WEAK TYPE INEQUALITIES FOR CONDITIONALLY SYMMETRIC MARTINGALES

ADAM OSȨKOWSKI

Abstract

Let f be a conditionally symmetric martingale and let $S(f)$ be its square function. The paper contains the proof of the sharp estimate $$
\|f\|_{p, \infty} \leq C_{p}\|S(f)\|_{p}, \quad 1 \leq p \leq 2
$$ where $$
C_{p}^{p}=\frac{2^{1-p / 2} \pi^{p-3 / 2} \Gamma((p+1) / 2)}{\Gamma(p+1)} \frac{1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots}{1-\frac{1}{3^{p+1}}+\frac{1}{5^{p+1}}-\frac{1}{7^{p+1}}+\ldots}
$$

In addition, it is shown that the constant C_{p} is the best possible even for the class of dyadic martingales.

1. Introduction

Square function inequalities appear in many areas of mathematics, for example in harmonic analysis, potential theory and both classical and noncommutative probability, where they play an important role: see e.g. [4], [6], [13], [14], It is therefore of interest to establish sharp versions of such estimates. The primary objective of this paper is to determine the best constants in some weak-type estimates for the martingale square function under the assumption of conditional symmetry.

We start with introducing the background and notation. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by $\left(\mathcal{F}_{n}\right)_{n \geq 0}$, a nondecreasing family of sub- σ-fields of \mathcal{F}. Let $f=\left(f_{n}\right)_{n \geq 0}$ be an adapted martingale taking values in a separable Hilbert space \mathcal{H} with scalar product $\langle\cdot, \cdot\rangle$ and norm $|\cdot|$. Then $d f=\left(d f_{n}\right)_{n \geq 0}$, the difference sequence of f, is given by $d f_{0}=f_{0}$ and $d f_{n}=f_{n}-f_{n-1}$. We define the square function of f by

$$
S(f)=\left(\sum_{k=0}^{\infty}\left|d f_{k}\right|^{2}\right)^{1 / 2}
$$

We will also use the notation $S_{n}(f)=\left(\sum_{k=0}^{n}\left|d f_{k}\right|^{2}\right)^{1 / 2}$ for $n=0,1,2, \ldots$ and write $\|f\|_{p}=\sup _{n}\left\|f_{n}\right\|_{p},\|f\|_{p, \infty}=\sup _{n} \sup _{\lambda>0} \lambda\left(\mathbb{P}\left(\left|f_{n}\right| \geq \lambda\right)\right)^{1 / p}$ for the strong and weak p-th moment of f.

A martingale f is conditionally symmetric, if for any $n \geq 1$ the conditional distributions of $d f_{n}$ and $-d f_{n}$ given \mathcal{F}_{n-1} coincide. For example, this is the case if f is a dyadic martingale. To recall what it means, let $\left(h_{n}\right)_{n \geq 0}$ be the system of Haar functions on $[0,1]$. Then f is dyadic if for some $a_{0}, a_{1}, a_{2}, \ldots \in \mathcal{H}$ we have $f_{n}=\sum_{k=0}^{n} a_{k} h_{k}$ for $n \geq 0$.

The problem of comparing the sizes of f and $S(f)$ goes back to the works of Khintchine [7], Littlewood [8], Marcinkiewicz [9], Marcinkiewicz and Zygmund [10]

[^0]and Paley [12] (the concept of a martingale was not used there; the results concerned the partial sums of Rademacher and Haar series). Consider the inequality
\[

$$
\begin{equation*}
a_{p}\|S(f)\|_{p} \leq\|f\|_{p} \leq A_{p}\|S(f)\|_{p} \tag{1.1}
\end{equation*}
$$

