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Abstract. The paper contains the proofs of strong-type, weak-
type, Lorentz-norm and stability estimates for the harmonic max-
imal operator on the real line, associated with an arbitrary Borel
measure. The constants obtained are optimal in the special case
of the Lebesgue measure.

1. Introduction

The purpose of this paper is to provide some tight information about

the behavior of harmonic maximal operator, which plays an important

role in harmonic analysis. Let us start with the necessary de�nitions.

Suppose that µ is a nonnegative Borel measure on Rd and assume that

f : Rd → R is a Borel measurable function. The maximal harmonic

function of f with respect to µ is de�ned by

(1.1) Mµf(x) = sup

(
1

µ(Q)

∫
Q

|f |−1dµ
)−1

where the supremum is taken over all cubes Q containing x, with sides

parallel to the axes. Here and below, we will use the convention 1/0 =

+∞, 0 · ∞ = 0 and 1/+∞ = 0.

The harmonic maximal operator is a companion to the classical max-

imal operator Mµ of Hardy and Littlewood, which is given by

Mµf(x) = sup
Q

1

µ(Q)

∫
Q

|f |dµ,

where the supremum is taken over the same class as above. In a sense,

the joint behavior of Mµ and Mµ is similar to that of the harmonic
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and arithmetic averages

n

|x1|−1 + |x2|−1 + . . .+ |xn|−1
,

|x1|+ |x2|+ . . .+ |xn|
n

,

where x1, x2, . . ., xn are arbitrary real numbers. The notion of har-

monic maximal operator appeared for the �rst time in [7, 9, 8], actually

in a slightly di�erent manner. Namely, the authors studied there an-

other object, the so-called minimal operator

Mµf(x) = inf

{
1

µ(Q)

∫
Q

|f |dµ
}
,

where the in�mum is taken over the same class as before. This alterna-

tive operator is linked toMµ through the identityMµf = Mµ(|f |−1)−1.
The minimal operator was used to study the �ne structure of Ap weights

in [7], further applications to weighted norm inequalities and di�eren-

tiation theory can be found in [8, 9]. See also [11] for certain class of

estimates in the weighted context.

From the viewpoint of the applications, it is of interest to investigate

sharp, or at least tight estimates forMµ. The purpose of this paper is

to study this problem in the one-dimensional setting. Given 0 < p <

∞, let us distinguish two constants cp and Cp: let

(1.2) cp =
p

(p+ 1)1+1/p(2p/(p+1) − 1)(2− 2p/(p+1))1/p
,

and de�ne Cp as the unique number in (1,∞) satisfying

(1.3) (p+ 1)Cp
p + 1 = pCp+1

p .

There are two types of results studied in this paper. First, we will

establish the following sharp weak-type, strong-type and Lorentz-norm

estimates. Here and below, Lp(µ) and Lp,∞(µ) stand for the usual Lp-

and weak Lp-spaces associated with the measure µ.

Theorem 1.1. For an arbitrary Borel measure µ on R and any 0 <

p <∞, we have

(1.4) ‖Mµ‖Lp(µ)→Lp(µ) ≤ Cp,

(1.5) ‖Mµ‖Lp,∞(µ)→Lp,∞(µ) ≤ Cp
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and

(1.6) ‖Mµ‖Lp(µ)→Lp,∞(µ) ≤ cp.

In general, the constants in the above estimates cannot be improved:

for the Lebesgue measure, the equalities hold.

Let us emphasize here that the estimates (1.4) and (1.6), with some

constants, can be extracted from [8] and [11]; the inequality (1.5) seems

to be new. Our main contribution is the identi�cation of the best

constants involved.

The second class of results concerns the stability of the Lp estimate

(1.4). As we have stated above, the constant Cp is the best possible;

its optimality (for the Lebesgue measure) will be demonstrated by con-

structing appropriate functions (`extremals'). It turns out that given

0 < p < ∞, such an extremal object is (asymptotically) an eigen-

function of M|·| corresponding to the eigenvalue Cp (that is, roughly

speaking, the almost-equality ‖Mµf‖Lp ≈ Cp‖f‖Lp holds even point-

wise). This gives rise to the following interesting subject, referred to

as the stability: given f for which equality in (1.4) is almost attained,

how far is f from being such an eigenfunction?

We will provide the following answer to this question.

