A SHARP ONE-SIDED BOUND FOR THE HILBERT
TRANSFORM

ADAM OSEKOWSKI

ABsTrACT. Let HT, H® denote the Hilbert transforms on the circle and real
line, respectively. The paper contains the proofs of the sharp estimates

¢ e T:Hf(Q) > 1} < 27llfllx,  feLXT)

and
Kz e R:H f(x) > 1} < | £l]1, feL'(R).

A related estimate for orthogonal martingales is also established.

1. INTRODUCTION

Our motivation comes from a very basic question about the Hilbert transform
HT on the unit circle. Recall that this operator is given by the singular integral

. m 0 —
HTf () = %p.v. [ﬂ F(#) ot = t

dt  for f e LY(T).

A classical result of M. Riesz [10] states that for any 1 < p < oo there is a finite
universal constant C), such that

(1.1) IH fllp < Collfllp,  f € LP(T).

For p = 1 the above estimate does not hold with any C; < oo, but, as Kolmogorov
[8] has shown, there is an absolute ¢; < oo such that

(1.2) @mTHCe T HUF(QI =1 < allfll,  fe LY(T).

The optimal values of the constants C, and c¢; were determined in the seventies:
Pichorides [9] and Cole (unpublished: see Gamelin [6]) proved that the best constant
in (1.1) equals cot 5%=, where p* = max{p,p/(p — 1)}, and Davis [4] showed that

2p*
the optimal choice for the constant ¢; in (1.2) is
-1
1 [ |2 loglt|| I+ 5 +L+5 4.,
— | S dt = T T T =1.347....

We turn to the nonperiodic case. Recall that the Hilbert transform H® on the real
line is defined by

HEf(z) = Tll_p.v./Rgf(_t)tdt for f € L*(R).
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The above strong and weak-type inequalities can be extended to analogous state-
ments for H® and the optimal constants remain unchanged (see e.g. [10], [12]).

The objective of this paper is to determine the best constant in the one-sided
version of the weak type estimate. The result is the following.

Theorem 1.1. We have

@m)THC e T HIf(Q) 2 1} < [Iflh for any f € LY(T),

(13) . :
{z e R:H f(x) 2 11 < |[flh for any f € L' (R).

Both estimates are sharp.

In fact, we shall establish a more general statement in the martingale theory.
Let (2, F,P) be a complete probability space, filtered by (F;):>0, a nondecreasing
family of sub-c-algebras of F. Assume further that Fy contains all the events of
probability 0. Let X = (X;)i>0, ¥ = (Y1)i>0 be two adapted real martingales
with continuous paths and let [X, Y] denote their quadratic covariance process (see
e.g. Dellacherie and Meyer [5] for details). We say that the processes X and Y
are orthogonal, if [X,Y] is constant almost surely. Following Bafiuelos and Wang
[1] and Wang [11], we say that Y is differentially subordinate to X, if the process
(X, X]: — [Y,Y]:)s>0 is nondecreasing and nonnegative as a function of .

Banuelos and Wang [1], [2] proved the following versions of (1.1) and (1.2) (see
also Choi [3] and Janakiraman [7] for related results). Here and below, we use the
notation || X||, = sup,s¢ || X¢||p for 1 < p < o0.

Theorem 1.2. Assume that X, Y are orthogonal martingales such that Y is dif-
ferentially subordinate to X. Then

™
Y]l < cot ﬁllelp

for1 <p<oo and
-1
1 [ |2loglt]|
Psup|Vi| > 1) < | — | E=——"dt Xll1.
(sup Y| > >_<W (B ) X1
Both estimates are sharp.
We shall establish the following probabilistic counterpart of Theorem 1.1.

Theorem 1.3. Assume that X, Y are orthogonal martingales such that Y is dif-
ferentially subordinate to X and Yo = 0. Then

(14) Psup¥; > 1) < [|X]|x
t>0

and the inequality is sharp.

A few words about the organization of the paper. The proofs of (1.3) and (1.4)
rest on the existence of a certain special superharmonic function. The method is
explained in Section 2 and the function is constructed in Section 3. In the final part
of the paper we show that the one-sided estimates do not hold with any constant
smaller than 1.
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2. PrROOFS OF (1.3) AND (1.4)
The central role in the paper is played by the following special function on R2.

