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Abstract. Let f = (fn) be a submartingale such that ||f ||∞ ≤ 1 and g = (gn)

be a martingale, adapted to the same filtration, satisfying

|dgn| ≤ |dfn|, n = 0, 1, 2, . . . .

The paper contains the proof of the sharp inequality

sup
n

EΦ(|gn|) ≤ Φ(1)

for a class of convex increasing functions Φ on [0,∞), satisfying certain growth

condition. As an application, we show a continuous-time version for stochastic

integrals and a related estimate for smooth functions on Euclidean domain.

1. Introduction

Let (Ω,F , P) be a probability space filtered by (Fn)n≥0, a nondecreasing se-

quence of sub-σ-algebras of F . Let f = (fn)n≥0, g = (gn)n≥0 denote adapted

real-valued integrable processes, such that f is a submartingale and g is differen-

tially subordinate to f : we have, almost surely,

(1.1) |dgn| ≤ |dfn|, n = 0, 1, 2, . . . .

Here df = (dfn)n≥0 and dg = (dgn)n≥0 are the difference sequences of f and g,

defined by

df0 = f0, dfn = fn − fn−1, dg0 = g0, dgn = gn − gn−1, n = 1, 2, . . . .
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Throughout the paper, Φ is an increasing convex function on [0,∞). The purpose

of the paper is to study sharp estimates for supn EΦ(|gn|) under some additional

assumptions on boundedness of f .

Let us start with discussing some related inequalities from the literature. In the

three results below, Φ is assumed to satisfy the following conditions: the integral∫∞
0

Φ(t)e−tdt is finite and Φ is twice differentiable on (0,∞) with a strictly convex

first derivative satisfying Φ′(0+) = 0 (for example, one can take Φ(t) = tp, p > 2,

or Φ(t) = eat − 1 − at for a ∈ (0, 1)). Burkholder [2] proved that if f and g are

martingales satisfying (1.1) and ||f ||∞ ≤ 1, then we have a sharp bound

sup
n

EΦ(|gn|) <
1
2

∫ ∞

0

Φ(t)e−tdt.

Then, in [4], Burkholder extended this inequality to the submartingale case. As-

sume f is a nonnegative submartingale bounded from above by 1 and g is differ-

entially subordinate to f and conditionally differentially subordinate to f , that is,

almost surely,

|E(dgn+1|Fn)| ≤ E(dfn+1|Fn), n = 0, 1, 2, . . . .

Then we have a sharp estimate

sup
n

EΦ
( |gn|

2
)

<
2
3

∫ ∞

0

Φ(t)e−tdt.

A further generalization was given by Kim and Kim in [5]. Let α be a number

belonging to the interval [0, 1]. Suppose f is a nonnegative submartingale bounded

from above by 1 and g is differentially subordinate to f and α-conditionally differ-

entially subordinate to f , which means

|E(dgn+1|Fn)| ≤ αE(dfn+1|Fn), n = 0, 1, 2, . . .

with probability 1. Then

(1.2) EΦ
( |gn|
1 + α

)
<

1 + α

2 + α

∫ ∞

0

Φ(t)e−tdt.
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In the paper we prove a related result for other class of functions Φ. From now on,

we assume that Φ is three times differentiable on (1,∞) and twice differentiable on

(0,∞), with

(1.3) Φ′′(t)t ≤ Φ′(t) for t ∈ (0, 1] and Φ′′′(t) ≤ 0 for t > 1.

Note that for any Φ as above, Φ′ is concave on (1,∞) and hence this new class of

functions is disjoint from the one considered previously. For example, one can take

Φ(t) = tp, p ∈ [1, 2].

The main result of the paper can be stated as follows.

Theorem 1.1. Assume f is a nonnegative submartingale satisfying ||f ||∞ ≤ 1 and

g is a martingale which is differentially subordinate to f . Then for any Φ satisfying

(1.3) we have

(1.4) sup
n

EΦ(|gn|) ≤ Φ(1).

The inequality is sharp. It is already sharp if f is assumed to be a nonnegative

martingale bounded by 1.

Suppose v = (vn) is a real predictable sequence, that is, v0 is measurable with

respect to F0 and for any n ≥ 1, vn is measurable with respect to Fn−1. The process

g is a transform of f by v, if for any nonnegative integer n we have dgn = vndfn.

The theorem above implies the following estimate for martingale transforms.