\]

to be valid for all conditionally symmetric martingales f. As shown by Burkholder in [3], for any $1<p<\infty$ there are finite universal a_{p} and A_{p} such that the double inequality above holds. It follows from the results of Burkholder and Gundy [5] that the right inequality above holds also for $0<p \leq 1$ with some absolute A_{p}. What about the optimal values of a_{p} and A_{p} ? Let ν_{p} be the smallest positive zero of the confluent hypergeometric function and let μ_{p} be the largest positive zero of the parabolic cylinder function of parameter p. Wang [15] showed that $a_{p}=\nu_{p}$ for $p \geq 2, A_{p}=\nu_{p}$ for $0<p \leq 2$ and $A_{p}=\mu_{p}$ for $p \geq 3$ are the best choices, even if we restrict ourselves in (1.1) to dyadic martingales. For the remaining values of parameter p, the optimal constants are not known. When $p=1$, the left inequality in (1.1) does not hold with any universal $a_{1}<\infty$. However, as shown by Bollobás [2] and the author [11], we have the sharp weak type inequality

$$
\|S(f)\|_{1, \infty} \leq\left(\exp (-1 / 2)+\int_{0}^{1} \exp \left(-s^{2} / 2\right) \mathrm{d} s\right)\|f\|_{1}=1.4622 \ldots\|f\|_{1}
$$

The purpose of this paper is to present a sharp comparison of the weak p-th norm of f with the strong p-th norm of $S(f), 1 \leq p \leq 2$. We will prove the following.

Theorem 1.1. For any conditionally symmetric martingale f we have

$$
\begin{equation*}
\|f\|_{p, \infty} \leq C_{p}\|S(f)\|_{p}, \quad 1 \leq p \leq 2 \tag{1.2}
\end{equation*}
$$

where

$$
C_{p}^{p}=\frac{2^{1-p / 2} \pi^{p-3 / 2} \Gamma((p+1) / 2)}{\Gamma(p+1)} \frac{1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots}{1-\frac{1}{3^{p+1}}+\frac{1}{5^{p+1}}-\frac{1}{7^{p+1}}+\ldots}
$$

The constant C_{p} is the best possible, even for the class of real dyadic martingales.
The proof is based on Burkholder's technique: in the next section we introduce a special function and study its properties, which will be exploited in Section 3, where we establish Theorem 1.1.

2. A special function and its properties

Let $\mathbb{H}=\mathbb{R} \times(0, \infty), S=\mathbb{R} \times(-1,1)$ and $S^{+}=(0, \infty) \times(-1,1)$. Introduce a harmonic function $\mathcal{A}=\mathcal{A}_{p}: \mathbb{H} \rightarrow \mathbb{R}$, given by the Poisson integral

$$
\mathcal{A}(\alpha, \beta)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\beta\left|\frac{2}{\pi} \log \right| t| |^{p}}{(\alpha-t)^{2}+\beta^{2}} \mathrm{~d} t
$$

It is easy to see that the function \mathcal{A} satisfies

$$
\begin{equation*}
\lim _{(\alpha, \beta) \rightarrow(z, 0)} \mathcal{A}(\alpha, \beta)=\left(\frac{2}{\pi}\right)^{p}|\log | z| |^{p}, \quad z \neq 0 \tag{2.1}
\end{equation*}
$$

Consider a conformal mapping φ given by $\varphi(z)=i e^{\pi z / 2}$, or, in the real coordinates,

$$
\varphi(x, y)=\left(-e^{\pi x / 2} \sin \left(\frac{\pi}{2} y\right), e^{\pi x / 2} \cos \left(\frac{\pi}{2} y\right)\right), \quad(x, y) \in \mathbb{R}^{2}
$$

It can be easily verified that φ maps S onto \mathbb{H}. Introduce a function $A=A_{p}$ defined on the strip S by $A(x, y)=\mathcal{A}(\varphi(x, y))$. The function A is harmonic on S, since it
is a real part of an analytic function. By (2.1), we can extend A to the continuous function on the closure \bar{S} of S by $A(x, \pm 1)=|x|^{p}$. One easily checks that

$$
\begin{equation*}
A(x, y)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{\cos \left(\frac{\pi}{2} y\right)\left|\frac{2}{\pi} \log \right| s|+x|^{p}}{\left(s-\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)} \mathrm{d} s \tag{2.2}
\end{equation*}
$$

for $|y|<1$. Substituting $s:=1 / s$ and $s:=-s$ above, we see that A satisfies

$$
\begin{equation*}
A(x, y)=A(-x, y)=A(x,-y) \quad \text { for }(x, y) \in S \tag{2.3}
\end{equation*}
$$

