ≤ sx, then

Up,s(x, y) =

(
s− 1

s+ 1

)p−1

(x+ |y|)p−1
[
|y|(−s− p+ 1) + x(sp− s+ 1)

]
,

while for |y| ≥ sx,

Up,s(x, y) = (|y| − x)p−1
[
|y|(p− s− 1) + x(s− sp+ 1)

]
.

Finally, let p ∈ (2,∞). Then, if sy ≤ |x|,

Up,s(x, y) = (|x| − y)p−1
[
y(sp− s− 1) + |x|(s− p+ 1)

]
and for sy ≥ |x|,

Up,s(x, y) =

(
s− 1

s+ 1

)p−1

(|x|+ y)p−1
[
y(s− ps− 1) + |x|(s+ p− 1)

]
.

The following functions will also play a role. If p ∈ (0, 1) and s > 1, let Vp,s :
H× R+ → R be given by

Vp,s(x, y) = (s+ 1− p)
[
yp −Kp,s|x|p

]
and for p ∈ (1, 2), s > 1, define Vp,s : R+ ×H → R by

Vp,s(x, y) = (s+ 1− p)
[
− |y|p +Kp,sx

p
]
.

Here

Kp,s =

(
s− 1

2

)p−1

· p

s+ 1− p
.

We will need the following fact about the functions defined above.

Lemma 2.2. Suppose p ∈ (0, 2), p 6= 1 and s > 1. Then

Up,s ≥ Vp,s. (2.11)

Proof. It suffices to prove the inequality in the special case H = R. Consider the
functions F, G : (0, 1) → R given by

F (t) = Vp,s(t, 1− t), G(t) = Up,s(t, 1− t).

The function F is convex on (0, t0) and concave on (t0, 1) for some t0 ∈ (0, 1),
while G is concave on (0, (s+ 1)−1) and linear on ((s+ 1)−1, 1). Moreover,

F (0) = G(0), F ′(0) < G′(0), F
( 2

s+ 1

)
=G

( 2

s+ 1

)
and F ′

( 2

s+ 1

)
=G′

( 2

s+ 1

)
.

Thus F ≤ G, which yields (2.11) by homogeneity.

Remark 2.1. If x = 0 or 2|y| = (s − 1)|x|, then we have Up,s(x, y) = Vp,s(x, y).
This is a consequence of F (0) = G(0) and F (2/(s+ 1)) = G(2/(s+ 1)).
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3 The proofs of the theorems

The inequalities (2.4), (2.5), (2.6) yield the following estimates.

Lemma 3.1. Let s > 1 and suppose f , g are martingales satisfying

|dfn| ≤ |dgn| n = 1, 2, . . .

with probability 1.
(i) Suppose f is H-valued and g is nonnegative. Then

Eu1,s(fn, gn) ≤ Eu1,s(f0, g0), n = 0, 1, 2, . . . . (3.1)

(ii) Suppose f is H-valued and g is nonnegative. Furthermore, assume that
both f and g are square integrable. Then

Eu∞,s(fn, gn) ≤ Eu∞,s(f0, g0), n = 0, 1, 2, . . . . (3.2)

(iii) Suppose f is nonnegative and g is H-valued. Then

Eu2,s(fn, gn) ≤ Eu2,s(f0, g0), n = 0, 1, 2, . . . . (3.3)

Proof. We will only prove (i), the remaining statements can be established in the
same manner. It suffices to show that for any 1 ≤ k ≤ n,

Eu1,s(fk, gk) ≤ Eu1,s(fk−1, gk−1). (3.4)

Since |dfk| ≤ |dgk| almost surely, the inequality (2.4) gives

u1,s(fk, gk) ≤ u1,s(fk−1, gk−1) + φ1,s(fk−1, gk−1) · dfk + ψ1,s(fk−1, gk−1)dgk.

Both sides of the inequality above are integrable; taking the conditional expecta-
tion with respect to Fk−1 gives

E[u1,s(fk, gk)|Fk−1] ≤ u1,s(fk−1, gk−1).

This implies (3.4) and completes the proof.

Proof. of the inequality (1.2). If β ≥ 1, then Cp,β = 0 and the inequality is trivial.
Assume that β < 1. The identity (2.8) together with Lemmas 2.2 and 3.1 yield

(s+ 1− p)E[gp
n −Kp,s|fn|p] = EVp,s(fn, gn) ≤ EUp,s(fn, gn) ≤ EUp,s(f0, g0) (3.5)

for any n. Now set

s =
1 + β − βp

1 + β − p
> 1.