Corollary 1.2. Let f be a nonnegative martingale such that ||f ||∞ ≤ 1 and let g

be a transform of f by a predictable sequence v with ||v||∞ ≤ 1. Then for any Φ

satisfying (1.3) we have

(1.5) sup
n

EΦ(|gn|) ≤ Φ(1)

and the inequality is sharp.
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There is a continuous-time version of the corollary above. Let (Ω,F , P) be a

complete probability space, filtered by a nondecreasing family (Ft)t≥0 of sub-σ-

algebras of F , with F0 containing all the events of probability 0. Assume X =

(Xt)t≥0 is an adapted right-continuous martingale with left limits, satisfying P(0 ≤

Xt ≤ 1) = 1 for all t and let H = (Ht)t≥0 be a predictable process taking values in

the interval [−1, 1]. Let Y = (Yt)t≥0 be an Itô stochastic integral of H with respect

to X:

Yt = H0X0 +
∫

(0,t]

HsdXs.

Theorem 1.3. For X, Y as above and Φ satisfying (1.3), we have

(1.6) sup
t

EΦ(|Yt|) ≤ Φ(1)

and the bound on the right is the best possible.

Theorems 1.1 and 1.3 are accompanied by a version for smooth functions. Let

n be a fixed positive integer and D be an open connected subset of Rn. Fix ξ ∈ D

and consider a twice continuously differentiable subharmonic function v : D → [0, 1]

and a harmonic function w : D → R such that

(1.7) |w(ξ)| ≤ v(ξ)

and

(1.8) |∇w| ≤ |∇v|.

These two inequalities are the analogue of differential subordination in this setting.

Let D0 be a subset of D such that D0 ⊂ D and ξ ∈ D0. Let µξ
D0

be a harmonic

measure on ∂D0 with respect to ξ.

Theorem 1.4. For v, w as above and Φ satisfying (1.3) we have

(1.9) sup
∫

∂D0

EΦ(|w(x)|)dµξ
D0

(x) ≤ Φ(1),
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where the supremum is taken over all the sets D0 as above. The bound on the right

is the best possible.

For the proof of the inequality (1.4), we use the method invented by Burkholder.

It reduces the problem of showing a (sub-)martingale inequality to a problem of

constructing a certain special function (see [2] and [3] for details). Such a function

is presented in the next section and we study its properties there. The proof of

Theorem 1.1 is postponed to the last section, which also contains the proofs of the

remaining results of this paper.

2. The special function

Let S denote the strip [0, 1]× R and let us consider the following subsets of S,

D1 = {(x, y) ∈ S : |y| ≥ x}, D2 = {(x, y) ∈ S : |y| < x}.

Define the function u : S → R by the formulas

u(x, y) = (1− x)ex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

+ xΦ(−x + |y|+ 1)

if (x, y) ∈ D1 and

u(x, y) = Φ(1)(1− x) + (1− x)
∫ x−|y|

0

Φ(1− s)
(1− s)2

ds + |y|Φ(−x + |y|+ 1)
−x + |y|+ 1

if (x, y) ∈ D2.

Let us study the properties of u. This is done in the two lemmas below.

Lemma 2.1. (i) The function u and its first and second order partial derivatives

of u are continuous on (0, 1) × R. Furthermore, ux and uy can be extended to

continuous and locally bounded functions on the whole strip S (these extensions are

still denoted by ux, uy, respectively).

(ii) We have

(2.1) ux ≤ 0.
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(iii) We have

(2.2) Φ(|y|) ≤ u(x, y).

Furthermore, if |y| ≤ x, then

(2.3) u(x, y) ≤ Φ(1).

Proof. Let us start with computing the partial derivatives. We have

ux(x, y) = −xex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

− xΦ′(−x + |y|+ 1) + xΦ(−x + |y|+ 1)

if (x, y) belongs to Do
1, the interior of D1, and

ux(x, y) = −Φ(1)−
∫ x−|y|

0

Φ(1− s)
(1− s)2

ds +
Φ(−x + |y|+ 1)
−x + |y|+ 1

− |y|Φ
′(−x + |y|+ 1)
−x + |y|+ 1

if (x, y) ∈ Do
2. Furthermore,

uy(x, y) = sgn y ·
{
− (1− x)ex−|y|

[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

+ (1− x)Φ(−x + |y|+ 1) + xΦ′(−x + |y|+ 1)
}

if (x, y) ∈ Do
1 and

uy(x, y) = y
Φ′(−x + |y|+ 1)
−x + |y|+ 1

if (x, y) ∈ Do
2.