Finally, let $U=U_{p}:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ be given by $U(x, y)=x^{p}$ for $|y|>1$ and

$$
U(x, y)=c_{p} \int_{\mathbb{R}} A(u x, y) \exp \left(-u^{2} / 2\right) \mathrm{d} u
$$

otherwise; here $c_{p}=\left(\int_{\mathbb{R}}|u|^{p} \exp \left(-u^{2} / 2\right) \mathrm{d} u\right)^{-1}=\left(2^{(p+1) / 2} \Gamma\left(\frac{p+1}{2}\right)\right)^{-1}$. We easily check that U is continuous. By the symmetry condition (2.3), we have, for $|y| \leq 1$,

$$
\begin{equation*}
U(x, y)=2 c_{p} \int_{0}^{\infty} A(u x, y) \exp \left(-u^{2} / 2\right) \mathrm{d} u \tag{2.4}
\end{equation*}
$$

Let us study the propertes of the function U which will be needed later.
Lemma 2.1. We have $U(0,0)=C_{p}^{-p}$.
Proof. This is straightforward: since $\pi^{2} / 8=\sum_{k=0}^{\infty}(2 k+1)^{-2}$, we have

$$
\begin{aligned}
U(0,0)=c_{p} \sqrt{2 \pi} A(0,0) & =\frac{2^{-p / 2}}{\Gamma\left(\frac{p+1}{2}\right) \sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\left|\frac{2}{\pi} \log \right| s| |^{p}}{s^{2}+1} \mathrm{~d} s \\
& =\frac{2^{1+p / 2}}{\pi^{p+1 / 2} \Gamma\left(\frac{p+1}{2}\right)} \int_{0}^{\infty} \frac{|\log s|^{p}}{s^{2}+1} \mathrm{~d} s \\
& =\frac{2^{1+p / 2}}{\pi^{p+1 / 2} \Gamma\left(\frac{p+1}{2}\right)} \int_{-\infty}^{\infty} \frac{|s|^{p} e^{s}}{e^{2 s}+1} \mathrm{~d} s \\
& =\frac{2^{2+p / 2}}{\pi^{p+1 / 2} \Gamma\left(\frac{p+1}{2}\right)} \int_{0}^{\infty} s^{p} e^{-s} \sum_{k=0}^{\infty}\left(-e^{-2 s}\right)^{k} \mathrm{~d} s \\
& =\frac{2^{2+p / 2} \Gamma(p+1)}{\pi^{p+1 / 2} \Gamma\left(\frac{p+1}{2}\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{p}}=C_{p}^{-p}
\end{aligned}
$$

Lemma 2.2. (i) The function U satisfies the differential equation

$$
\begin{equation*}
U_{x}(x, y)+x U_{y y}(x, y)=0 \quad \text { on } S^{+} \tag{2.5}
\end{equation*}
$$

(ii) The function U is superharmonic on S^{+}.

Proof. By Fubini's theorem, we may take the derivatives inside the integral while computing the partial derivatives of U on S^{+}.
(i) Since A is harmonic, we have, for $(x, y) \in S^{+}$,

$$
x U_{y y}(x, y)=x \int_{\mathbb{R}} A_{y y}(u x, y) \exp \left(-u^{2} / 2\right) \mathrm{d} u=-\int_{\mathbb{R}} x A_{x x}(u x, y) \exp \left(-u^{2} / 2\right) \mathrm{d} u
$$

and the claim follows from the integration by parts: the above is equal to

$$
-\int_{\mathbb{R}} A_{x}(u x, y) u \exp \left(-u^{2} / 2\right) \mathrm{d} u=-U_{x}(x, y)
$$

(ii) By the previous part, the assertion can be rewritten in the form

$$
x U_{x x}(x, y)-U_{x}(x, y) \leq 0 \quad \text { on } S^{+}
$$

Since $U_{x}(0+, y)=0$, we will be done if we show that $U_{x x x} \leq 0$ or, by (2.4), $A_{x x x} \leq 0$ on S^{+}. To this end, fix $x>0, \varepsilon \in(0, x)$ and introduce the function

$$
f_{\varepsilon}(h)=2|h|^{p-2} h-|h-\varepsilon|^{p-2}(h-\varepsilon)-|h+\varepsilon|^{p-2}(h+\varepsilon), \quad h \in \mathbb{R} .
$$

