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Abstract. Let f be a conditionally symmetric martingale and let S(f) be its

square function. The paper contains the proof of the sharp estimate

||f ||p,∞ ≤ Cp||S(f)||p, 1 ≤ p ≤ 2,

where

Cp
p =

21−p/2πp−3/2Γ((p+ 1)/2)

Γ(p+ 1)

1 + 1
32 + 1

52 + 1
72 + . . .

1− 1
3p+1 + 1

5p+1 − 1
7p+1 + . . .

.

In addition, it is shown that the constant Cp is the best possible even for the

class of dyadic martingales.

1. Introduction

Square function inequalities appear in many areas of mathematics, for exam-
ple in harmonic analysis, potential theory and both classical and noncommutative
probability, where they play an important role: see e.g. [4], [6], [13], [14], . . .. It is
therefore of interest to establish sharp versions of such estimates. The primary ob-
jective of this paper is to determine the best constants in some weak-type estimates
for the martingale square function under the assumption of conditional symmetry.

We start with introducing the background and notation. Let (Ω,F ,P) be a
probability space, filtered by (Fn)n≥0, a nondecreasing family of sub-σ-fields of F .
Let f = (fn)n≥0 be an adapted martingale taking values in a separable Hilbert
space H with scalar product 〈·, ·〉 and norm | · |. Then df = (dfn)n≥0, the difference
sequence of f , is given by df0 = f0 and dfn = fn − fn−1. We define the square
function of f by

S(f) =

( ∞∑
k=0

|dfk|2
)1/2

.

We will also use the notation Sn(f) =
(∑n

k=0 |dfk|2
)1/2 for n = 0, 1, 2, . . . and

write ||f ||p = supn ||fn||p, ||f ||p,∞ = supn supλ>0 λ(P(|fn| ≥ λ))1/p for the strong
and weak p-th moment of f .

A martingale f is conditionally symmetric, if for any n ≥ 1 the conditional
distributions of dfn and −dfn given Fn−1 coincide. For example, this is the case
if f is a dyadic martingale. To recall what it means, let (hn)n≥0 be the system of
Haar functions on [0, 1]. Then f is dyadic if for some a0, a1, a2, . . . ∈ H we have
fn =

∑n
k=0 akhk for n ≥ 0.

The problem of comparing the sizes of f and S(f) goes back to the works of
Khintchine [7], Littlewood [8], Marcinkiewicz [9], Marcinkiewicz and Zygmund [10]
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and Paley [12] (the concept of a martingale was not used there; the results concerned
the partial sums of Rademacher and Haar series). Consider the inequality

(1.1) ap||S(f)||p ≤ ||f ||p ≤ Ap||S(f)||p,

to be valid for all conditionally symmetric martingales f . As shown by Burkholder
in [3], for any 1 < p <∞ there are finite universal ap and Ap such that the double
inequality above holds. It follows from the results of Burkholder and Gundy [5]
that the right inequality above holds also for 0 < p ≤ 1 with some absolute Ap.
What about the optimal values of ap and Ap? Let νp be the smallest positive zero
of the confluent hypergeometric function and let µp be the largest positive zero of
the parabolic cylinder function of parameter p. Wang [15] showed that ap = νp for
p ≥ 2, Ap = νp for 0 < p ≤ 2 and Ap = µp for p ≥ 3 are the best choices, even
if we restrict ourselves in (1.1) to dyadic martingales. For the remaining values of
parameter p, the optimal constants are not known. When p = 1, the left inequality
in (1.1) does not hold with any universal a1 <∞. However, as shown by Bollobás
[2] and the author [11], we have the sharp weak type inequality

||S(f)||1,∞ ≤
(

exp(−1/2) +
∫ 1

0

exp(−s2/2)ds
)
||f ||1 = 1.4622 . . . ||f ||1.

The purpose of this paper is to present a sharp comparison of the weak p-th norm
of f with the strong p-th norm of S(f), 1 ≤ p ≤ 2. We will prove the following.

Theorem 1.1. For any conditionally symmetric martingale f we have

(1.2) ||f ||p,∞ ≤ Cp||S(f)||p, 1 ≤ p ≤ 2,

where

Cpp =
21−p/2πp−3/2Γ((p+ 1)/2)

Γ(p+ 1)
1 + 1

32 + 1
52 + 1

72 + . . .

1− 1
3p+1 + 1

5p+1 − 1
7p+1 + . . .

.

The constant Cp is the best possible, even for the class of real dyadic martingales.

The proof is based on Burkholder’s technique: in the next section we introduce
a special function and study its properties, which will be exploited in Section 3,
where we establish Theorem 1.1.