Theorem 1.2. Let ε > 0 and suppose that f is a measurable function

on R such that ‖Mµf‖Lp ≥ (Cp − ε)‖f‖Lp. Then we have

(1.7) ‖Mµf − Cpf‖Lp ≤

{
2C2

p ε
1/2 ‖f‖Lp if 0 < p < 2,

(2p)1/pCp ε
1/p ‖f‖Lp if p ≥ 2.

If µ is the Lebesgue measure, the factors ε1/2 and ε1/p cannot be im-

proved: the exponents 1/2 for 0 < p < 2 and 1/p for p ≥ 2 are the

biggest possible.

Of course, the inequality (1.7) is of interest when ε is small. This

motivates the question about the largest possible power of ε allowed on

the right-hand side: this is the decisive factor which actually controls

the size of the upper bound. It might seem quite unexpected that the

exponents behave di�erently for p ≤ 2 and p ≥ 2. However, a similar

phenomenon occurs in the context of martingale transforms and wide
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classes of Fourier multipliers [1]. For various examples of other stability

results in geometry and spectral theory, we refer the reader to the work

by Brasco and Philippis [3], as well as to Bianchi and Egnell [2], Chen,

Frank andWeth [5], Christ [6], Dolbeault and Toscani [10], Fathi, Indrei

and Ledoux [12], and the very recent paper of Carlen [4].

The remaining part of the paper is split into three sections. The

�rst of them contains the proof of a certain distributional inequality

forMµ, which is in the spirit of Riesz' sunrise lemma [13] for harmonic

maximal operators. Section 3 is devoted to the proof of Theorem 1.1.

In the �nal part we address the stability of Lp estimates.

2. A distributional inequality

The purpose of this section is to establish a certain special estimate

for Mµ, which will be the main building block for the proofs of the

inequalities (1.4), (1.5) and (1.6). Here and below, we use the shortened

notation {f > λ} for the set {x ∈ R : f(x) > λ}.

Proposition 2.1. For any λ > 0 and any measurable function f :

R→ [0,∞), we have the inequality

(2.1)

µ({Mµf > λ}) + µ({f > λ}) ≥ λ

∫
{Mµf>λ}

f−1dµ+ λ

∫
{f>λ}

f−1dµ.

Proof. Fix λ > 0 and let Eλ = {Mµf > λ}. With no loss of generality,

we may and do assume that µ({f > λ}) < ∞, since otherwise the

left-hand side of (2.1) is in�nite and the estimate is evident. By the

very de�nition of the harmonic maximal operator, for every x ∈ Eλ

there is a closed interval Ix containing x such that

(2.2)

(
1

µ(Ix)

∫
Ix

f−1dµ

)−1
> λ.

This inequality shows at once that Ix is automatically contained in Eλ;

in other words, we can write Eλ =
⋃
x∈Eλ Ix. The idea is to replace, or

rather approximate this union (which in general is taken over an un-

countable set) by the union of a �nite number of the intervals, enjoying

appropriate sparseness.
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To this end, �rst we apply Lindelöf's lemma to get a countable sub-

collection {Ij}∞j=1 of {Ix}x∈Eλ for which
⋃∞
j=1 Ij =

⋃
x∈Eλ Ix (the lemma

is applicable, even though the sets Ix are not open; this follows from

a simple approximation argument). Fix N ∈ N, let I = {Ij : j =

1, 2, . . . , N} and set EN =
⋃
I∈I I. Now we apply a certain inductive

procedure to obtain two subcollections I1 and I2 of I. The algorithm
can be described as follows.

1◦ Take J0 ∈ I satisfying inf J0 = inf EN and put into I1. (If there
are two or more intervals I ∈ I with inf I = inf EN , then take the

interval with the biggest measure).

2◦ Suppose that we have successfully de�ned J2n. Consider the family

of all intervals I ∈ I which intersect J2n and satisfy sup I > sup J2n. If

this family is nonempty, choose the interval with largest left-endpoint

(if this object is not unique, pick the one with the biggest measure),

denote this interval by J2n+1 and put it into I2.
3◦ If the family in 2◦ is empty, then consider all intervals I ∈ I with

inf I > sup J2n. If this family is nonempty, choose an element with the

smallest left-endpoint (again, if this object is not unique, pick the one

with the biggest measure). Denote it by J2n+1 and put it into I2.
4◦ Suppose that we have successfully de�ned J2n+1. Consider the

family of all elements I ∈ I which intersect J2n+1 and satisfy sup I >

sup J2n+1. If this family is nonempty, choose the interval with largest

left-endpoint (if this object is not unique, pick the one with the biggest

measure). Denote this interval by J2n+2 and put it into I1.
5◦ If the family in 4◦ is empty, then consider all intervals I ∈ I with

inf I > sup J2n+1. If this family is nonempty, choose an element with

the smallest left-endpoint (again, if this object is not unique, pick the

one with the biggest measure). Denote it by J2n+2 and put it into I1.
6◦ Go to 2◦.

