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Abstract. Let HT, HR denote the Hilbert transforms on the circle and real

line, respectively. The paper contains the proofs of the sharp estimates

|{ζ ∈ T : HTf(ζ) ≥ 1}| ≤ 2π||f ||1, f ∈ L1(T)

and
|{x ∈ R : HRf(x) ≥ 1}| ≤ ||f ||1, f ∈ L1(R).

A related estimate for orthogonal martingales is also established.

1. Introduction

Our motivation comes from a very basic question about the Hilbert transform
HT on the unit circle. Recall that this operator is given by the singular integral

HTf(eiθ) =
1

2π
p.v.

∫ π

−π
f(t) cot

θ − t
2

dt for f ∈ L1(T).

A classical result of M. Riesz [10] states that for any 1 < p < ∞ there is a finite
universal constant Cp such that

||HTf ||p ≤ Cp||f ||p, f ∈ Lp(T).(1.1)

For p = 1 the above estimate does not hold with any C1 <∞, but, as Kolmogorov
[8] has shown, there is an absolute c1 <∞ such that

(2π)−1|{ζ ∈ T : |HTf(ζ)| ≥ 1}| ≤ c1||f ||1, f ∈ L1(T).(1.2)

The optimal values of the constants Cp and c1 were determined in the seventies:
Pichorides [9] and Cole (unpublished: see Gamelin [6]) proved that the best constant
in (1.1) equals cot π

2p∗ , where p∗ = max{p, p/(p − 1)}, and Davis [4] showed that
the optimal choice for the constant c1 in (1.2) is(

1
π

∫
R

∣∣ 2
π log |t|

∣∣
t2 + 1

dt

)−1

=
1 + 1

32 + 1
52 + 1

72 + . . .

1− 1
32 + 1

52 − 1
72 + . . .

= 1.347 . . . .

We turn to the nonperiodic case. Recall that the Hilbert transform HR on the real
line is defined by

HRf(x) =
1
π

p.v.
∫

R

f(t)
x− t

dt for f ∈ L1(R).

1991 Mathematics Subject Classification. Primary: 31B05, 60G44. Secondary: 42A50, 42A61.
Key words and phrases. Hilbert transform, martingale, differential subordination, weak type

inequality, best constants.
Research partially supported by MNiSW Grant N N201 397437.

1



2 ADAM OSȨKOWSKI

The above strong and weak-type inequalities can be extended to analogous state-
ments for HR and the optimal constants remain unchanged (see e.g. [10], [12]).

The objective of this paper is to determine the best constant in the one-sided
version of the weak type estimate. The result is the following.

Theorem 1.1. We have

(2π)−1|{ζ ∈ T : HTf(ζ) ≥ 1}| ≤ ||f ||1 for any f ∈ L1(T),

|{x ∈ R : HRf(x) ≥ 1}| ≤ ||f ||1 for any f ∈ L1(R).
(1.3)

Both estimates are sharp.

In fact, we shall establish a more general statement in the martingale theory.
Let (Ω,F ,P) be a complete probability space, filtered by (Ft)t≥0, a nondecreasing
family of sub-σ-algebras of F . Assume further that F0 contains all the events of
probability 0. Let X = (Xt)t≥0, Y = (Yt)t≥0 be two adapted real martingales
with continuous paths and let [X,Y ] denote their quadratic covariance process (see
e.g. Dellacherie and Meyer [5] for details). We say that the processes X and Y
are orthogonal, if [X,Y ] is constant almost surely. Following Bañuelos and Wang
[1] and Wang [11], we say that Y is differentially subordinate to X, if the process
([X,X]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function of t.

Bañuelos and Wang [1], [2] proved the following versions of (1.1) and (1.2) (see
also Choi [3] and Janakiraman [7] for related results). Here and below, we use the
notation ||X||p = supt≥0 ||Xt||p for 1 ≤ p <∞.

Theorem 1.2. Assume that X, Y are orthogonal martingales such that Y is dif-
ferentially subordinate to X. Then

||Y ||p ≤ cot
π

2p∗
||X||p

for 1 < p <∞ and

P(sup
t≥0
|Yt| ≥ 1) ≤

(
1
π

∫
R

∣∣ 2
π log |t|

∣∣
t2 + 1

dt

)−1

||X||1.