One easily verifies that

$$
\begin{equation*}
f_{\varepsilon} \text { is odd and } f_{\varepsilon} \geq 0 \text { on }[0, \infty) \tag{2.6}
\end{equation*}
$$

We write

$$
2 A_{x}(x, y)-A_{x}(x-\varepsilon, y)-A_{x}(x+\varepsilon, y)=\frac{p}{\pi} \int_{-\infty}^{\infty} \frac{f_{\varepsilon}\left(x+\frac{2}{\pi} \log |s|\right) \cos \left(\frac{\pi}{2} y\right)}{\left(s-\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)} \mathrm{d} s
$$

split the integral into two, over the nonpositive and nonnegative halfline, and, finally, substitute $s= \pm e^{r}$. As the result, we get

$$
\begin{equation*}
2 A_{x}(x, y)-A_{x}(x-\varepsilon, y)-A_{x}(x+\varepsilon, y)=\frac{p}{\pi} \int_{-\infty}^{\infty} f_{\varepsilon}\left(x+\frac{2}{\pi} r\right) g^{y}(r) \mathrm{d} r \tag{2.7}
\end{equation*}
$$

where the function g^{y} is given by

$$
g^{y}(r)=\frac{\cos \left(\frac{\pi}{2} y\right) e^{r}}{\left(e^{r}-\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)}+\frac{\cos \left(\frac{\pi}{2} y\right) e^{r}}{\left(e^{r}+\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)} .
$$

Note that g^{y} is even and nonincreasing on $[0, \infty)$: indeed, for $r>0$,

$$
\left(g^{y}\right)^{\prime}(r)=\frac{\cos \left(\frac{\pi}{2} y\right) e^{r}\left(1-e^{r}\right)}{\left[\left(e^{r}-\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)\right]^{2}}+\frac{\cos \left(\frac{\pi}{2} y\right) e^{r}\left(1-e^{r}\right)}{\left[\left(e^{r}+\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)\right]^{2}} \leq 0
$$

Thus, by (2.6), the integral in (2.7) is nonnegative and, since $\varepsilon \in(0, x)$ was arbitrary, the function A_{x} is concave on $(0, \infty)$.

Lemma 2.3. (i) For any $(x, y) \in[0, \infty) \times \mathbb{R}$ we have

$$
\begin{equation*}
x^{p} \leq U(x, y) \leq x^{p}+U(0,0) 1_{\{|y|<1\}} \tag{2.8}
\end{equation*}
$$

(ii) We have $U_{x}(x, y) \geq 0$ on $(0, \infty) \times \mathbb{R}$ and $U_{y}(x, y) \leq 0$ on $(0, \infty) \times((0, \infty) \backslash\{1\})$.

Proof. We may assume that $|y|<1$, since otherwise the claim is obvious, both in (i) and (ii). The lower bound in (2.8) follows from Jensen's inequality: we have

$$
\begin{aligned}
A(x, y) & =\int_{-\infty}^{\infty}\left|\frac{2}{\pi} \log \right| s|+x|^{p} \cdot \frac{1}{\pi} \frac{\cos \left(\frac{\pi}{2} y\right)}{\left(s-\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)} \mathrm{d} s \\
& \geq\left|\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cos \left(\frac{\pi}{2} y\right)\left(\frac{2}{\pi} \log |s|+x\right)}{\left(s-\sin \left(\frac{\pi}{2} y\right)\right)^{2}+\cos ^{2}\left(\frac{\pi}{2} y\right)} \mathrm{d} s\right|^{p}=x^{p}
\end{aligned}
$$