Since I is �nite, the above procedure terminates after a �nite number

of steps. It is easy to check, using the maximality of the sets picked

in 1◦−5◦, that if we de�ne Fi =
⋃
I∈Ii I for i = 1, 2, then EN = F1 ∪

F2. Furthermore, the requirement of considering the smallest/largest

endpoints implies that among each class I1 and I2, the elements are
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pairwise disjoint. Therefore, by (2.2), we obtain

µ(Fi) =
∑
I∈Ii

µ(I) > λ
∑
I∈Ii

∫
I

f−1dµ = λ

∫
Fi

f−1dµ for i = 1, 2.

Consequently, we get

µ(EN) + µ(F1 ∩ F2) = µ(F1) + µ(F2)

> λ

∫
F1

f−1dµ+ λ

∫
F2

f−1dµ

= λ

∫
EN

f−1dµ+ λ

∫
F1∩F2

f−1dµ.

(2.3)

Now, observe that we have the estimate

(2.4) µ(F1 ∩ F2)− λ
∫
F1∩F2

f−1dµ ≤ µ({f > λ})− λ
∫
{f>λ}

f−1dµ.

Indeed, note that∫
F1∩F2

(1−λf−1)dµ ≤
∫
F1∩F2∩{f≥λ}

(1−λf−1)dµ ≤
∫
{f≥λ}

(1−λf−1)dµ,

which is (2.4). Combining this inequality with (2.3) gives

µ(EN) + µ({f > λ}) ≥ λ

∫
EN

f−1dµ+ λ

∫
{f>λ}

f−1dµ

Since (EN)∞N=1 is an increasing sequence of µ-measurable sets whose

union is Eλ, the assertion follows by letting N →∞. �

3. Estimates for harmonic maximal operators

Now we will exploit the distribution estimate established in the pre-

vious section to obtain our main result.

3.1. The strong-type estimate.

Proof of (1.4). Let f : R → R be an arbitrary measurable function.

Actually, we may restrict ourselves to nonnegative f , since the passage

from f to |f | does not changeMµf or ‖f‖Lp(µ). In addition, we may

assume that ‖f‖Lp(µ) > 0, since otherwise the claim is obvious. By
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Theorem 2.1, we obtain∫
R

(
Mµf

)p
dµ+

∫
R
fpdµ

= p

∫ ∞
0

λp−1µ({Mµf > λ}) dλ+ p

∫ ∞
0

λp−1µ({f > λ}) dλ

≥ p

∫ ∞
0

λp
∫
{Mµf>λ}

f−1dµ dλ+ p

∫ ∞
0

λp
∫
{f>λ}

f−1dµ dλ

=
p

p+ 1

∫
R

(
Mµf)p+1f−1 dµ+

p

p+ 1

∫
R
fp dµ

(recall the convention 0 ·∞ = 0 under the �rst integral), which can be

rewritten in the form

(3.1)

∫
R

(
Mµf

)p
dµ+

1

p+ 1

∫
R
fpdµ ≥ p

p+ 1

∫
R

(
Mµf)p+1f−1 dµ.

However, the Hölder inequality implies(∫
R

(
Mµf)p+1f−1 dµ

) p
p+1
(∫

R
fp dµ

) 1
p+1

≥
∫
R

(
Mµf

)p
dµ,

or equivalently,∫
R

(
Mµf)p+1f−1 dµ ≥

(∫
R

(
Mµf

)p
dµ

) p+1
p
(∫

R
fp dµ

)− 1
p

.

Plugging this into (3.1) yields∫
R

(
Mµf

)p
dµ+

1

p+ 1

∫
R
fpdµ ≥ p

p+ 1

(∫
R

(
Mµf

)p
dµ

) p+1
p
(∫

R
fp dµ

)− 1
p

.