Both estimates are sharp.

We shall establish the following probabilistic counterpart of Theorem 1.1.

Theorem 1.3. Assume that X, Y are orthogonal martingales such that Y is dif-
ferentially subordinate to X and Y0 = 0. Then

(1.4) P(sup
t≥0

Yt ≥ 1) ≤ ||X||1

and the inequality is sharp.

A few words about the organization of the paper. The proofs of (1.3) and (1.4)
rest on the existence of a certain special superharmonic function. The method is
explained in Section 2 and the function is constructed in Section 3. In the final part
of the paper we show that the one-sided estimates do not hold with any constant
smaller than 1.
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2. Proofs of (1.3) and (1.4)

The central role in the paper is played by the following special function on R2.

Theorem 2.1. There is a continuous function U : R2 → R which satisfies the
following properties.

(i) For any x, y ∈ R we have U(x, y) ≥ 1{y≤0} − |x|.
(ii) For any x ∈ R we have U(x, 1) ≤ 0.
(iii) For any y ∈ R, the function U(·, y) : x 7→ U(x, y) is concave on R.
(iv) U is superharmonic.

This theorem will be shown in the next section. Now let us see how it leads to
the announced estimates.

Proof of (1.4). Consider a C∞ radial function g : R2 → [0,∞), supported on the
ball of center (0, 0) and radius 1, satisfying

∫
R2 g = 1. For any δ > 0, define

Uδ : R2 → R by the convolution

Uδ(x, y) =
∫

R2
U(x+ δr, y + δs)g(r, s)drds.

Clearly, the function U δ is of class C∞ and inherits the concavity along the hor-
izontal lines as well as the superharmonicity property. In addition, we have the
majorization U ≥ U δ, since U is superharmonic and g is radial. Consequently,

(2.1) Uδ(x, 1) ≤ 0 for any x ∈ R.

Next, observe that by (i),

Uδ(x, y) ≥
∫

R2
1{y+δs≤0}g(r, s)drds−

∫
R2
|x+ δr|g(r, s)drds

≥ 1{y≤−δ} − (|x|+ δ).
(2.2)

Let X, Y be martingales as in the statement. Using localization, we may assume
that X, Y are bounded - this will guarantee the integrability of all the random
variables appearing below. Fix ε > 0 and introduce the stopping time τ = inf{t ≥
0 : Yt ≥ 1 + ε}. An application of Itô’s formula gives

(2.3) Uδ(Xτ∧t, 1− Yτ∧t) = Uδ(X0, 1− Y0) + I1 + I2/2,

where

I1 =
∫ τ∧t

0+

U δx(Xs, 1− Ys)dXs +
∫ τ∧t

0+

Uδy (Xs, 1− Ys)dYs,

I2 =
∫ τ∧t

0+

Uδxx(Xs, 1− Ys)d[X,X]s

+ 2
∫ τ∧t

0+

Uδxy(Xs, 1− Ys)d[X,Y ]s +
∫ τ∧t

0+

U δyy(Xs, 1− Ys)d[Y, Y ]s.

Observe that Uδ(X0, 1−Y0) = U δ(X0, 1) ≤ 0 in virtue of (2.1). Next, we have EI1 =
0, since both stochastic integrals in I1 are martingales. Using the orthogonality of
X and Y , we see that the middle term in I2 vanishes. Combining this with the
inequality Uδxx ≤ 0 and the differential subordination of Y to X, we obtain

I2 ≤
∫ τ∧t

0+

U δxx(Xs, 1− Ys)d[Y, Y ]s +
∫ τ∧t

0+

Uδyy(Xs, 1− Ys)d[Y, Y ]s,
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which is nonpositive, since Uδ is superharmonic. Plugging all these facts into (2.3)
gives EUδ(Xτ∧t, 1− Yτ∧t) ≤ 0 and hence, by (2.2),

P(Yτ∧t ≥ 1 + δ) ≤ E(|Xτ∧t|+ δ).

Letting δ → 0, we get P(Yτ∧t > 1) ≤ E|Xτ∧t| ≤ ||X||1. Therefore,

P(sup
t≥0

Yt ≥ 1 + 2ε) ≤ lim
t→∞

P(|Yτ∧t| > 1) ≤ ||X||1.