For the second order partial derivatives, we have

uxx(x, y) = −(1 + x)ex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

+ (1 + x)Φ(−x + |y|+ 1)− (1 + x)Φ′(−x + |y|+ 1) + xΦ′′(−x + |y|+ 1)

if (x, y) ∈ Do
1 and

uxx(x, y) = (x− 2|y| − 1)
Φ′(−x + |y|+ 1)
(−x + |y|+ 1)2

+ |y|Φ
′′(−x + |y|+ 1)
−x + |y|+ 1
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if (x, y) ∈ Do
2. Moreover,

uxy(x, y) = x sgn y ·
{

ex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]
− Φ(−x + |y|+ 1)

− Φ′′(−x + |y|+ 1) + Φ′(−x + |y|+ 1)
}

if (x, y) ∈ Do
1 and

uxy(x, y) = −y
Φ′′(−x + |y|+ 1)(−x + |y|+ 1)− Φ′(−x + |y|+ 1)

(−x + |y|+ 1)2

if (x, y) ∈ Do
2. Finally,

uyy(x, y) = (1− x)ex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

− (1− x)Φ(−x + |y|+ 1) + (1− x)Φ′(−x + |y|+ 1) + xΦ′′(−x + |y|+ 1)

if (x, y) ∈ Do
1 and

uyy(x, y) = (1− x)
Φ′(−x + |y|+ 1)
(−x + |y|+ 1)2

+ |y|Φ
′′(−x + |y|+ 1)
−x + |y|+ 1

if (x, y) ∈ Do
2.

Now we turn to the properties (i)–(iii).

(i) Straightforward.

(ii) If (x, y) belongs to D1, then the inequality ux ≤ 0, after substitution t =

−x + |y|+ 1 ≥ 1, is equivalent to∫ t

1

Φ(s)esds + Φ(1)e− [Φ(t)− Φ′(t)]et ≥ 0.

In fact we will prove a stronger statement, namely, for t ≥ 1,

(2.4)
∫ t

1

Φ(s)esds + Φ(1)e− [Φ(t)− Φ′(t) + Φ′′(t)]et ≥ 0.

For t = 1 the inequality takes form Φ′(1) ≥ Φ′′(1), which follows by (1.3). It suffices

to note that the left hand side, as a function of t, has a derivative −etΦ′′′(t), which

is nonnegative by (1.3). Thus (2.1) is established for (x, y) ∈ D1. For (x, y) ∈ D2,
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we again use the substitution t = −x+ |y|+1 ∈ (|y|, 1), which transforms (2.1) into

−Φ(1)−
∫ 1

t

Φ(s)
s2

ds +
Φ(s)

s
− |y|

s
Φ′(s) ≤ 0.

For t = 1 the inequality above reads −|y|Φ′(1) ≤ 0, a true statement. Furthermore,

the left hand side, as a function of t, has a derivative

t + |y|
t2

[
Φ′(t)− t

|y|
t + |y|

Φ′′(t)
]
≥ t + |y|

t2

[
Φ′(t)− tΦ′′(t)

]
≥ 0,

the latter inequality being a consequence of (1.3). This completes the proof of (2.1).

(iii) By (2.1), we have u(x, y) ≥ u(1, y) = Φ(|y|), which is (2.2). To prove (2.3),

note that for |y| ≤ x, by (2.1), u(x, y) ≤ u(|y|, y) = Φ(1). �

Lemma 2.2. Let x, y, h, k be real numbers satisfying x, x+h ∈ [0, 1] and |k| ≤ |h|.

Then

(2.5) u(x + h, y + k) ≤ u(x, y) + ux(x, y)h + uy(x, y)k.

Proof. By continuity, we may assume x /∈ {0, 1}. Consider a function G = Gx,y,h,k

defined on the set {t : x + th ∈ [0, 1]} by formula G(t) = u(x + th, y + tk). The

inequality (2.5) is equivalent to G(1) ≤ G(0) + G′(0) and will follow once we have

proved that G is concave. Since G′′
x,y,h,k(t) = G′′

x+th,y+tk,h,k(0), it suffices to prove

G′′(0) ≤ 0.

Suppose (x, y) ∈ D1. We have G′′(0) = A + B, where

A = (k2 − h2)
{

ex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

− Φ(−x + |y|+ 1) + Φ′(−x + |y|+ 1)
}(2.6)

and

B = −x(h−k sgn y)2
{

ex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

− Φ(−x + |y|+ 1) + Φ′(−x + |y|+ 1)− Φ′′(−x + |y|+ 1)
}

.

(2.7)
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We will show that A and B are nonpositive. To this end, it suffices to show that

ex−|y|
[ ∫ −x+|y|

0

Φ(s + 1)esds + Φ(1)
]

− Φ(−x + |y|+ 1) + Φ′(−x + |y|+ 1)− Φ′′(−x + |y|+ 1) ≥ 0,

which is (2.4) after substitution t = −x + |y|+ 1 ≥ 1.

Suppose that (x, y) ∈ D2. We have G′′(0) = A + B, where

(2.8) A = (k2 − h2)
Φ′(−x + |y|+ 1)
−x + |y|+ 1

≤ 0

and

(2.9) B =
y(h− k sgn y)2

(−x + |y|+ 1)2
[Φ′′(−x + |y|+ 1)(−x + |y|+ 1)−Φ′(−x + |y|+ 1)] ≤ 0.

The latter inequality follows from (1.3) and −x + |y|+ 1 ∈ (0, 1).