Theorem 2.1. There is a continuous function U : R? — R which satisfies the
following properties.
(i) For any z, y € R we have U(x,y)
(i) For any x € R we have U(z,1) <
(iii) For any y € R, the function U(-,y) : x — U(x,y) is concave on R.
(iv) U is superharmonic.

> 1iy<oy — |zl.
0.

This theorem will be shown in the next section. Now let us see how it leads to
the announced estimates.

Proof of (1.4). Consider a C™ radial function g : R? — [0, o), supported on the
ball of center (0,0) and radius 1, satisfying fRQg = 1. For any § > 0, define
U® :R? — R by the convolution

U‘s(x,y):/ U(x + or,y + ds)g(r, s)drds.
R2

Clearly, the function U° is of class C* and inherits the concavity along the hor-
izontal lines as well as the superharmonicity property. In addition, we have the
majorization U > U?, since U is superharmonic and ¢ is radial. Consequently,

(2.1) US(z,1) <0 for any = € R.
Next, observe that by (i),

U5(x,y) 2/ Liy4ss<0y9(r, s)drds—/ |z 4 dr|g(r, s)drds
R2 R2

> lyy<—sy — (|| +9).

Let X, Y be martingales as in the statement. Using localization, we may assume
that X, Y are bounded - this will guarantee the integrability of all the random
variables appearing below. Fix ¢ > 0 and introduce the stopping time 7 = inf{¢ >
0:Y; > 1+¢}. An application of Itd’s formula gives

(2.3) US(Xnt, 1 = Yopns) = U%(Xo,1 = Y0) + 11 + I2/2,

(2.2)

where

TAL TAL
I, = / U2(X,,1—Ys)dX, +/ U (Xs, 1= Ye)dYs,
0+ 0+
TAL
I = / U2 (X,,1—Y,)d[X, X],
0+

TAt TAL
9 é
+2/0+ UM(XSJ—Ys)<;1[X,Y]S+/O+ U, (Xs,1 = Y)d[Y, Y],

Observe that U% (X, 1-Yy) = U%(Xy, 1) < 0in virtue of (2.1). Next, we have EI; =
0, since both stochastic integrals in I; are martingales. Using the orthogonality of
X and Y, we see that the middle term in Is vanishes. Combining this with the
inequality U2, < 0 and the differential subordination of Y to X, we obtain
TAt TAL
B [ VLKLYV Y]+ [ U (1= YL
0+ 0+
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which is nonpositive, since U? is superharmonic. Plugging all these facts into (2.3)
gives EU® (X ns, 1 — Yra¢) <0 and hence, by (2.2),

P(Vire > 1+406) < E(|Xpn| +0).
Letting 6 — 0, we get P(Yrar > 1) < E| X n¢| < [|X]|1. Therefore,

P(supY; > 1+ 2¢) < tlim P(|Yrael > 1) < |1 X|]1.
>0 —o0
It suffices to apply this bound to a new pair ((1 + 2¢)X, (14 2¢)Y) (for which the
orthogonality and differential subordination hold) and let € — 0. O

Proof of (1.3) in the periodic case. This is standard. Let B be a planar Brownian
motion starting from 0 € C and let 7 = inf{¢ > 0 : |By] = 1}. Let u, v be the
harmonic extensions (by Poisson integrals) of f and H” f to the unit disc. Then u,
v satisfy Cauchy-Riemann equations and we have v(0) = 0. Thus the martingales
X = (w(Brat))i>0, Y = (v(Brat))i>0 are orthogonal, Y is differentially subordinate
to X and Yy = 0. To verify these conditions, use the identities

X, X, = [u(0)? + /

0+

TNt TAL
|Vu(Bs)|*ds, [Y,Y]; = / |Vu(B,)|*ds
0+

and
TAL
[X,Y]; = / Vu(By) - Vu(Bg)ds.
0+
Consequently, since B is uniformly distributed on the unit circle, we obtain

@m) M e T HTF(Q) > 1} < P(supY; > 1) < [IX[l = [Julh. O

Proof of (1.3) in the nonperiodic case. To deduce the weak-type estimate for the
Hilbert transform on the line, we use a standard argument known as ”blowing up
the circle”, which is due to Zygmund ([12], Chapter XVI, Theorem 3.8). Let f be
an integrable function on R. For a given positive integer n and = € R, put

1 ™

gn(x) = —Dp.v. f(t) cot

2mn —rn

X

—t
dt.
n
As shown in [12], we have g, — HE f almost everywhere as n — co. On the other

hand, the function

r—t

dt

1 ™
= gn(nx) = %p.v./ f(nt) cot

is the periodic Hilbert transform of the function f, : z — f(nx), || < m, so

H{z € (—mn,m] : gn(x) > 1} =n |{|33| € (—m, 7 :HTfn(x) > 1}’

Sn[ Ifn(l’)ldw:/ F(@)lde < [|f]]1.