In other words, the ratio ‖Mµf‖Lp(µ)/‖f‖Lp(µ) satis�es the inequality

(p+ 1)

(
‖Mµf‖Lp(µ)
‖f‖Lp(µ)

)p
+ 1 ≥ p

(
‖Mµf‖Lp(µ)
‖f‖Lp(µ)

)p+1

and hence it is not bigger than Cp. This is precisely the desired estimate

‖Mµf‖Lp(µ) ≤ Cp‖f‖Lp(µ). �

Sharpness of (1.4) for the Lebesgue measure. Fix an exponent p, an

auxiliary parameter α > p and let Cα be given by (1.3). The func-

tion f : R→ [0,∞), given by f(x) = |x|−1/αχ[−1,1](x), belongs to Lp: a

direct integration gives ‖f‖pLp = 2(1− p/α)−1. Now we will show that

(3.2) M|·|f = Cαf on R.

This will yield the desired sharpness at once, since Cα → Cp as α ↓ p.
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The identity (3.2) is easy for |x| > 1: then f vanishes in some neigh-

borhood of x, soM|·|f(x) = 0 by the very de�nition of the harmonic

maximal operator. One checks similarly that Mf(0) = f(0) = +∞.

So, suppose that |x| ∈ [−1, 1] \ {0}; actually, by symmetry, we may

assume that x ∈ (0, 1]. Note that f is even, radially decreasing and

continuous on R \ {0}. Then it is easy to see that Mµf(x) can be

achieved by looking at the interval [−rx, x], where rx ∈ (0, x] is such

that

(3.3)

f(−rx)−1 =
1

x+ rx

∫ x

−rx
f(s)−1ds =

1

x+ rx
· α

α + 1

(
r1+1/α
x + x1+1/α

)
.

For each r ∈ (0, 1] we have

1

x+ rx

∫ x

−rx
f(s)−1ds = x1/α · 1

1 + r

∫ 1

−r
f(s)−1ds,

which implies rx = xr1 andMµf(x) = x−1/αMµf(1). Finally, observe

that (3.3) is satis�ed with x = 1 and rx = C−αα . Indeed, we have

(1 + C−αα )(α + 1)C−1α = α(1 + C−(α+1)
α ),

which is equivalent to (1.3) with α in place of p. Thus Mµf(x) =

f(−rx) = Cαx
−1/α = Cαf(x). �

Remark 3.1. We could follow a shorter path and simply write that

M|·|f(x) ≥
(

1

[−C−αα x, x]

∫ x

−C−αα x

(f(s))−1ds

)−1
= Cαf(x)

for x ≥ 0, with an analogous estimate for x < 0. This is su�cient for

the bound ‖M|·|f‖Lp ≥ Cα‖f‖Lp , which gives the sharpness. However,

the precise evaluation of M|·|f presented above will turn out to be

useful in Section 4.

3.2. The Lorentz-norm estimate.

Proof of (1.5). By homogeneity, we may assume that ‖f‖Lp,∞(µ) = 1.

By the de�nition of the Lorentz norm, we have µ({f > λ}) ≤ λ−p

for any λ > 0, or which is the same, f ∗µ(s) ≤ s−1/p for all s > 0.

Here f ∗µ(t) = inf{s > 0 : µ({f > s}) ≤ t} is the nonincreasing

rearrangement of f (with respect to the measure µ).
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The well-known inequality of Hardy and Littlewood states that if h

is a nonnegative function and A is a Borel subset of R, then∫
A

hdµ ≤
∫ µ(A)

0

h∗µ(s)ds.

Fix an arbitrary λ > 0. It is easy to check that the above fact implies∫
{f>λ}

f−1dµ ≥
∫ µ({f>λ})

0

(f ∗µ(s))−1ds ≥
∫ µ({f>λ})

0

s1/pds

=
p(µ({f > λ}))1+1/p

p+ 1

and similarly∫
{Mµf>λ}

f−1dµ ≥
∫ µ({Mµf>λ})

0

(f ∗(s))−1ds ≥ p(µ({Mµf > λ}))1+1/p

p+ 1
.