The proof is complete. �

3. The proofs of the theorems

In this section we provide the proofs of the results announced in the introduction.

Proof of Theorem 1.1: Clearly, it suffices to show that for any nonnegative integer

n we have

(3.1) EΦ(|gn|) ≤ Φ(1).

Let k be any nonnegative integer. The inequality (2.5) and the differential subor-

dination imply that, almost surely,

u(fk+1, gk+1) ≤ u(fk, gk) + ux(fk, gk)dfk+1 + uy(fk, gk)dgk+1.

Furthermore, again by differential subordination, we have |dgl| ≤ 1, l = 0, 1, . . . , k

almost surely, and therefore P(|gk| ≤ k) = 1. Now applying Lemma 2.1 (i) yields
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the integrability of both sides of the above inequality. Taking the conditional ex-

pectation with respect to Fk, we obtain

E[u(fk+1, gk+1)|Fk] ≤ u(fk, gk) + ux(fk, gk)E(dfk+1|Fk) ≤ u(fk, gk),

due to (2.1) and the submartingale condition E(dfk+1|Fk) ≥ 0. Now take expec-

tation to get Eu(fk+1, gk+1) ≤ Eu(fk, gk). Combining this with (2.2), (2.3) and

|g0| ≤ f0 (which is due to differential subordination), we arrive at

EΦ(|gn|) ≤ Eu(fn, gn) ≤ Eu(f0, g0) ≤ Φ(1).

This completes the proof of (3.1) and, in consequence, also the proof of (1.4). To

prove the sharpness of this estimate, take constant processes

(3.2) fn = gn ≡ 1, n = 0, 1, 2, . . . . �

Proof of Corollary 1.2: If f is a martingale, then so is its transform g. Further-

more, the condition ||v||∞ ≤ 1 implies g is differentially subordinate to f . Thus

(1.5) follows from (1.4). To prove that the estimate is sharp, note that in the ex-

ample (3.2), g is a transform of f by a deterministic sequence v = (1, 1, . . .). �

Proof of Theorem 1.3: The inequality (1.6) follows from (1.5) by approximation

argument. See Section 16 of [2], where it is shown how similar inequalities for

stochastic integrals are implied by their discrete-time analogues and the result of

Bichteler [1]. To prove the sharpness, take Xt = Ht ≡ 1; then Yt ≡ 1 and we have

equality in (1.6). �

Proof of Theorem 1.4: Let W : D → R be given by W (x) = u(v(x), w(x)). We

will show that W is superharmonic, which will yield (1.9): by (1.7), (2.1), (2.2) and

(2.3), we will have, for any D0 as in the statement,∫
∂D0

Φ(w(x))dµξ
D0

(x) ≤
∫

∂D0

W (x)dµξ
D0

(x) ≤ W (ξ) ≤ Φ(1).
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We have ∆W = ∆1 + ∆2, where

∆1 = ux(v, w)∆v + uy(v, w)∆w

and

∆2 =
n∑

i=1

[
uxx(v, w)v2

i + 2uxy(v, w)viwi + uyy(v, w)w2
i

]
.

Note that ∆1 is nonpositive due to (2.1) and the conditions ∆v ≥ 0, ∆u = 0. To

complete the proof of (1.9) it is enough to show that ∆2 is also nonpositive. Fix

x ∈ D. For any 1 ≤ i ≤ n, the function Gi given by Gi = Gv(x),w(x),vi(x),wi(x) is

concave and we have

∆2(x) =
n∑

i=1

G′′
i (0) =

n∑
i=1

(Ai + Bi) ≤
n∑

i=1

Ai.

Here Ai = A(Gi), Bi = B(Gi) are given by (2.6), (2.7) or (2.8), (2.9), depending

on whether (v(x), w(x)) belongs to D1 or D2. Therefore ∆2 equals

(|∇w(x)|2 − |∇v(x)|2)
{

ev(x)−|w(x)|
[ ∫ −v(x)+|w(x)|

0

Φ(s + 1)esds + Φ(1)
]

− Φ(−v(x) + |w(x)|+ 1) + Φ′(−v(x) + |w(x)|+ 1)
}
≤ 0

if (v(x), w(x)) ∈ D1 and

(|∇w(x)|2 − |∇v(x)|2)Φ′(−v(x) + |w(x)|+ 1)
−v(x) + |w(x)|+ 1

≤ 0

if (v(x), w(x)) ∈ D2. Thus ∆W ≤ 0 and W is superharmonic. To see that that

inequality (1.9) is sharp, consider constant functions v = w ≡ 1. �

References

[1] K. Bichteler, Stochastic integration and Lp-theory of semimartingales, Ann. Probab. 9 (1980),

pp. 49–89.

[2] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms,

Ann. Probab. 12 (1984), pp. 647–702.



12 ADAM OSȨKOWSKI
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