(to see the latter equality, make the substitution $s:=1 / s$) and it suffices to apply (2.4). Now we turn to (ii). Similar argument gives that the function $A(\cdot, y)$ is convex and hence the same is valid for U. Therefore, by part (ii) of Lemma 2.2 we have $U_{y y} \leq 0$ and hence by the first part of that lemma, $U_{x} \geq 0$. In addition, $U_{y} \leq 0$ for $y>0$, since the function $U(x, \cdot)$ is even (which follows from (2.3) and (2.4)). Thus we have shown (ii); moreover, we see that it suffices to establish the upper bound
in (2.8) for $y=0$. Using an elemetary inequality $|a+b|^{p}+|a-b|^{p} \leq 2|a|^{p}+2|b|^{p}$ for $a, b \in \mathbb{R}$ yields

$$
\begin{aligned}
2 A(x, 0)=A(x, 0)+A(-x, 0) & =\frac{1}{\pi} \int_{\mathbb{R}} \frac{\left|\frac{2}{\pi} \log \right| s|+x|^{p}+\left|\frac{2}{\pi} \log \right| s|-x|^{p}}{s^{2}+1} \mathrm{~d} s \\
& \leq \frac{1}{\pi} \int_{\mathbb{R}} \frac{\left.2\left|\frac{2}{\pi} \log \right| s\right|^{p}+2|x|^{p}}{s^{2}+1} \mathrm{~d} s \\
& =2 A(0,0)+|x|^{p} .
\end{aligned}
$$

It suffices to use (2.4) to get the claim.
Lemma 2.4. For any $a, b \in \mathcal{H}$ we have $\left|a^{*}+b^{*}\right| \leq|a+b|$.
Proof. If both $|a|,|b|$ do not exceed 1, the claim is obvious. If $|a|>1 \geq|b|$, $|a+b|^{2}-\left|a^{*}+b^{*}\right|^{2}=|a|^{2}-1+2\langle a, b\rangle\left(1-|a|^{-1}\right) \geq|a|^{2}-1-2|a|\left(1-|a|^{-1}\right) \geq 0$
and similarly for $|b|>1 \geq|a|$. Finally, if $|a|>1$ and $|b|>1$, then
$|a+b|^{2}-\left|a^{*}+b^{*}\right|^{2}=|a|^{2}+|b|^{2}+2\langle a, b\rangle\left(1-(|a||b|)^{-1}\right)-2 \geq|a|^{2}+|b|^{2}-2|a||b| \geq 0$, as desired.

Lemma 2.5. For any $(x, y) \in[0, \infty) \times \mathcal{H}$ and any $d \in \mathcal{H}$ we have

$$
\begin{equation*}
2 U(x,|y|) \leq U\left(\left(x^{2}+|d|^{2}\right)^{1 / 2},|y+d|\right)+U\left(\left(x^{2}+|d|^{2}\right)^{1 / 2},|y-d|\right) \tag{2.9}
\end{equation*}
$$

Proof. It is convenient to split the proof into three parts.
Case 1: $|y| \geq 1$. Then the estimate is trivial: indeed, by the previous lemma,
$2 U(x,|y|) \leq 2\left(x^{2}+|d|^{2}\right)^{p / 2} \leq U\left(\left(x^{2}+|d|^{2}\right)^{1 / 2},|y+d|\right)+U\left(\left(x^{2}+|d|^{2}\right)^{1 / 2},|y-d|\right)$.
Case 2: $|y|<1,|y \pm d| \leq 1$. For $t \in[0,1]$, let $\psi(t)=U\left(x_{+}^{t},\left|y_{+}^{t}\right|\right)+U\left(x_{+}^{t},\left|y_{-}^{t}\right|\right)$, where $x_{+}^{t}=\left(x^{2}+t^{2}|d|^{2}\right)^{1 / 2}$ and $y_{ \pm}^{t}=y \pm t d$. We have that $\psi^{\prime}(t) /|d|$ equals

$$
\frac{t|d|}{x_{+}^{t}}\left[U_{x}\left(x_{+}^{t},\left|y_{+}^{t}\right|\right)+U_{x}\left(x_{+}^{t},\left|y_{-}^{t}\right|\right)\right]+\left\langle U_{y}\left(x_{+}^{t},\left|y_{+}^{t}\right|\right)\left(y_{+}^{t}\right)^{\prime}-U_{y}\left(x_{+}^{t},\left|y_{-}^{t}\right|\right)\left(y_{-}^{t}\right)^{\prime}, d^{\prime}\right\rangle
$$