Then EUp,s(f0, g0) ≤ 0, which follows from the fact that for x ∈ H, y ∈ R+

satisfying β|x| ≥ y we have

Up,s(x, y) ≤ Up,s(x, β|x|) = c[β(s− 1 + p) + s− sp− 1] = 0,

for a certain nonnegative c. To complete the proof, note that Kp,s = C−p
p,β.

7



Proof. of the inequality (1.3). It suffices to prove the inequality for p ∈ (1, 2),
as for p ≤ 1 it is trivial and for p ≥ 2 it holds for general f , g. We proceed as
previously. The identity (2.9), Lemmas 2.2 and 3.1 give

(s+1−p)E[−|gn|p+Kp,sf
p
n] = EVp,s(fn, gn) ≤ EUp,s(fn, gn) ≤ EUp,s(f0, g0) (3.6)

for any n. Now the choice s = p implies EUp,s(f0, g0) ≤ 0, since Up,p(x, y) ≤ 0 if
x ≤ |y|. All that is left is to observe that C−p

p = Kp,p.

Remark 3.1. For p > 2, the function Up,p can be used to establish the inequality
(1.1) forH-valued f differentially subordinate to g ≥ 0 (with the optimal constant
α′p). In [4], Burkholder uses a slightly different function

U ′
p(x, y) =

{
Up,p(x, y) if (p− 1)y ≤ 2|x|,
p
(

p−1
2

)p−1|y|p − |x|p if (p− 1)y ≥ 2|x|

and proves EU ′
p(fn, gn) ≤ EU ′

p(f0, g0) ≤ 0 by showing an inequality analogous to
(2.4)–(2.6). Our approach (identity (2.10)) enables to avoid technical computa-
tions.

Remark 3.2. The inequalities (3.5), (3.6) can be used to obtain variations of
(1.2), (1.3), involving the initial variables f0, g0. For example, assume that f
is H-valued and differentially subordinate to a nonnegative g with |f0| = g0. If
0 < p < 1, then (3.5) yields

Egp
n ≤

(s− 1)p−1

s+ 1− p

[ p

2p−1
E|fn|p +

2p−1(s− 1)(2− p)

(s+ 1)p−1
E|f0|p

]
for any s > 1. Take s→∞ to obtain

||gn||p ≤ 2
(
1− p

2

)1/p

||f0||p.

Sharpness. This will be shown in a few steps. Assume H = R.
Step 1. Let us consider the following process, a modification of the one used

by Burkholder in [4]. Let s > 1, δ ∈ (0, 1) be fixed and set

xn =
(
1 +

2δ

s− 1

)n

, pn =
[ (1− δ)(s− 1)

(1 + δ)(s− 1 + 2δ)

]n

for n = 0, 1, 2, . . .. Consider a Markov chain H = H(p, s, δ) with values in R2
+,

starting from (1, s), such that for n = 0, 1, 2 . . .,

P(H2n+1 = (xn(1− δ), xn(s+ δ))|H2n = (xn, sxn)) =
1

1 + δ
,

P(H2n+1 = (2xn, (s− 1)xn)|H2n = (xn, sxn)) =
δ

1 + δ
,
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P(H2n+2 = (0, xn(s− 1 + 2δ))|H2n+1 = (xn(1− δ), xn(s+ δ))) =
δ(s+ 1)

s− 1 + 2δ
,

P(H2n+2 = (xn+1, sxn+1)|H2n+1 = (xn(1− δ), xn(s+ δ))) =
(1− δ)(s− 1)

s− 1 + 2δ

with the further condition that all the states lying on the lines 2y = (s− 1)x and
x = 0 are absorbing. Then the processes F = F (p, s, δ), G = G(p, s, δ), defined
by Hn = (Fn, Gn), are martingales such that for n ≥ 1, dFn = ±dGn.

Step 2. Now we will show that the sequence (EUp,s(Hn))n≥0 is almost constant.
For any nonnegative integer n, let An = {Hn+1 6= Hn}. Note that

A2n = {H2n = (xn, sxn)}, A2n+1 = {H2n+1 = (xn(1− δ), xn(s+ δ))}.

Lemma 3.2. Let n be a nonnegative integer.
(i) We have P(A2n) = pn.
(ii) The following equalities hold true.

EUp,s(H2n+2) = EUp,s(H2n+1), (3.7)

EUp,s(H2n+1) = EUp,s(H2n)− xp
nR(δ) · P(A2n), (3.8)

for some function R = Rp,s : R+ → R+ satisfying Rp,s(δ)/δ → 0 as δ → 0.

Proof. (i) We have P (A0) = 1 = p0 and P(A2k|A2k−2) = p1 for any k ≥ 1.
(ii) On the set A2n+1, the variable H2n+2 takes values

(0, xn(s−1+2δ)) and (xn+1, sxn+1) =
(
xn(1+

2δ

s− 1
), xn(s−1+2δ)+xn(1+

2δ

s− 1
)
)
.