—Tn

Now let n — 0o to obtain |[{z € R : HEf(z) > 1}| < ||f||1- To get the non-strict
inequality on the left, pick € > 0 and apply the above estimate to f/(1 —¢). Then

e € B HEf(@) 2 1) < |z € R HAF() > 1- )] < 2 17]h

and it remains to let ¢ — 0. O
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3. A SPECIAL FUNCTION - PROOF OF THEOREM 2.1

Throughout, H will denote the upper halfplane R x (0, 00). Introduce the func-
tion U : H — R given by the Poisson integral

l/mﬂ(lilﬁm\)

u =— dt.
(o 8) = (a—t)2 + 32
The function U is harmonic on H and satisfies, for a # 0,
1
(3.1) lﬂi?&U(mﬂ) = (1 -5 |Va- Va‘lD La>0}-
Let K be the conformal mapping of H onto H \ {ai : a > 1}, defined by
1 1
2 K(z)==(vz——

(32 @=3(vi- ).

and let L stand for its inverse. We easily derive that

L(z) =222 + 14 22v/22 4 1.
Here and below we use the following branch of the complex square root: if z = re
for some 7 > 0 and 0 € (—m, 7], then /z = \/re?/2.

Now we are ready to introduce the special function. First we define it on the set
H\{ai:a>1} by U(x,y) =U(L(z,y)). Using (3.1), we see that U can be extended
to a continuous function on R?, by putting U(z,y) = 1 — |z| on R x (—o0, 0] and
U(0,y) =0 for y > 1.

0

Lemma 3.1. The function U enjoys the following properties.
(i) U is harmonic on H \ {ai:a > 1}.
(ii) The function (x,y) — U(x,y) + |z| is bounded on RZ.
(iii) U satisfies the symmetry condition U(x,y) = U(—=x,y) for all x, y.

Proof. (i) This is obvious: U is harmonic on H, so the function U is a real part of
an analytic function on H \ {ai:a > 1}.

(ii) Of course, it suffices to establish the boundedness on H. Introduce the
function A : H — R by

Ala, 5)

iUl

~or (a—t)2 4 32
It is not difficult to prove, using the residuum calculus, that
1 B(s* —1)
A =— [ ———-*-ds=ReK
(o, B) 7T/R(Oéf$2)2+ﬁ2 s e K(a, )
(K is defined by (3.2)) and hence A(L(z,y)) = x. Now, when z, y > 0, then
|L(z,y)| > 1 and |U(z,y) + |z|| = [U(L(z,y)) + A(L(z,y))|; but, for a? + 3% > 1,

IU(a,ﬁ)+A(a75)§1/0°°(atﬁdt+1 BOET = Vi)

™

PR e 5O

for some absolute C. Similarly, if x < 0 and y > 0, then |L(z,y)| < 1, |U(z,y) +
|z|| = [U(L(x,y)) — A(L(x,y))| and, for a® + % < 1 and some universal C,

1 [~ 8 1 [ B(/I— Vi)
/0 7(a—t dt 4+ —

U(a, B) = A(a, B)] < —

™

dt < C.

R A R
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(iii) The function S(x,y) = U(z,y) — U(—=,y) is continuous on R2, harmonic
on H\{ai:a >1} and S =0 on {(x,y) : y < 0or x = 0}. Furthermore, S is
bounded, in view of the previous part. Thus S = 0. (]

To study the further properties of U, we shall need the following family of auxi-
liary functions. For b > 1, let f; : [1,00) — R be given by

b—1
fb—llb]_Tl(boo)

Next, let @ : [0,1] — R be defined by the formula

P e / b(t) at

29 1—2a2)t+1
b+1 ) b+2a?—1 ; a b-1)rm
= arctan — arctan -
2 2av'1 — a? V1—a? 4

Lemma 3.2. (i) For any b > 1 the function @y, is conver.
(i) The function U(0,-) is convex on [0, 00).