Combining these two estimates with (2.1) yields

pT p+1
λ − (p+ 1)T pλ ≤ tpλ(p+ 1− ptλ),

where Tλ = λµ({Mµf > λ})1/p and tλ = λµ({f > λ})1/p. However,

the assumption ‖f‖Lp,∞(µ) ≤ 1 gives tλ ≤ 1; in addition, the function

t 7→ tp(p + 1 − pt) is increasing on [0, 1] (its derivative is given by

t 7→ p(p+ 1)tp−1(1− t)). Consequently, the preceding estimate implies

pT p+1
λ − (p + 1)T pλ ≤ 1 which, in the light of (1.3), gives the bound

Tλ ≤ Cp. Since λ was chosen arbitrarily, we obtain ‖Mµf‖Lp,∞(µ) ≤ Cp,

as claimed. �

Sharpness of (1.5) for the Lebesgue measure. Since the best constants

in (1.4) and (1.5) are the same, it is natural to try the same extremal

function as in the proof of the sharpness of the Lp bound. We will do

so and even take the limiting value α = p. In other words, consider

the function f given by f(x) = |x|−1/pχ[−1,1](x). Since λ|{f > λ}|1/p =

min{λ, 1}21/p ≤ 21/p for any λ > 0, we get f ∈ Lp,∞. Calculating as in

the proof of the sharpness of (1.4), we see thatM|·|f(x) = Cpf(x) for

x ∈ [−1, 1] and hence also ‖M|·|f‖Lp,∞ = Cp‖f‖Lp,∞ . �

3.3. The weak-type bound.

Proof of (1.6). By homogeneity, it is enough to show that

(3.4) µ(Mµf > 1) ≤ cpp‖f‖
p
Lp(µ).
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We rewrite the inequality (2.1), in the special case λ = 1, in the form∫
R
u(f,Mµf)dµ ≥ 0,

where u(x, y) =
(
χ{|x|>1}+χ{|y|>1}

)
(1− x−1). Note that by a standard

application of Lebesgue's di�erentiation theorem, we have thatMµf ≥
|f | µ-almost everywhere. Therefore, (3.4) will follow at once from the

above estimate, if we manage to establish the majorization

(3.5) u(x, y) ≤ γp(c
p
px

p − χ{y>1}), y ≥ x ≥ 0,

for some γp > 0. We will prove that γp = (2 − 2p/(p+1))/(2p/(p+1) − 1)

works. We consider separately three cases. If y ≤ 1, then also x ≤ 1

and (3.5) is obvious: 0 ≤ γpc
p
px

p. Suppose that y > 1 and x ≤ 1. Then

the estimate becomes

(3.6) 1− x−1 − γp(cppxp − 1) ≤ 0.

This is an easy elementary estimate. Denoting the left-hand side by

Fp(x), we check that Fp(x0) = F ′p(x0) = 0, where x0 = (p+1)(2p/(p+1)−
1)/p ∈ (0, 1) (note that the estimate x0 < 1 is equivalent to 2p/(p+1) −
1 ≤ p/(p + 1), which is due to the convexity of s 7→ 2s − 1 on [0, 1]).

It remains to observe that F (0) = −∞, F (+∞) = −∞ and that the

derivative F ′ is continuous on (0,∞), vanishing only at x0.

It remains to check (3.5) for x > 1 and y > 1. The estimate reads

2(1− x−1)− γp(cppxp − 1) ≤ 0

and can be proved exactly in the same manner as above. We omit

the details and just mention that the left-hand side, considered as a

function of x, vanishes along with its derivative at the point x1 =

(p+ 1)(2− 21/(p+1))/p (one can also get the inequality x1 > 1 invoking

the suitable convexity argument). �

Sharpness of (1.6) for the Lebesgue measure. Let us start with some

informal arguments showing how to discover the extremal function.

First, recall the points (x, y) at which both sides of (3.5) are equal.

These special points are of the three types: (0, y), where y ≤ 1; (x0, y),

where y > 1; and (x1, y), where y > 1. This suggests that the extremal
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function f should take values in the set {0, x0, x1}. Furthermore, mo-

tivated by the examples in the Lp bound, it seems plausible to assume

that f is even and radially decreasing. So, set

f = x0χ[−b,−a) + x1χ[−a,a] + x0χ(a,b],

for some parameter 0 < a < b. By a standard dilation, we may assume

that a = 1. To guess the value of b, motivated by the above proof of

the weak-type bound, we pick b so thatM|·|f = 1 on [−b, b]. Since
1

|[−1, b]|

∫ b

−1
f−1ds =

2x−11 + (b− 1)x−10

b+ 1
,

the choice b = (x−10 − 2x−11 + 1)/(x−10 − 1) implies that M|·|f ≥ 1 on

[−1, b] and hence, by symmetry, on the whole interval [−b, b]. Conse-

quently, for any λ < 1 we have

λp|{M|·|f > λ}|
‖f‖pLp

≥ λp · 2b
2(b− 1)xp0 + 2xp1

,

and the latter expression is precisely λpcpp. Letting λ→ 1, we see that

the optimal constant in (1.6) cannot be smaller than cp. �

4. Stability estimates

Here the reasoning will be more technical and involved. We start

with the following two technical lemmas.