2. A special function and its properties

Let H = R × (0,∞), S = R × (−1, 1) and S+ = (0,∞) × (−1, 1). Introduce a
harmonic function A = Ap : H→ R, given by the Poisson integral

A(α, β) =
1
π

∫ ∞
−∞

β
∣∣ 2
π log |t|

∣∣p
(α− t)2 + β2

dt.

It is easy to see that the function A satisfies

(2.1) lim
(α,β)→(z,0)

A(α, β) =
(

2
π

)p
| log |z||p, z 6= 0.

Consider a conformal mapping ϕ given by ϕ(z) = ieπz/2, or, in the real coordinates,

ϕ(x, y) =
(
−eπx/2 sin

(π
2
y
)
, eπx/2 cos

(π
2
y
))

, (x, y) ∈ R2.

It can be easily verified that ϕ maps S onto H. Introduce a function A = Ap defined
on the strip S by A(x, y) = A(ϕ(x, y)). The function A is harmonic on S, since it
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is a real part of an analytic function. By (2.1), we can extend A to the continuous
function on the closure S of S by A(x,±1) = |x|p. One easily checks that

(2.2) A(x, y) =
1
π

∫
R

cos
(
π
2 y
) ∣∣ 2

π log |s|+ x
∣∣p

(s− sin(π2 y))2 + cos2(π2 y)
ds

for |y| < 1. Substituting s := 1/s and s := −s above, we see that A satisfies

(2.3) A(x, y) = A(−x, y) = A(x,−y) for (x, y) ∈ S.

Finally, let U = Up : [0,∞)× R→ R be given by U(x, y) = xp for |y| > 1 and

U(x, y) = cp

∫
R
A(ux, y) exp(−u2/2)du

otherwise; here cp =
(∫

R |u|
p exp(−u2/2)du

)−1 =
(
2(p+1)/2Γ

(
p+1

2

))−1
. We easily

check that U is continuous. By the symmetry condition (2.3), we have, for |y| ≤ 1,

(2.4) U(x, y) = 2cp
∫ ∞

0

A(ux, y) exp(−u2/2)du.

Let us study the propertes of the function U which will be needed later.

Lemma 2.1. We have U(0, 0) = C−pp .

Proof. This is straightforward: since π2/8 =
∑∞
k=0(2k + 1)−2, we have

U(0, 0) = cp
√

2πA(0, 0) =
2−p/2

Γ
(
p+1

2

)√
π

∫ ∞
−∞

∣∣ 2
π log |s|

∣∣p
s2 + 1

ds

=
21+p/2

πp+1/2Γ
(
p+1

2

) ∫ ∞
0

|log s|p

s2 + 1
ds

=
21+p/2

πp+1/2Γ
(
p+1

2

) ∫ ∞
−∞

|s|p es

e2s + 1
ds

=
22+p/2

πp+1/2Γ
(
p+1

2

) ∫ ∞
0

spe−s
∞∑
k=0

(−e−2s)kds

=
22+p/2Γ(p+ 1)
πp+1/2Γ

(
p+1

2

) ∞∑
k=0

(−1)k

(2k + 1)p
= C−pp . �

Lemma 2.2. (i) The function U satisfies the differential equation

(2.5) Ux(x, y) + xUyy(x, y) = 0 on S+.

(ii) The function U is superharmonic on S+.

Proof. By Fubini’s theorem, we may take the derivatives inside the integral while
computing the partial derivatives of U on S+.

(i) Since A is harmonic, we have, for (x, y) ∈ S+,

xUyy(x, y) = x

∫
R
Ayy(ux, y) exp(−u2/2)du = −

∫
R
xAxx(ux, y) exp(−u2/2)du

and the claim follows from the integration by parts: the above is equal to

−
∫

R
Ax(ux, y)u exp(−u2/2)du = −Ux(x, y).
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(ii) By the previous part, the assertion can be rewritten in the form

xUxx(x, y)− Ux(x, y) ≤ 0 on S+.

Since Ux(0+, y) = 0, we will be done if we show that Uxxx ≤ 0 or, by (2.4), Axxx ≤ 0
on S+. To this end, fix x > 0, ε ∈ (0, x) and introduce the function

fε(h) = 2|h|p−2h− |h− ε|p−2(h− ε)− |h+ ε|p−2(h+ ε), h ∈ R.

One easily verifies that

(2.6) fε is odd and fε ≥ 0 on [0,∞).

We write

2Ax(x, y)−Ax(x− ε, y)−Ax(x+ ε, y) =
p

π

∫ ∞
−∞

fε
(
x+ 2

π log |s|
)

cos(π2 y)
(s− sin(π2 y))2 + cos2(π2 y)

ds,

split the integral into two, over the nonpositive and nonnegative halfline, and,
finally, substitute s = ±er. As the result, we get

(2.7) 2Ax(x, y)−Ax(x− ε, y)−Ax(x+ ε, y) =
p

π

∫ ∞
−∞

fε

(
x+

2
π
r

)
gy(r)dr,

where the function gy is given by

gy(r) =
cos(π2 y)er

(er − sin(π2 y))2 + cos2(π2 y)
+

cos(π2 y)er

(er + sin(π2 y))2 + cos2(π2 y)
.

