SHARP MAXIMAL INEQUALITY FOR STOCHASTIC INTEGRALS

ADAM OSȨKOWSKI

Abstract. Let $X=\left(X_{t}\right)_{t \geq 0}$ be a nonnegative supermartingale and $H=$ $\left(H_{t}\right)_{t \geq 0}$ be a predictable process with values in $[-1,1]$. Let Y denote the stochastic integral of H with respect to X. The paper contains the proof of the sharp inequality

$$
\sup _{t \geq 0}\left\|Y_{t}\right\|_{1} \leq \beta_{0}\left\|\sup _{t \geq 0} X_{t}\right\|_{1},
$$

where $\beta_{0}=2+(3 e)^{-1}=2,1226 \ldots$ A discrete-time version of this inequality is also established.

1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, which is filtered by a nondecreasing right-continuous family $\left(\mathcal{F}_{t}\right)_{t>0}$ of sub- σ-fields of \mathcal{F}. Assume that \mathcal{F}_{0} contains all the events of probability 0 . Suppose $X=\left(X_{t}\right)_{t \geq 0}$ is an adapted real-valued rightcontinuous semimartingale with left limits. Let Y be the Itô integral of H with respect to X,

$$
Y_{t}=H_{0} X_{0}+\int_{(0, t]} H_{s} d X_{s}, \quad t \geq 0
$$

where H is a predictable process with values in $[-1,1]$. Let $\|Y\|_{1}=\sup _{t \geq 0}\left\|Y_{t}\right\|_{1}$ and $X^{*}=\sup _{t \geq 0}\left|X_{t}\right|$.

The objective of this paper is to compare the first moments of Y and X^{*}. In [4], Burkholder introduced a method of proving related maximal inequalities for martingales and obtained the following sharp estimate.
Theorem 1.1. If X is a martingale and Y is as above, then we have

$$
\|Y\|_{1} \leq \gamma\left\|X^{*}\right\|_{1}
$$

where $\gamma=2,536 \ldots$ is the unique solution of the equation

$$
\gamma-3=-\exp \left(\frac{1-\gamma}{2}\right)
$$

The constant is the best possible.
Using Burkholder's techniques, we find the best constant in the inequality (1.1) in case X is a nonnegative supermartingale. The main result of the paper is the following.

[^0]Theorem 1.2. Suppose X is a nonnegative supermartingale and Y is as above. Then the inequality

$$
\begin{equation*}
\|Y\|_{1} \leq \beta_{0}\left\|X^{*}\right\|_{1} \tag{1.1}
\end{equation*}
$$

holds true with $\beta_{0}=2+(3 e)^{-1}=2,1226 \ldots$ The constant is the best possible. It is already the best possible if X is assumed to be a nonnegative martingale.

As usual, the inequality for stochastic integrals is accompanied by its discretetime version. Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, equipped with filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$. Let $f=\left(f_{n}\right)_{n \geq 0}$ be an adapted nonnegative supermartingale and $g=$ $\left(g_{n}\right)_{n \geq 0}$ be its transform by a predictable sequence $v=\left(v_{n}\right)_{n \geq 0}$ bounded in absolute value by 1 . That is,

$$
f_{n}=\sum_{k=0}^{n} d f_{k}, \quad g_{n}=\sum_{k=0}^{n} v_{k} d f_{k}, \quad n=0,1,2, \ldots
$$

By predictability of v we mean that v_{0} is \mathcal{F}_{0}-measurable and for any $k \geq 1, v_{k}$ is measurable with respect to \mathcal{F}_{k-1}. Let $f_{n}^{*}=\max _{k \leq n} f_{k}$ and $f^{*}=\sup _{k} f_{k}$.

A discrete-time version of Theorem 1.2 can be stated as follows.
Theorem 1.3. Let f, g, β_{0} be as above. Then we have

$$
\begin{equation*}
\|g\|_{1} \leq \beta_{0}\left\|f^{*}\right\|_{1} \tag{1.2}
\end{equation*}
$$

and the constant β_{0} is the best possible. It is already the best possible if f is assumed to be a nonnegative martingale.