Lemma 4.1. For any p ≥ 2 and any t ≥ 0 we have

(p+ 1)tp + 1− ptp+1 + Cp|t− Cp|p − (Cp+1
p + 1)(1− C−pp tp) ≤ 0.

Proof. Denote the left-hand side by F (t). If t ≤ Cp, then

F ′(t) = ptp−1
[
(p+ 1)(1− t)− Cp(Cpt−1 − 1)p−1 + Cp + C−pp

]
.

Introduce the new variable s = t−1 ∈ [C−1p ,∞) and denote the expres-

sion in the square brackets by G(s). We have G′(s) = (p + 1)s−2 −
(p − 1)C2

p(Cps − 1)p−2: obviously, G′ is decreasing, G′(C−1p ) > 0 and

lims→∞G
′(s) < 0. Consequently, there is s0 > C−1p such that G is

increasing on (C−1p , s0) and decreasing on (s0,∞). But G(C−1p ) = 0

and lims→∞G(s) = −∞, so there exists s1 > s0 such that G > 0 on

(C−1p , s1) and G < 0 on (s1,∞). Because F ′(t) and G(t−1) have the

same sign, we see that F is decreasing on (0, s−11 ) and increasing on
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(s−11 , Cp). However, we have F (0) = F (Cp) = 0, so the desired estimate

holds on [0, Cp]. For t ∈ (Cp, 1] we argue similarly: we compute that

F ′(t) = ptp−1
[
(p+ 1)(1− t) + Cp(1− Cpt−1)p−1 + Cp + C−pp

]
and denote the expression in the square brackets by G(s), where s =

t−1 ∈ (0, C−1p ]. Observe that G(C−1p ) = 0 and

G′(s) = (p+1)s−2− (p−1)C2
p(1−Cps)p−2 ≥ (p+1)C2

p− (p−1)C2
p > 0.

This implies that G is negative on (0, C−1p ) and hence F is decreasing

on (Cp,∞). Since F (Cp) = 0, the assertion holds also for t > Cp. �

Lemma 4.2. For any 0 < p < 2 and any t ≥ 1 we have

(p+ 1)tp + 1− ptp+1 + βpt
p−2(t− Cp)2 − (Cp+1

p + 1)(1− C−pp tp) ≤ 0,

where βp = pC−1p /2.

Proof. If we substitute s = t−1 ≤ 1, the inequality can be rewritten as

G(s) := p+ 1 + sp − ps−1 + βp(1− Cps)2 − (Cp+1
p + 1)(sp − C−pp ) ≤ 0.

We compute directly thatG(C−1p ) = G′(C−1p ) = 0 andG′′(s) = −2ps−3−
p(p− 1)Cp+1

p sp−2 + 2βpC
2
p . We will prove that G′′ < 0 on (0, C−1p ) and

G′ < 0 on (C−1p , 1); this will clearly yield the claim.

For 1 ≤ p < 2 the estimate G′′(s) < 0 for s < C−1p is trivial (we

have −2ps−3 ≤ −2pCp < −2βpC
2
p and −p(p − 1)Cp+1

p sp−2 ≤ 0), for

0 < p < 1 we write

G′′(s) = ps−3[−2 + (1− p)(Cps)p+1] + pCp

≤ ps−3[−2 + (1− p)] + pCp ≤ −p(p+ 1)C3
p + pCp < 0.

To show that G′(s) < 0 for s > C−1p , we apply the mean-value theorem

to obtain

G′(s) = −p(Cps− 1)s−2
[

(Cps)
p+1 − 1

Cps− 1
− 2βpCps

2

p

]
≤ −p(Cps− 1)s−2(p+ 1− s2) < 0. �

We are ready for the stability estimate.
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Proof of (1.7). Let ε > 0 and suppose that f is a measurable function

such that ‖Mµf‖Lp > (Cp− ε)‖f‖Lp . We rewrite the estimate (3.1) in

the equivalent form

(4.1)

∫
R
w(f,Mµf)dµ ≥ 0,

where w(x, y) = (p+ 1)yp +xp− pyp+1x−1. Now we consider two cases.