It suffices to apply this bound to a new pair ((1 + 2ε)X, (1 + 2ε)Y ) (for which the
orthogonality and differential subordination hold) and let ε→ 0. �

Proof of (1.3) in the periodic case. This is standard. Let B be a planar Brownian
motion starting from 0 ∈ C and let τ = inf{t ≥ 0 : |Bt| = 1}. Let u, v be the
harmonic extensions (by Poisson integrals) of f and HTf to the unit disc. Then u,
v satisfy Cauchy-Riemann equations and we have v(0) = 0. Thus the martingales
X = (u(Bτ∧t))t≥0, Y = (v(Bτ∧t))t≥0 are orthogonal, Y is differentially subordinate
to X and Y0 = 0. To verify these conditions, use the identities

[X,X]t = |u(0)|2 +
∫ τ∧t

0+

|∇u(Bs)|2ds, [Y, Y ]t =
∫ τ∧t

0+

|∇v(Bs)|2ds

and

[X,Y ]t =
∫ τ∧t

0+

∇u(Bs) · ∇v(Bs)ds.

Consequently, since Bτ is uniformly distributed on the unit circle, we obtain

(2π)−1|{ζ ∈ T : HTf(ζ) ≥ 1}| ≤ P(sup
t
Yt ≥ 1) ≤ ||X||1 = ||u||1. �

Proof of (1.3) in the nonperiodic case. To deduce the weak-type estimate for the
Hilbert transform on the line, we use a standard argument known as ”blowing up
the circle”, which is due to Zygmund ([12], Chapter XVI, Theorem 3.8). Let f be
an integrable function on R. For a given positive integer n and x ∈ R, put

gn(x) =
1

2πn
p.v.

∫ πn

−πn
f(t) cot

x− t
2n

dt.

As shown in [12], we have gn → HRf almost everywhere as n→∞. On the other
hand, the function

x 7→ gn(nx) =
1

2π
p.v.

∫ π

−π
f(nt) cot

x− t
2

dt

is the periodic Hilbert transform of the function fn : x 7→ f(nx), |x| ≤ π, so

|{x ∈ (−πn, πn] : gn(x) ≥ 1}| = n
∣∣{|x| ∈ (−π, π] : HTfn(x) ≥ 1}

∣∣
≤ n

∫ π

−π
|fn(x)|dx =

∫ πn

−πn
|f(x)|dx ≤ ||f ||1.

Now let n → ∞ to obtain |{x ∈ R : HRf(x) > 1}| ≤ ||f ||1. To get the non-strict
inequality on the left, pick ε > 0 and apply the above estimate to f/(1− ε). Then

|{x ∈ R : HRf(x) ≥ 1}| ≤ |{x ∈ R : HRf(x) > 1− ε}| ≤ 1
1− ε

||f ||1

and it remains to let ε→ 0. �
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3. A special function - proof of Theorem 2.1

Throughout, H will denote the upper halfplane R× (0,∞). Introduce the func-
tion U : H → R given by the Poisson integral

U(α, β) =
1
π

∫ ∞
0

β
(

1− 1
2

∣∣∣√t−√t−1
∣∣∣)

(α− t)2 + β2
dt.

The function U is harmonic on H and satisfies, for α 6= 0,

(3.1) lim
β↓0
U(α, β) =

(
1− 1

2

∣∣∣√α−√α−1
∣∣∣) 1{α>0}.

Let K be the conformal mapping of H onto H \ {ai : a ≥ 1}, defined by

(3.2) K(z) =
1
2

(√
z − 1√

z

)
,

and let L stand for its inverse. We easily derive that

L(z) = 2z2 + 1 + 2z
√
z2 + 1.

Here and below we use the following branch of the complex square root: if z = reiθ

for some r ≥ 0 and θ ∈ (−π, π], then
√
z =
√
reiθ/2.

Now we are ready to introduce the special function. First we define it on the set
H\{ai : a ≥ 1} by U(x, y) = U(L(x, y)). Using (3.1), we see that U can be extended
to a continuous function on R2, by putting U(x, y) = 1 − |x| on R × (−∞, 0] and
U(0, y) = 0 for y ≥ 1.

Lemma 3.1. The function U enjoys the following properties.
(i) U is harmonic on H \ {ai : a ≥ 1}.
(ii) The function (x, y) 7→ U(x, y) + |x| is bounded on R2.
(iii) U satisfies the symmetry condition U(x, y) = U(−x, y) for all x, y.