Note that gy is even and nonincreasing on [0,∞): indeed, for r > 0,

(gy)′(r) =
cos(π2 y)er(1− er)

[(er − sin(π2 y))2 + cos2(π2 y)]2
+

cos(π2 y)er(1− er)
[(er + sin(π2 y))2 + cos2(π2 y)]2

≤ 0.

Thus, by (2.6), the integral in (2.7) is nonnegative and, since ε ∈ (0, x) was arbi-
trary, the function Ax is concave on (0,∞). �

Lemma 2.3. (i) For any (x, y) ∈ [0,∞)× R we have

(2.8) xp ≤ U(x, y) ≤ xp + U(0, 0)1{|y|<1}.

(ii) We have Ux(x, y) ≥ 0 on (0,∞)×R and Uy(x, y) ≤ 0 on (0,∞)×((0,∞)\{1}).

Proof. We may assume that |y| < 1, since otherwise the claim is obvious, both in
(i) and (ii). The lower bound in (2.8) follows from Jensen’s inequality: we have

A(x, y) =
∫ ∞
−∞

∣∣∣∣ 2π log |s|+ x

∣∣∣∣p · 1
π

cos(π2 y)
(s− sin(π2 y))2 + cos2(π2 y)

ds

≥

∣∣∣∣∣ 1π
∫ ∞
−∞

cos(π2 y)
(

2
π log |s|+ x

)
(s− sin(π2 y))2 + cos2(π2 y)

ds

∣∣∣∣∣
p

= xp

(to see the latter equality, make the substitution s := 1/s) and it suffices to apply
(2.4). Now we turn to (ii). Similar argument gives that the function A(·, y) is convex
and hence the same is valid for U . Therefore, by part (ii) of Lemma 2.2 we have
Uyy ≤ 0 and hence by the first part of that lemma, Ux ≥ 0. In addition, Uy ≤ 0 for
y > 0, since the function U(x, ·) is even (which follows from (2.3) and (2.4)). Thus
we have shown (ii); moreover, we see that it suffices to establish the upper bound
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in (2.8) for y = 0. Using an elemetary inequality |a+ b|p + |a− b|p ≤ 2|a|p + 2|b|p
for a, b ∈ R yields

2A(x, 0) = A(x, 0) +A(−x, 0) =
1
π

∫
R

∣∣ 2
π log |s|+ x

∣∣p +
∣∣ 2
π log |s| − x

∣∣p
s2 + 1

ds

≤ 1
π

∫
R

2
∣∣ 2
π log |s|

∣∣p + 2|x|p

s2 + 1
ds

= 2A(0, 0) + |x|p.

It suffices to use (2.4) to get the claim. �

Lemma 2.4. For any a, b ∈ H we have |a∗ + b∗| ≤ |a+ b|.

Proof. If both |a|, |b| do not exceed 1, the claim is obvious. If |a| > 1 ≥ |b|,

|a+ b|2 − |a∗ + b∗|2 = |a|2 − 1 + 2〈a, b〉(1− |a|−1) ≥ |a|2 − 1− 2|a|(1− |a|−1) ≥ 0

and similarly for |b| > 1 ≥ |a|. Finally, if |a| > 1 and |b| > 1, then

|a+ b|2−|a∗+ b∗|2 = |a|2 + |b|2 + 2〈a, b〉(1− (|a||b|)−1)−2 ≥ |a|2 + |b|2−2|a||b| ≥ 0,

as desired. �

Lemma 2.5. For any (x, y) ∈ [0,∞)×H and any d ∈ H we have

(2.9) 2U(x, |y|) ≤ U
(
(x2 + |d|2)1/2, |y + d|

)
+ U

(
(x2 + |d|2)1/2, |y − d|

)
.

Proof. It is convenient to split the proof into three parts.
Case 1: |y| ≥ 1. Then the estimate is trivial: indeed, by the previous lemma,

2U(x, |y|) ≤ 2(x2 + |d|2)p/2 ≤ U((x2 + |d|2)1/2, |y + d|) + U((x2 + |d|2)1/2, |y − d|).