If p ≥ 2, then Lemma 4.1 gives

w(x, y) ≤
Cp+1
p + 1

Cp
p

(Cp
px

p − yp)− Cp|y − Cpx|p

(it su�ces to divide throughout by xp and substitute t = y/x). Com-

bining this estimate with the previous inequality gives

Cp+1
p + 1

Cp
p

(
Cp
p‖f‖

p
Lp − ‖Mµf‖pLp

)
− Cp‖Mµf − Cpf‖pLp ≥ 0,

and hence, by Bernoulli's inequality,

‖Mµf − Cpf‖pLp ≤
Cp+1
p + 1

Cp

(
1−

(
1− ε

Cp

)p)
‖f‖pLp

≤
p(Cp+1

p + 1)ε

C2
p

‖f‖pLp ≤ 2pCp
pε‖f‖

p
Lp .

This gives the assertion. For 0 < p < 2 the proof is similar, but we

need an additional use of the Hölder inequality. The application of

Lemma 4.2 gives

w(x, y) ≤
Cp+1
p + 1

Cp
p

(Cp
px

p − yp)−
pC−1p

2
yp−2(y − Cpx)2,

which combined with (4.1) (and (1.3)) yields∫
R
(Mµf)p−2(Mµf − Cpf)2dµ

≤ 2(p+ 1)Cp(Cp − 1)

p
(Cp

p‖f‖
p
Lp − ‖Mµf‖pLp)

≤ 2(p+ 1)Cp(Cp − 1)

p
· Cp

p

(
1−

(
1− ε

Cp

)p)
‖f‖pLp

(in the �rst line, we have used the convention ∞ · 0 = 0). If p ≥ 1,

then (1− ε/Cp)p ≥ 1− pε/Cp and 2(p+ 1)(Cp − 1) ≤ 4C2
p , so

(4.2)

∫
R
(Mµf)p−2(Mµf − Cpf)2dµ ≤ 4Cp+2

p ε‖f‖pLp .
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On the other hand, if p < 1, then (1 − ε/Cp)p ≥ 1 − ε/Cp and 2(p +

1)(Cp−1)/p ≤ 4C2
p : the latter bound holds since Cp > (p+1)/p (which

follows directly from (1.3): pCp+1
p = (p+ 1)Cp

p + 1 > (p+ 1)Cp
p). Thus,

(4.2) holds also for p < 1. Therefore, by (1.4) and the Hölder inequality

with exponents 2/p and 2/(2− p), we obtain

‖Mµf − Cpf‖Lp ≤
(∫

R
(Mµf)p−2(Mµf − Cpf)2dµ

)1/2

‖Mµf‖1−p/2Lp

≤ 2C2
pε

1/2‖f‖Lp .

(4.3)

This completes the proof. �

Now we will handle the optimality of the exponents in (1.7). We

consider the cases 0 < p < 2 and p ≥ 2 separately. From now on, we

assume that µ is the Lebesgue measure.

Sharpness of the exponent, the case p ≥ 2. Let 0 < η < C−pp be a �xed

parameter and consider the function

f(x) =
p+ 1

p
η−1/pχ[−η,η](x) + |x|−1/pχ[−1,1]\[−η,η](x).

Note that
∫ η
−η f

−1ds = 2p
p+1

η1+1/p =
∫ η
−η g

−1ds, where g(s) = |s|−1/p.
Therefore, if x ∈ [Cp

pη, 1], then −C−pp x ∈ [−1,−η] and consequently,

M|·|f(x) ≥

(
1

|[−C−pp x, x]|

∫ x

−C−pp x

f−1ds

)−1
=M|·|g(x) = Cpg(x) = Cpf(x),

(4.4)

which by symmetry holds also for x ∈ [−1,−Cp
pη]. Clearly, we also

have

(4.5) M|·|f(x) = f(x) =
p+ 1

p
η−1/p on [−η, η].
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Therefore, by (4.4) and Bernoulli's inequality,

‖M|·|f‖Lp − Cp‖f‖Lp

≥ Cp

(
2

∫ 1

Cppη

s−1ds

)1/p

− Cp
(

2

∫ 1

η

s−1ds+ 2

(
p+ 1

p

)p)1/p

= 21/pCp

[(
− ln(Cp

pη)
)1/p − (− ln η +

(
p+ 1

p

)p)1/p
]

≥ −21/pCp
p

(
− ln(Cp

pη)
)1/p−1(

lnCp
p +

(
p+ 1

p

)p)

= −Cp
p

(
lnCp

p +

(
p+ 1

p

)p) − ln(Cp
pη)

− ln η +
(
p+1
p

)p
1/p

×

× (− ln(Cp
pη))−1 · ‖f‖Lp = εη‖f‖Lp ,

with εη = Θ((− ln η)−1) as η → 0. Furthermore, by (4.5),

‖M|·|f − Cpf‖Lp

≥
(∫ η

−η
|M|·|f − Cpf |pds

)1/p

= 21/p (p+ 1)(Cp − 1)

p

= 21/p (p+ 1)(Cp − 1)

p

(
−2 ln η + 2

(
p+ 1

p

)p)−1/p
‖f‖Lp .