Proof. (i) This is obvious: U is harmonic on H, so the function U is a real part of
an analytic function on H \ {ai : a ≥ 1}.

(ii) Of course, it suffices to establish the boundedness on H. Introduce the
function A : H → R by

A(α, β) =
1

2π

∫ ∞
0

β
(√

t−
√
t−1
)

(α− t)2 + β2
dt.

It is not difficult to prove, using the residuum calculus, that

A(α, β) =
1
π

∫
R

β(s2 − 1)
(α− s2)2 + β2

ds = ReK(α, β)

(K is defined by (3.2)) and hence A(L(x, y)) = x. Now, when x, y > 0, then
|L(x, y)| ≥ 1 and |U(x, y) + |x|| = |U(L(x, y)) +A(L(x, y))|; but, for α2 + β2 ≥ 1,

|U(α, β) +A(α, β)| ≤ 1
π

∫ ∞
0

β

(α− t)2 + β2
dt+

1
π

∫ 1

0

β(
√
t−1 −

√
t)

(α− t)2 + β2
dt ≤ C

for some absolute C. Similarly, if x < 0 and y > 0, then |L(x, y)| ≤ 1, |U(x, y) +
|x|| = |U(L(x, y))−A(L(x, y))| and, for α2 + β2 ≤ 1 and some universal C,

|U(α, β)−A(α, β)| ≤ 1
π

∫ ∞
0

β

(α− t)2 + β2
dt+

1
π

∫ ∞
1

β(
√
t−
√
t−1)

(α− t)2 + β2
dt ≤ C.
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(iii) The function S(x, y) = U(x, y) − U(−x, y) is continuous on R2, harmonic
on H \ {ai : a ≥ 1} and S = 0 on {(x, y) : y ≤ 0 or x = 0}. Furthermore, S is
bounded, in view of the previous part. Thus S ≡ 0. �

To study the further properties of U , we shall need the following family of auxi-
liary functions. For b > 1, let fb : [1,∞)→ R be given by

fb = 1[1,b] −
b− 1

2
1(b,∞).

Next, let Φb : [0, 1]→ R be defined by the formula

Φb(a) = 2a
√

1− a2

∫ ∞
1

fb(t)
t2 − 2(1− 2a2)t+ 1

dt

=
b+ 1

2
arctan

b+ 2a2 − 1
2a
√

1− a2
− arctan

a√
1− a2

− (b− 1)π
4

.

Lemma 3.2. (i) For any b > 1 the function Φb is convex.
(ii) The function U(0, ·) is convex on [0,∞).

Proof. (i) A bit lengthy computations yield

Φ′′b (a) =
2b(b− 1)a√

1− a2(b2 − 2b(1− 2a2) + 1)
+

16ab2(b− 1)
√

1− a2

(b2 − 2b(1− 2a2) + 1)2
≥ 0.

(ii) When a ∈ (0, 1), then L(ai) = 1−2a2 +2ai
√

1− a2 belongs to the unit circle
and hence, using the substitution t := 1/t, we derive that

(3.3) U(0, a) =
1
π

∫ ∞
1

2a
√

1− a2(2−
√
t+
√
t−1)

t2 − 2(1− 2a2)t+ 1
dt.

However, we have the identity

2−
√
t+
√
t−1 =

∫ ∞
1

fb(t)
db
b3/2

, t ≥ 1.

Consequently, applying Fubini’s theorem, we obtain that

U(0, a) =
1
π

∫ ∞
1

Φb(a)
db
b3/2

and by the previous part, U(0, ·) is convex on [0, 1]. Obviously, this function is also
convex on [1,∞) and hence we will be done if we prove that lima↑1 Uy(0, a) = 0. To
do this, we differentiate both sides of (3.3) with respect to a and obtain

Uy(0, a) =
2
π

√
1− a2

∫ ∞
1

2−
√
t+
√
t−1

t2 − 2(1− 2a2)t+ 1
dt

− 2a
√

1− a2

π

∫ ∞
1

(2−
√
t+
√
t−1) · 8at

(t2 − 2(1− 2a2)t+ 1)2
dt

− 2a2

π
√

1− a2

∫ ∞
1

2−
√
t+
√
t−1

t2 − 2(1− 2a2)t+ 1
dt.