Case 2: |y| < 1, |y± d| ≤ 1. For t ∈ [0, 1], let ψ(t) = U
(
xt+, |yt+|

)
+U

(
xt+, |yt−|

)
,

where xt+ = (x2 + t2|d|2)1/2 and yt± = y ± td. We have that ψ′(t)/|d| equals

t|d|
xt+

[
Ux
(
xt+, |yt+|

)
+ Ux

(
xt+, |yt−|

)]
+ 〈Uy

(
xt+, |yt+|

)
(yt+)′ − Uy

(
xt+, |yt−|

)
(yt−)′, d′〉

(when |y+ td| = 0, the differentiation is allowed since Uy(x, 0) = 0). We will prove
that this is nonnegative, which will clearly yield the claim. It suffices to show that

|yt+ − yt−|
2xt+

[
Ux
(
xt+, |yt+|

)
+ Ux

(
xt+, |yt−|

)]
≥
∣∣Uy(xt+, |yt+|)(yt+)′−Uy

(
xt+, |yt−|

)
(yt−)′

∣∣.
To this end, note that if we square both sides, the estimate becomes A ≤ B ·
〈(yt+)′, (yt−)′〉, where A and B depend only on |yt+| and |yt−|. Thus it suffices to
prove it for (yt+)′ = ±(yt−)′. When (yt+)′ and (yt−)′ are equal, we use (2.5) and the
fact that Uy ≤ 0 on (0,∞)×(0, 1) (by Lemma 2.8) and see that the inequality reads

−
∣∣|yt+| − |yt−|∣∣

2
[
Uyy

(
xt+, |yt+|

)
+ Uyy

(
xt+, |yt−|

)]
≥

∣∣∣∣∣
∫ |yt

+|

|yt
−|

Uyy(xt+, s)ds

∣∣∣∣∣ .
This follows from the fact that Uyy is nonpositive and concave: by Lemma 2.2,
we have x2Uyyyy(x, y) = Uxx(x, y) + Uyy(x, y) ≤ 0 for (x, y) ∈ S+. The case
(yt+)′ = −(yt−)′ is dealt with in the same manner.

Case 3: |y| < 1, d > 1− |y|. This can be reduced to the previous case. Set y+ =
(y+d)∗, y− = (y−d)∗ and ỹ = (y++y−)/2, d̃ = (y+−y−)/2, x̃ = (x2+|d|2−d̃2)1/2.
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By Lemma 2.4, |ỹ| ≤ |y| and |d̃| ≤ |d|, so x̃ ≥ x. Using Lemma 2.3 and the fact
that ỹ, d̃ satisfy the assumptions of Case 2, we may write

2U(x, y) ≤ 2U(x̃, ỹ) ≤ U((x̃2 + d̃2)1/2, y+) + U((x̃2 + d̃2)1/2, y−)

and the latter sum is precisely the right hand side of (2.9). �

Remark 2.1. The choice x = 0, y = 0 in (2.9) gives U(0, 0) ≤ U(|d|, d) for all d.

3. Proof of Theorem 1.1

Proof of (1.2). We may assume that S(f) ∈ Lp, since otherwise there is nothing
to prove. By homogeneity, it suffices to show that for any n ≥ 0,

P(|fn| ≥ 1) ≤ CppESpn(f).

The key ingredient of the proof of this estimate is the fact that

(3.1) the process (U(Sn(f), fn))n≥0 is an (Fn)-submartingale.

Indeed, for n ≥ 0 the variable U(Sn(f), fn) is integrable by the condition S(f) ∈ Lp
and (2.8). Moreover, by the conditional symmetry, 2E(U(Sn+1(f), fn+1)|Fn) equals

E
[
U((S2

n(f) + df2
n+1)1/2, fn + dfn+1) + U((S2

n(f) + df2
n+1)1/2, fn − dfn+1)

∣∣∣∣Fn].
This is not smaller than 2U(Sn(f), fn): apply (2.9) with x = Sn(f), y = fn and
d = dfn+1. Thus (3.1) follows and, using (2.8) and Remark 2.1, we get

U(0, 0) ≤ EU(S0(f), f0) ≤ EU(Sn(f), fn) ≤ ESpn(f) + U(0, 0)P(|fn| < 1).

This completes the proof, by virtue of Lemma 2.1. �

Sharpness. Suppose that γp is the optimal constant in (1.2) for real-valued dyadic
martingales. Arguing as in [11], this yields a corresponding weak type inequality

(3.2) P(|Bτ | ≥ 1) ≤ γppEτp/2,
where B is a standard Brownian motion and τ is any stopping time of B. On the
other hand, let η = inf{t : |Bt| = 1} and consider the process (U(

√
η ∧ t, Bη∧t))t≥0.

By (2.5) and Itô’s formula, it is a martingale with expectation equal to U(0, 0). By
(2.8) and exponential integrability of η, this martingale converges in L1 to ηp/2,
which, by Lemma 2.1, yields C−pp = Eηp/2 and, consequently, 1 = P(|Bη| ≥ 1) =
CppEηp/2. By (3.2), this implies γp ≥ Cp and completes the proof. �
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