The paper is organized as follows. In the next section we describe the Burkholder's method. Section 3 is devoted to the proofs of the maximal inequalities. In the last section we complete the proofs of Theorem 1.2 and Theorem 1.3 by showing that the constant β_{0} can not be replaced by a smaller one.

2. The upper class of functions

Throughout this section we deal with the discrete-time setting. We start with some reductions. Standard approximation arguments (see page 350 of [4]) show that it is enough to prove Theorem 1.3 under an additional assumption that the supermartingale f is simple, i.e. for any n the variable f_{n} takes only a finite number of values and there is N such that $f_{N}=f_{N+1}=f_{N+2}=\ldots$ with probability 1 . Then, clearly, every transform g of f is also simple and the pointwise limits f_{∞}, g_{∞} exist. Furthermore, with no loss of generality, we may restrict ourselves to the special transforms g (called ± 1 transforms), namely, those with all v_{n} being deterministic and taking values in $\{-1,1\}$: see Lemma A. 1 on page 60 in [3] and observe $\left(F^{j}\right)^{*}=f^{*}$ on page 61 . Finally, note that in order to prove inequality (1.2), it suffices to show that for any f, g as above and any integer n we have

$$
\mathbb{E}\left|g_{n}\right| \leq \beta_{0} \mathbb{E} f_{n}^{*}
$$

To describe Burkholder's method, let us consider the following general problem, first in the martingale setting: let $D=[0, \infty) \times \mathbb{R} \times[0, \infty)$ and $V: D \rightarrow \mathbb{R}$ be any Borel function satisfying $V(x, y, z)=V(x, y, x \vee z)$. Suppose we want to prove the inequality

$$
\begin{equation*}
\mathbb{E} V\left(f_{n}, g_{n}, f_{n}^{*}\right) \leq 0 \tag{2.1}
\end{equation*}
$$

for all nonnegative integers n and all pairs (f, g), where f is a simple nonnegative martingale and g is its ± 1 transform.

The key idea is to study the family \mathcal{U} of all functions $U: D \rightarrow \mathbb{R}$ satisfying the following three properties.

$$
\begin{gather*}
U(x, y, z)=U(x, y, x \vee z) \quad \text { if }(x, y, z) \in D \tag{2.2}\\
V(x, y, z) \leq U(x, y, z) \quad \text { if }(x, y, z) \in D \tag{2.3}
\end{gather*}
$$

and, furthermore, if $(x, y, z) \in D, \varepsilon \in\{-1,1\}, \alpha \in(0,1)$ and $t_{1}, t_{2} \geq-x$ with $\alpha t_{1}+(1-\alpha) t_{2}=0$, then

$$
\begin{equation*}
\alpha U\left(x+t_{1}, y+\varepsilon t_{1}, z\right)+(1-\alpha) U\left(x+t_{2}, y+\varepsilon t_{2}, z\right) \leq U(x, y, z) \tag{2.4}
\end{equation*}
$$

The interplay between the class \mathcal{U} and the maximal inequality (2.1) is described in the theorem below. It is a simple modification of Theorems 2.2 and 2.3 in [4] (see also Section 11 in [2] and Theorem 2.1 in [3]) to the case of nonnegative supermartingales. We omit the proof, as it requires only some minor changes.

Theorem 2.1. The inequality (2.1) holds for all n and all pairs (f, g) as above if and only if the class \mathcal{U} is nonempty. Furthermore, if \mathcal{U} is nonempty, then there exists the least element in \mathcal{U}, given by

$$
\begin{equation*}
U^{0}(x, y, z)=\sup \left\{\mathbb{E} V\left(f_{\infty}, g_{\infty}, f^{*} \vee z\right)\right\} \tag{2.5}
\end{equation*}
$$

Here the supremum runs over all the pairs (f, g), where f is a simple nonnegative martingale, $\mathbb{P}\left(\left(f_{0}, g_{0}\right)=(x, y)\right)=1$ and $d g_{k}= \pm d f_{k}$ almost surely for all $k \geq 1$.