The latter expression behaves as ε
1/p
η ‖f‖Lp as η → 0 (in the sense

that the ratio of the two quantities converges to a nonzero and �nite

limit). This proves that the exponent 1/p is indeed optimal in the

range 2 ≤ p <∞. �

Sharpness of the exponent, the case 0 < p < 2. Here the analysis is a

little more complicated. Let η ∈ (0, p) be a given number and set

α = p+ η, β = p− η. Consider the function

f(x) = (1 + 1/α)−1|x|−1/αχ[−1,1](x) + (1 + 1/β)−1|x|−1/βχR\[−1,1](x).

Then we have

(4.6) ‖f‖Lp =

[
2

(1 + 1/α)p(1− p/α)
+

2

(1 + 1/β)p(p/β − 1)

]1/p
,
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which behaves as η−1/p as η → 0 (as above, this means that the ratio of

the two expressions converges to a nontrivial limit). Let us analyze the

functionM|·|f precisely. Arguing as in (3.2), we prove thatM|·|f(x) =

Cαf(x) for |x| ≤ 1, for su�ciently small η. Next, if x > 1, we compute

directly that

M|·|f(x) ≥

(
1

|[−C−ββ x, x]|

∫ x

−C−ββ x

f−1(s)ds

)−1

=



(
C
−β(1+1/α)
β x1/α + x1/β

1 + C−ββ

)−1
if x < Cβ

β ,(
C−β−1β x1/β + x1/β

1 + C−ββ

)−1
if x ≥ Cβ

β ,

which is essentially Cβf(x). Indeed, for x ≥ Cβ
β we have equality, while

for x ∈ (1, Cβ
β ),

(
C
−β(1+1/α)
β x1/α + x1/β

1 + C−ββ

)−1
− Cβf(x)

=

(
C
−β(1+1/α)
β x1/α + x1/β

1 + C−ββ

)−1
−

(
C−β−1β x1/β + x1/β

1 + C−ββ

)−1

=
1 + C−ββ

Cβ+1
β + 1

·
1− (C−ββ x)1/α−1/β

C
−β(1+1/α)
β x1/α + x1/β

= −O(η)

as η → 0, and hence

∫ ∞
1

(M|·|f(s))p ≥ Cp
β

∫ ∞
1

f(s)pds−Θ(η).
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Putting all the above observations together, we get

‖M|·|f‖pLp

≥ 2Cp
α

∫ 1

0

fpds+ 2Cp
β

∫ ∞
1

fpds−Θ(η)

= Cp
p‖f‖

p
Lp + 2(Cp

α − Cp
p)

∫ 1

0

fpds+ 2(Cp
β − C

p
p)

∫ ∞
1

fpds−Θ(η)

= Cp
p‖f‖

p
Lp +

2(Cp
α − Cp

p)

(1 + 1/α)p(1− p/α)
+

2(Cp
β − Cp

p)

(1 + 1/β)p(p/β − 1)
−Θ(η)

= Cp
p‖f‖

p
Lp +

2α(Cp
α − Cp

p)

(1 + 1/α)pη
+

2β(Cp
β − Cp

p)

(1 + 1/β)pη
−Θ(η).

Now, there is κp > 0 depending only on p such that Cp
α−Cp

p = −κpη+

O(η2) and Cp
β − Cp

p = κpη +O(η2). Plugging this above, we see that

‖M|·|f‖pLp ≥ Cp
p‖f‖

p
Lp −Θ(η) = (Cp

p −Θ(η2))‖f‖pLp ,

since ‖f‖pLp behaves as Θ(η−1) (see (4.6)). Therefore, we obtain

(4.7) ‖M|·|f‖Lp ≥ (Cp − ε)‖f‖Lp ,

with ε = Θ(η2). On the other hand,

‖M|·|f − Cpf‖Lp ≥ ‖M|·|f − Cpf‖Lp(−1,1)

= (Cp − Cα)

(∫ 1

−1
fpds

)1/p

= Θ(η)‖f‖Lp ,

and the latter expression behaves as ε1/2‖f‖Lp . This yields the opti-

mality of the exponent. �
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