Proof. (i) A bit lengthy computations yield
& (a) = 2b(b —1)a 16ab?(b — 1)v/1 — a2 > 0.
V1—a2(b? — 2b(1 — 2a2) + 1)  (b* —2b(1 — 2a?) +1)?
(ii) When a € (0, 1), then L(ai) = 1—2a?+2aiv/1 — a? belongs to the unit circle

and hence, using the substitution ¢ := 1/t, we derive that

1/°°2a\/1—a2(2—\f+\ﬁ)
7 )y 2_2(1—2a)t+1

(3-3) U(0,a) = dt.

However, we have the identity
2—Vi+Vi-l= / fo(t) b3/2, t>1.
Consequently, applying Fubini’s theorem, we obtain that
1 [ db
U(O,a) = ;\/1 @b(ﬂ;)m

and by the previous part, U(0, -) is convex on [0, 1]. Obviously, this function is also
convex on [1,00) and hence we will be done if we prove that lim,y1 Uy(0,a) = 0. To
do this, we differentiate both sides of (33) with respect to a and obtain

2 i [F i
—2(1—2a2)t +1
2a\/17a2 (2 —Vt+Vit1) - 8at
(2 —2( 1—2a2)t+1)
/ 2- Vit s dt.
7T\/1—(l2 —21—2@2)t+1
Obviously, the first two summands on the right vanish as a T 1. To deal with the
third one, we use the integration by parts to get

/°°2—x/+F & —

2 42t+1

dt
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and hence
/°° 2 —Vt+ V! dt_/m 2 —Vt+ V! & °°2—\/E+w—1dt
L t2=2(1-2a2)t+1 )i 2-2(1-2a)t+1 L P2+l

e (2= Vi+ Vi)
=4(1—-a")
1 (B =2(1-2at+1)(t2+2t+1)
Therefore the third term in (3.4) tends to 0 as a T 1 and the proof is complete. O

dt.

Lemma 3.3. We have Uy, <0 on H\ {ai:a>1}.

Proof. By Lemma 3.1 (i), the claim is equivalent to saying that U, > 0 on H \
{ai : @ > 1}. By the symmetry of U, it suffices to prove that Uy, (z,y) > 0 for
x,y > 0. Using Schwarz reflection principle, we see that the continuous function
V :[0,00) x R — R, given by

Viy) = Ulz,y) ify >0,
W= —U(z,—y)—2zx+2 ify<0,

is harmonic; furthermore, (z,y) — V(x,y) 4+ = is bounded, in view of Lemma 3.1
(ii). Fix h > 0 and consider a continuous function W on [0, c0) X [0, 00), defined by

W(xvy) = 2V({£,y) - V(xvy - h) - V(.’E,y + h)

This function is bounded, harmonic and nonpositive at the boundary of its domain,
as we shall prove now. Indeed, W(z,0) =2 — 2z — (2 — 2z) = 0; if y > h, then

W(0,y) =2U(0,y) =U(0,y =h) =U(0,y + h) <0,
by Lemma 3.2 (ii); finally, for 0 < y < h,
V(0,y+h)+V(0,y—h)=U0,y+h)+2—-U(0,h —y)
=U(0,y+ h)+20U(0,0) —U(0,h —y)
>2U(0,y) = 2V(0,y),

again by Lemma 3.2 (ii), because both y and h — y lie between 0 and y + h.
Consequently, W < 0 and the claim follows, since h > 0 was arbitrary. O

Proof of Theorem 2.1. (i) We may assume that x, y > 0. Combining Lemma 3.1
(ii) with Lemma 3.3 we get that U, > —1 on (0,00) x (0,00). Hence it suffices to
prove that U(0,y) > 0 for y > 0, but this follows directly from Lemma 3.2 (ii).

(ii) By the symmetry and harmonicity of U on the strip R x (0,1), we have
U.(0,y) = 0 for y € (0,1). Consequently, by Lemma 3.3, for such a fixed y the
function U (-, y) is nonincreasing on [0, 00). By continuity, this is also true for y = 1
and hence U(z,1) =U(|z|,1) < U(0,1) = 0.