But the function t 7→ Up,s(t, xn(s− 1+2δ)+ t) is linear on [0, xn(1+2δ/(s− 1))];
this proves the first estimate. For the second one, the argument is similar: on
A2n,

H2n+1 ∈ {(2xn, (s− 1)xn), (xn(1− δ), xn(s+ δ))}, H2n = (xn, sxn)

and the function t 7→ Up,s(xn + t, sxn− t) has a continuous derivative on (−δ, xn)
and is linear on [0, xn]. It remains to use the fact that Up,s is homogeneous of
order p to get the special form of the remainder.

Step 3. Let us study the following estimate.

EVp,s(H2n) + εEF p
2n ≥ EUp,s(H0). (3.9)

Lemma 3.3. Let ε > 0 be fixed.
(i) Suppose p ∈ (0, 1) and s > 1. Then there exists δ > 0 such that the

inequality (3.9) holds for large n.
(ii) Suppose p ∈ (1, 2). Then there exist s < p and δ > 0 such that the

inequality (3.9) holds for large n.
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Proof. Outside A2n, the variableH2n takes values on one of the lines 2y = (s−1)x,
x = 0. Since Up,s, Vp,s coincide on these lines, we have, by Lemma 3.2,

EVp,s(H2n) = EUp,s(H2n) + P(A2n)[Vp,s(xn, sxn)− Up,s(xn, sxn)]

= EUp,s(H0)−R(δ)
n−1∑
k=0

xp
kpk − c · xp

npn, (3.10)

where c = −Vp,s(1, s) + Up,s(1, s) ≥ 0.
On the other hand, we have

EF p
2n ≥

n−1∑
k=0

(2xn)p · pnδ

1 + δ
≥ 2−1δ

n−1∑
k=0

xp
npn = 2−1δ

n−1∑
k=0

rk, (3.11)

where

r = r(δ) = xp
1p1 =

(
1 +

2δ

s− 1

)p−1

· 1− δ

1 + δ
. (3.12)

(i) Fix ε > 0, p ∈ (0, 1) and s > 1. By (3.11), there exists δ such that

R(δ)
n−1∑
k=0

xp
kpk ≤

2R(δ)

δ
EF p

2n ≤
ε

2
EF p

2n, (3.13)

for any n. Furthermore, since p < 1, we have r(δ) < 1; hence cxp
npn = crn ≤

εδ/4 < 2−1εEF p
2n for large n. Combining this estimate with (3.10) and (3.13)

yields (3.9).
(ii) Fix ε > 0 and p ∈ (1, 2). We have r′(0) = 2(p− s)/(s− 1), so there exists

s ∈ (1, p) and δ(ε) such that if δ ∈ (0, δ(ε)), then 1 < r(δ) < 1 + εδ/8c. Then, by
(3.11),

cxp
npn = crn ≤ c

[2(r − 1)

δ
EF p

2n + 1
]
≤ ε

4
EF p

2n + 1 <
ε

2
EF p

2n,

if n is large enough; the latter inequality follows from EF p
2n →∞ as n→∞. We

conclude the proof by the observation that (3.13) holds for sufficiently small δ,
and applying (3.10).

Step 4: the sharpness of (1.2). Let β ∈ (p/2, 1), δ > 0, ε > 0 and set

s =
1 + β − βp

1 + β − p
> 1, a =

2β − s+ 1

1 + β
< 1.

The inequality p < 2β implies a > 0. Consider martingales F = (Fn)n≥−1,
G = (Gn)n≥−1 satisfying

(I) F−1 = 2− a, G−1 = a+ s− 1 almost surely,
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(II) P((F0, G0) = (1, s)) = a = 1− P((F0, G0) = (2, s− 1)
)
,

(III) on {F0 = 2}, the process (Fn, Gn) is constant,

(IV) on {F0 = 1}, the conditional distribution of the process (Fn, Gn) is the
distribution of H(p, sδ) constructed in the Step 1.

By the choice of a, we have βF−1 = G−1 and EUp,s(F0, G0) = 0. Clearly,

EVp,s(F2n, G2n) = EVp,s(F2n, G2n)χ{F0=1} + EVp,s(F2n, G2n)χ{F0=2}.

On the set {F0 = 1} we can use Lemma 3.3: a proper choice of δ and n implies

EVp,s(F2n, G2n)χ{F0=1} + εEF p
2nχ{F0=1} ≥ EUp,s(F0, G0)χ{F0=1}.