(3.4)

Obviously, the first two summands on the right vanish as a ↑ 1. To deal with the
third one, we use the integration by parts to get∫ ∞

1

2−
√
t+
√
t−1

t2 + 2t+ 1
dt = 0



HILBERT TRANSFORM 7

and hence∫ ∞
1

2−
√
t+
√
t−1

t2 − 2(1− 2a2)t+ 1
dt =

∫ ∞
1

2−
√
t+
√
t−1

t2 − 2(1− 2a2)t+ 1
dt−

∫ ∞
1

2−
√
t+
√
t−1

t2 + 2t+ 1
dt

= 4(1− a2)
∫ ∞

1

(2−
√
t+
√
t−1)t

(t2 − 2(1− 2a2)t+ 1)(t2 + 2t+ 1)
dt.

Therefore the third term in (3.4) tends to 0 as a ↑ 1 and the proof is complete. �

Lemma 3.3. We have Uxx ≤ 0 on H \ {ai : a ≥ 1}.

Proof. By Lemma 3.1 (i), the claim is equivalent to saying that Uyy ≥ 0 on H \
{ai : a ≥ 1}. By the symmetry of U , it suffices to prove that Uyy(x, y) ≥ 0 for
x, y > 0. Using Schwarz reflection principle, we see that the continuous function
V : [0,∞)× R→ R, given by

V (x, y) =

{
U(x, y) if y ≥ 0,
−U(x,−y)− 2x+ 2 if y < 0,

is harmonic; furthermore, (x, y) 7→ V (x, y) + x is bounded, in view of Lemma 3.1
(ii). Fix h > 0 and consider a continuous function W on [0,∞)× [0,∞), defined by

W (x, y) = 2V (x, y)− V (x, y − h)− V (x, y + h).

This function is bounded, harmonic and nonpositive at the boundary of its domain,
as we shall prove now. Indeed, W (x, 0) = 2− 2x− (2− 2x) = 0; if y ≥ h, then

W (0, y) = 2U(0, y)− U(0, y − h)− U(0, y + h) ≤ 0,

by Lemma 3.2 (ii); finally, for 0 < y < h,

V (0, y + h) + V (0, y − h) = U(0, y + h) + 2− U(0, h− y)

= U(0, y + h) + 2U(0, 0)− U(0, h− y)

≥ 2U(0, y) = 2V (0, y),

again by Lemma 3.2 (ii), because both y and h − y lie between 0 and y + h.
Consequently, W ≤ 0 and the claim follows, since h > 0 was arbitrary. �

Proof of Theorem 2.1. (i) We may assume that x, y > 0. Combining Lemma 3.1
(ii) with Lemma 3.3 we get that Ux ≥ −1 on (0,∞) × (0,∞). Hence it suffices to
prove that U(0, y) ≥ 0 for y > 0, but this follows directly from Lemma 3.2 (ii).

(ii) By the symmetry and harmonicity of U on the strip R × (0, 1), we have
Ux(0, y) = 0 for y ∈ (0, 1). Consequently, by Lemma 3.3, for such a fixed y the
function U(·, y) is nonincreasing on [0,∞). By continuity, this is also true for y = 1
and hence U(x, 1) = U(|x|, 1) ≤ U(0, 1) = 0.

(iii) By Lemma 3.3, U is concave along the line R × {y} when y ≤ 1. To deal
with y > 1, it suffices to prove that U(x, y) ≤ 0 for x > 0 (again due to Lemma
3.3). However, by Lemma 3.3, for any fixed x the function U(x, ·) is convex on
[0,∞). Thus, it is nonincreasing, since otherwise Lemma 3.1 (ii) would be violated,
and hence, for y > 1, U(x, y) ≤ U(x, 1) ≤ 0, as we have just proved above.

(iv) The function U is harmonic on R2 \ (S1 ∪ S2 ∪ S3), where S1 = R × {0},
S2 = {ai : a < 0} and S3 = {ai : a ≥ 1}, and thus all we need is to verify the
mean-value inequality for the points from S1 ∪ S2 ∪ S3. This property is clear on
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S1 ∪ S2, because U(x, y) ≤ 1 − |x| on R2 (we have shown above that U(x, ·) is
nonincreasing on [0,∞)). To deal with S3, pick a > 1 and note that for r < a− 1,

1
|B((0, a), r)|

∫
B((0,a),r)

U(x, y) dxdy ≤ 0 = U(0, a).