(when $|y+t d|=0$, the differentiation is allowed since $U_{y}(x, 0)=0$). We will prove that this is nonnegative, which will clearly yield the claim. It suffices to show that
$\frac{\left|y_{+}^{t}-y_{-}^{t}\right|}{2 x_{+}^{t}}\left[U_{x}\left(x_{+}^{t},\left|y_{+}^{t}\right|\right)+U_{x}\left(x_{+}^{t},\left|y_{-}^{t}\right|\right)\right] \geq\left|U_{y}\left(x_{+}^{t},\left|y_{+}^{t}\right|\right)\left(y_{+}^{t}\right)^{\prime}-U_{y}\left(x_{+}^{t},\left|y_{-}^{t}\right|\right)\left(y_{-}^{t}\right)^{\prime}\right|$.
To this end, note that if we square both sides, the estimate becomes $A \leq B$. $\left\langle\left(y_{+}^{t}\right)^{\prime},\left(y_{-}^{t}\right)^{\prime}\right\rangle$, where A and B depend only on $\left|y_{+}^{t}\right|$ and $\left|y_{-}^{t}\right|$. Thus it suffices to prove it for $\left(y_{+}^{t}\right)^{\prime}= \pm\left(y_{-}^{t}\right)^{\prime}$. When $\left(y_{+}^{t}\right)^{\prime}$ and $\left(y_{-}^{t}\right)^{\prime}$ are equal, we use (2.5) and the fact that $U_{y} \leq 0$ on $(0, \infty) \times(0,1)$ (by Lemma 2.8) and see that the inequality reads

This follows from the fact that $U_{y y}$ is nonpositive and concave: by Lemma 2.2, we have $x^{2} U_{y y y y}(x, y)=U_{x x}(x, y)+U_{y y}(x, y) \leq 0$ for $(x, y) \in S^{+}$. The case $\left(y_{+}^{t}\right)^{\prime}=-\left(y_{-}^{t}\right)^{\prime}$ is dealt with in the same manner.

Case 3: $|y|<1, d>1-|y|$. This can be reduced to the previous case. Set $y_{+}=$ $(y+d)^{*}, y_{-}=(y-d)^{*}$ and $\tilde{y}=\left(y_{+}+y_{-}\right) / 2, \tilde{d}=\left(y_{+} y_{-}\right) / 2, \tilde{x}=\left(x^{2}+|d|^{2}-\tilde{d}^{2}\right)^{1 / 2}$.

By Lemma $2.4,|\tilde{y}| \leq|y|$ and $|\tilde{d}| \leq|d|$, so $\tilde{x} \geq x$. Using Lemma 2.3 and the fact that \tilde{y}, \tilde{d} satisfy the assumptions of Case 2 , we may write

$$
2 U(x, y) \leq 2 U(\tilde{x}, \tilde{y}) \leq U\left(\left(\tilde{x}^{2}+\tilde{d}^{2}\right)^{1 / 2}, y_{+}\right)+U\left(\left(\tilde{x}^{2}+\tilde{d}^{2}\right)^{1 / 2}, y_{-}\right)
$$

and the latter sum is precisely the right hand side of (2.9).
Remark 2.1. The choice $x=0, y=0$ in (2.9) gives $U(0,0) \leq U(|d|, d)$ for all d.

3. Proof of Theorem 1.1

Proof of (1.2). We may assume that $S(f) \in L^{p}$, since otherwise there is nothing to prove. By homogeneity, it suffices to show that for any $n \geq 0$,

$$
\mathbb{P}\left(\left|f_{n}\right| \geq 1\right) \leq C_{p}^{p} \mathbb{E} S_{n}^{p}(f)
$$

The key ingredient of the proof of this estimate is the fact that
the process $\left(U\left(S_{n}(f), f_{n}\right)\right)_{n \geq 0}$ is an $\left(\mathcal{F}_{n}\right)$-submartingale.
Indeed, for $n \geq 0$ the variable $U\left(S_{n}(f), f_{n}\right)$ is integrable by the condition $S(f) \in L^{p}$ and (2.8). Moreover, by the conditional symmetry, $2 \mathbb{E}\left(U\left(S_{n+1}(f), f_{n+1}\right) \mid \mathcal{F}_{n}\right)$ equals

$$
\mathbb{E}\left[U\left(\left(S_{n}^{2}(f)+d f_{n+1}^{2}\right)^{1 / 2}, f_{n}+d f_{n+1}\right)+U\left(\left(S_{n}^{2}(f)+d f_{n+1}^{2}\right)^{1 / 2}, f_{n}-d f_{n+1}\right) \mid \mathcal{F}_{n}\right]
$$