(iii) By Lemma 3.3, U is concave along the line R x {y} when y < 1. To deal
with y > 1, it suffices to prove that U(z,y) < 0 for z > 0 (again due to Lemma
3.3). However, by Lemma 3.3, for any fixed x the function U(z,-) is convex on
[0,00). Thus, it is nonincreasing, since otherwise Lemma 3.1 (ii) would be violated,
and hence, for y > 1, U(x,y) < U(z,1) < 0, as we have just proved above.

(iv) The function U is harmonic on R? \ (S; U Sy U S3), where S; = R x {0},
Sy = {ai : a < 0} and S5 = {ai : @ > 1}, and thus all we need is to verify the
mean-value inequality for the points from S; U Se U S3. This property is clear on
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S1 U Sy, because U(x,y) < 1 — |z| on R? (we have shown above that U(x,-) is
nonincreasing on [0,00)). To deal with Ss3, pick a > 1 and note that for r < a — 1,

1
|B((0,a),7)| JB((0,a),1)
Thus the claim follows from the continuity of U. ]

U(z,y)dady <0=U(0,a).

4. SHARPNESS

Clearly, it suffices to prove the optimality of the constant 1 in the estimate for
HR. Let D denote the unit disc of C and consider a conformal mapping M (z) =
—(1 —2)2/(42) of DN H onto H. Let N stand for the inverse of M. We easily
compute that N maps [0,1] onto the half-circle {¢? : 0 < § < 7} and the set
R\ [0,1] onto (—1,1). More precisely, when x € [0, 1], we have

N(z) = €", where 6 is determined by z = sin?(0/2)

and

N() —2r+1-—-2Va2—z ifzx<O.

Let @ € (0,1) be a fixed number and let F' be another conformal mapping, which
maps D onto H \ {ai : a > 1} and satisfies F(0) = ai. We may and do assume
that F' is bounded on the interval [—1, 1], composing F with the rotation z — (z
if necessary (for some appropriate ¢ € T). For any positive integer n, consider the
function f,, : R — R given by f,(x) = —Re F((N(z))?"). Since FoN?" is conformal
and F((N(2))*) — «i as z — oo, we have HX f,,(z) = a—Im F((N(x))?"). Next,

I /H £+ | PE

Using the above expressions for N(z), we get

e 2))2™)|dz
/M £l /H [Re F((V(2))>")|d

{—2x+1+2\/x2—x ifz>1,

= / |Re F(e2"%)| sin 0d
0

2nm
; 6\ do
= F(e')si
/0 |Re F'(e")] sin <2n) o™
27 1= krm 0
— 6 P 1 _ J—
—/0 |Re F'(e')] o kg_osm(n +2n) dé

- /0% [Re F(e™)] - {m cos (;;) +sin (i)} a9,

When n — oo, the expression in the square brackets converges to 1/7 uniformly on
[0, 27] and hence
1 27 .
lim | ful = f/ [Re F(e)|d6.
™ Jo

e J0,1)

Next, for any b > 0, the function N takes values in a closed subinterval of [0,1)
when restricted to (—oo, —b]U[14b, 00). Consequently, the sequence N2 converges
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uniformly to 0 on this set. Furthermore, |f,| is bounded on (—b,0)U(1,1+), since
F is bounded on [—1, 1]. This implies fR\[O 1 | fn| — 0 and hence

™

1 27 ]
lim ||| = 7/ [Re F(e?)|df.
n—oo 0

A similar calculation shows that
Hez e R:HEf () > a}| = |{z €R:a—ImF((N(z))*") > o}
> [{z € [0,1] : @ — Im F((N(2))*") > a}|

_ / sin 0d0
{0€[0,7):1m F(e2n#6) <0}

1 .
— ;|{9 € [0,27] : Tm F(e") < 0}).
Therefore, since U o F' is harmonic on D (due to Lemma 3.1 (i)), we may write

{z € R: H¥ fu(x) = a}| = ||falls

— % (|{9 € [0,2x] : Im F(e*?) < 0} —/0 ' |ReF(ei")|d9)

_ /Qﬂ U(F(e))dd = 2U(F(0)) = 2U(0, @) > 0.
0

s

In other words, replacing f, by f./a, we see that there is a function f on R
satisfying [{z € R : HR®f(z) > 1}|/||f]l1 > . Letting @ — 1 we get the desired
sharpness.
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