Thus the claim follows from the continuity of U . �

4. Sharpness

Clearly, it suffices to prove the optimality of the constant 1 in the estimate for
HR. Let D denote the unit disc of C and consider a conformal mapping M(z) =
−(1 − z)2/(4z) of D ∩ H onto H. Let N stand for the inverse of M . We easily
compute that N maps [0, 1] onto the half-circle {eiθ : 0 ≤ θ ≤ π} and the set
R \ [0, 1] onto (−1, 1). More precisely, when x ∈ [0, 1], we have

N(x) = eiθ, where θ is determined by x = sin2(θ/2)

and

N(x) =

{
−2x+ 1 + 2

√
x2 − x if x > 1,

−2x+ 1− 2
√
x2 − x if x < 0.

Let α ∈ (0, 1) be a fixed number and let F be another conformal mapping, which
maps D onto H \ {ai : a ≥ 1} and satisfies F (0) = αi. We may and do assume
that F is bounded on the interval [−1, 1], composing F with the rotation z 7→ ζz
if necessary (for some appropriate ζ ∈ T). For any positive integer n, consider the
function fn : R→ R given by fn(x) = −ReF ((N(x))2n). Since F ◦N2n is conformal
and F ((N(z))2n)→ αi as z →∞, we have HRfn(x) = α−ImF ((N(x))2n). Next,∫

R
|fn| =

∫
[0,1]

|fn|+
∫

R\[0,1]

|fn|.

Using the above expressions for N(x), we get∫
[0,1]

|fn| =
∫

[0,1]

|ReF ((N(x))2n)|dx

=
∫ π

0

|ReF (e2niθ)| sin θdθ

=
∫ 2nπ

0

|ReF (eiθ)| sin
(
θ

2n

)
dθ
2n

=
∫ 2π

0

|ReF (eiθ)| · 1
2n

n−1∑
k=0

sin
(
kπ

n
+

θ

2n

)
dθ

=
∫ 2π

0

|ReF (eiθ)| ·
[

1 + cos(π/n)
2n sin(π/n)

cos
(
θ

2n

)
+ sin

(
θ

2n

)]
dθ.

When n→∞, the expression in the square brackets converges to 1/π uniformly on
[0, 2π] and hence

lim
n→∞

∫
[0,1]

|fn| =
1
π

∫ 2π

0

|ReF (eiθ)|dθ.

Next, for any b > 0, the function N takes values in a closed subinterval of [0, 1)
when restricted to (−∞,−b]∪[1+b,∞). Consequently, the sequence N2n converges
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uniformly to 0 on this set. Furthermore, |fn| is bounded on (−b, 0)∪(1, 1+b), since
F is bounded on [−1, 1]. This implies

∫
R\[0,1]

|fn| → 0 and hence

lim
n→∞

||fn||1 =
1
π

∫ 2π

0

|ReF (eiθ)|dθ.

A similar calculation shows that
|{x ∈ R : HRfn(x) ≥ α}| = |{x ∈ R : α− ImF ((N(x))2n) ≥ α}|

≥ |{x ∈ [0, 1] : α− ImF ((N(x))2n) ≥ α}|

=
∫
{θ∈[0,π]:ImF (e2niθ)≤0}

sin θdθ

→ 1
π
|{θ ∈ [0, 2π] : ImF (eiθ) ≤ 0}|.

Therefore, since U ◦ F is harmonic on D (due to Lemma 3.1 (i)), we may write

|{x ∈ R : HRfn(x) ≥ α}| − ||fn||1

→ 1
π

(
|{θ ∈ [0, 2π] : ImF (eiθ) ≤ 0}| −

∫ 2π

0

|ReF (eiθ)|dθ
)

=
1
π

∫ 2π

0

U(F (eiθ))dθ = 2U(F (0)) = 2U(0, α) > 0.

In other words, replacing fn by fn/α, we see that there is a function f on R
satisfying |{x ∈ R : HRf(x) ≥ 1}|/||f ||1 ≥ α. Letting α → 1 we get the desired
sharpness.
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