This is not smaller than $2 U\left(S_{n}(f), f_{n}\right)$: apply (2.9) with $x=S_{n}(f), y=f_{n}$ and $d=d f_{n+1}$. Thus (3.1) follows and, using (2.8) and Remark 2.1, we get

$$
U(0,0) \leq \mathbb{E} U\left(S_{0}(f), f_{0}\right) \leq \mathbb{E} U\left(S_{n}(f), f_{n}\right) \leq \mathbb{E} S_{n}^{p}(f)+U(0,0) \mathbb{P}\left(\left|f_{n}\right|<1\right)
$$

This completes the proof, by virtue of Lemma 2.1.
Sharpness. Suppose that γ_{p} is the optimal constant in (1.2) for real-valued dyadic martingales. Arguing as in [11], this yields a corresponding weak type inequality

$$
\begin{equation*}
\mathbb{P}\left(\left|B_{\tau}\right| \geq 1\right) \leq \gamma_{p}^{p} \mathbb{E} \tau^{p / 2} \tag{3.2}
\end{equation*}
$$

where B is a standard Brownian motion and τ is any stopping time of B. On the other hand, let $\eta=\inf \left\{t:\left|B_{t}\right|=1\right\}$ and consider the process $\left(U\left(\sqrt{\eta \wedge t}, B_{\eta \wedge t}\right)\right)_{t \geq 0}$. By (2.5) and Itô's formula, it is a martingale with expectation equal to $U(0,0)$. By (2.8) and exponential integrability of η, this martingale converges in L^{1} to $\eta^{p / 2}$, which, by Lemma 2.1 , yields $C_{p}^{-p}=\mathbb{E} \eta^{p / 2}$ and, consequently, $1=\mathbb{P}\left(\left|B_{\eta}\right| \geq 1\right)=$ $C_{p}^{p} \mathbb{E} \eta^{p / 2}$. By (3.2), this implies $\gamma_{p} \geq C_{p}$ and completes the proof.

Acknowledgement

I would like to thank Professor Stanisław Kwapień for bringing this problem to my attention. The author was supported in part by MNiSW Grant N N201 397437.

References

[1] R. Banuelos, and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), no. 3, 575-600.
[2] B. Bollobás, Martingale inequalities, Math. Proc. Camb. Phil. Soc. 87 (1980), 377-382.
[3] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
[4] D. L. Burkholder, Explorations in martingale theory and its applications, École d'Ete de Probabilités de Saint-Flour XIX—1989, pp. 1-66, Lecture Notes in Math., 1464, Springer, Berlin, 1991.
[5] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304.
[6] C. Dellacherie and P. A. Meyer, Probabilities and Potential B: Theory of martingales, North Holland, Amsterdam, 1982.
[7] A. Khintchine, Über dyadische Brüche, Math Z. 18 (1923), 109-116.
[8] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford, 1 (1930), 164-174.
[9] J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
[10] J. Marcinkiewicz and A. Zygmund, Quelques théorèmes sur les fonctions indépendantes, Studia Math. 7 (1938), 104-120.
[11] A. Osȩkowski, On the best constant in the weak type inequality for the square function of a conditionally symmetric martingale, Statist. Prob. Lett.
[12] R. E. A. C. Paley, A remarkable series of orthogonal functions I, Proc. London Math. Soc. 34 (1932), 241-264.
[13] G. Pisier and Q. Xu, Noncommutative martingale inequalities, Commun. Math. Phys. 189 (1997), 667-698.
[14] E. M. Stein, The development of the square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. 7 (1982), 359-376.
[15] G. Wang, Sharp square-function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc. 328 No. 1 (1991), 393-421.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl

[^0]: 2000 Mathematics Subject Classification. Primary: 31B05, 60G42. Secondary: 60G44.
 Key words and phrases. Martingale, square function, weak type inequality.