On the set {F0 = 2} the pair (F2n, G2n) = (F0, G0) lies on the line 2y = (s− 1)x,
which implies Vp,s(F2n, G2n) = Up,s(F0, G0). Combining these two facts we get

EVp,s(F2n, G2n) + εEF p
2n ≥ EUp,s(F0, G0), (3.14)

so
EGp

2n ≥
(
C−p

p,β −
ε

s+ 1− p

)
EF p

2n > (C−p
p,β − ε)EF p

2n.

This proves that (1.2) is sharp. For the case β ≥ 1, observe that Cp,β is nonin-
creasing as a function of β and Cp,β → 0 as β ↑ 1.

Step 5: the sharpness of (1.3). The cases p ≤ 1, p = 2 are trivial; for p ≥ 2,
we use the example on page 669 of [1]. The only case left is p ∈ (1, 2).

For ε > 0, let s ∈ (1, p) and δ > 0 be the numbers guaranteed by Lemma 3.3.
Consider martingales F, G satisfying (I) – (IV) with a = (3− s)/2. Using similar
arguments as above, (3.9) leads to the inequality (3.14), valid for large n. Since
EF p

2n → ∞, we have EUp,s(F0, G0) ≥ −εEF p
2n for large n, which combined with

(3.14) implies

EGp
2n ≤ (Kp,s +

2ε

s+ p− 1
)EF p

2n <
(
C−p

p + 2ε
)
EF p

2n.

Therefore Cp is the best possible in (1.3).

4 Sharp inequalities for stochastic integrals

Suppose X = (Xt)t≥0 is a martingale on a complete probability space (Ω,F ,P),
which is filtered by a nondecreasing right-continuous family (Ft)t≥0 of sub-σ-fields
of F . In addition, assume that F0 contains all the events of probability 0. Let Y
be the Itô integral of H with respect to X, where H is a predictable process:

Yt = H0X0 +

∫
(0,t]

HsdXs.

The continuous-time versions of Theorems 1.1, 1.2 are stated below.
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Theorem 4.1. Suppose p ∈ (0, 1), X is nonnegative and for any t > 0, the
variable Ht takes values in a closed unit ball of H. If β > 0 satisfies P(β|H0| ≥
1) = 1, then for any t > 0,

||Yt||p ≥ Cp,β||Xt||p (4.1)

and the inequality is sharp if p < 2β.

Theorem 4.2. Suppose p ∈ (0,∞), X is nonnegative and H takes values outside
the open unit ball of H. Then for any t > 0,

||Xt||p ≤ Cp||Yt||p (4.2)

and the inequality is sharp.

The proof of the inequalities (4.1), (4.2) follow from (1.2), (1.3) by discretizing
argument; see [3], where an analogous submartingale inequality follows from the
corresponding discrete-time version. The sharpness follows from the fact that the
constants Cp,β, Cp are the best possible in (1.2), (1.3) in the case when f is a
transform of g.

5 Inequalities for harmonic functions

In this section we study harmonic extensions of inequalities (1.2), (1.3). Let N
be a fixed positive integer and D be an open connected subset of RN . Fix ξ ∈ D
and consider two harmonic functions u, v on D, taking values in certain Hilbert
spaces H, K. Suppose u is differentially subordinate to v, that is

|∇u| ≤ |∇v| on D.

Let D0 be a bounded subdomain of D with ξ ∈ D0 ⊂ D0∪∂D0 ⊂ D. Let µξ
D0

stand for the harmonic measure on ∂D0 with respect to ξ and

||u||D0,p =
[ ∫

∂D0

|u(z)|pµξ
D0

(dz)
]1/p

, 0 < p <∞.

The norm inequalities for smooth functions can be stated as follows.

Theorem 5.1. Let u, v, D0 be as above.
(i) Assume that p ∈ (0, 1) and v is nonnegative. Then

||u||D0,p ≥ Cp,β||v||D0,p, (5.1)

where β = v(ξ)/|u(ξ)|.
(ii) Assume that p ∈ (0,∞), u is nonnegative and u(ξ) ≤ |v(ξ)|. Then

||u||D0,p ≤ Cp||v||D0,p. (5.2)
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Proof. We will prove only the first part, the second one can be established simi-
larly. As Cp,β = 0 for β ≥ 1, we may assume that β < 1. Let

s =
1 + β − βp

1 + β − p
> 1.

It is easy to check that the function u1,s(u, v) is superharmonic. Therefore∫
D0

u1,s(u(z), v(z))µ
ξ
D0

(dz) ≤ u1,s(u(ξ), v(ξ)).

Applying the identity (2.8) we obtain∫
D0

Up,s(u(z), v(z))µ
ξ
D0

(dz) ≤ Up,s(u(ξ), v(ξ)) = 0,

since β|u(ξ)| = v(ξ). It suffices to use the inequality (2.11) to get (5.1).
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