In case f is assumed to be a nonnegative supermartingale, we can proceed in a similar manner. For a given V, consider the inequality (2.1). Suppose we want it to be valid for any n, any nonnegative supermartingale f and any ± 1 transform g. Let \mathcal{U}^{\prime} be a subclass of \mathcal{U} containing those functions, which satisfy

$$
\begin{equation*}
U(x, y, z) \geq U(x-\delta, y \pm \delta, z) \quad \text { if }(x, y, z) \in D, \delta \in[0, x] \tag{2.6}
\end{equation*}
$$

The analogue of Theorem 2.1 is as follows (the straightforward proof is omitted).
Theorem 2.2. The inequality (2.1) holds for all n and all pairs (f, g) as above if and only if the class \mathcal{U}^{\prime} is nonempty.

Now we turn to (1.2) and assume from now on, that the function V is given by

$$
V(x, y, z)=V(x, y, x \vee z)=y-\beta(x \vee z)
$$

where $\beta>0$ is a fixed number. The inequality (2.1) reads

$$
\begin{equation*}
\mathbb{E}\left|g_{n}\right| \leq \beta \mathbb{E} f_{n}^{*} \tag{2.7}
\end{equation*}
$$

Denote by $\mathcal{U}(\beta), \mathcal{U}^{\prime}(\beta)$ the classes $\mathcal{U}, \mathcal{U}^{\prime}$ corresponding to this choice of V.
The rest of this section is devoted to the last part of Theorem 1.3. Let β (possup) (resp. β (posmar)) be the smallest constant β in the inequality (2.7), when f is assumed to run over the class of all nonnegative supermartingales (resp. nonnegative martingales).

Theorem 2.3. We have $\beta($ posmar $)=\beta$ (possup) .

Proof. We only need the inequality $\beta=\beta$ (posmar) $\geq \beta$ (possup), as the reverse one is trivial. By Theorem 2.2, it suffices to prove that the class $\mathcal{U}^{\prime}(\beta)$ is nonempty. Theorem 2.1 guarantees the existence of the minimal element U^{0} of the class $\mathcal{U}(\beta)$, given by (2.5). By definition we get the following properties of U^{0}.

$$
\begin{gather*}
U^{0}(x, y, z)=U^{0}(x,-y, z) \tag{2.8}\\
U^{0}(1,-1,1)=U^{0}(1,1,1) \leq 0 \tag{2.9}\\
U^{0}(\alpha x, \alpha y, \alpha z)=\alpha U^{0}(x, y, z) \text { for any } \alpha>0 \tag{2.10}
\end{gather*}
$$

The equality (2.8) is clear, (2.9) follows from the fact that for any pair (f, g) as in Theorem 2.1, starting from $(1,1)$ or from $(1,-1)$, we have that g is a ± 1 transform of f and therefore, by (2.7), we have $\mathbb{E} V\left(f_{n}, g_{n}, f_{n}^{*}\right) \leq 0$ for any n. For (2.10), we use the fact that V is homogeneous.

We will prove that the function $U: D \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
U(x, y, z)=U^{0}(x, y, z)-U^{0}(1,1,1) x \tag{2.11}
\end{equation*}
$$

belongs to \mathcal{U}^{\prime}. The conditions (2.2), (2.3) and (2.4) hold true for U, since they are satisfied for U^{0} and, by (2.9), we have $U \geq U^{0}$. It remains to prove (2.6). Note that U satisfies $U(x, y, z)=U(x,-y, z), U(1,-1,1)=U(1,1,1)=0$ and is homogeneous. Fix $y \in \mathbb{R}, 0 \leq x \leq z, \varepsilon \in\{-1,1\}$ and let $\delta \in(0, x], t>z-x$. Use (2.4) with $t_{1}=-\delta, t_{2}=t$ and $\alpha=t /(t+\delta)$ to obtain

$$
\frac{t}{t+\delta} U(x-\delta, y-\varepsilon \delta, z)+\frac{\delta}{t+\delta} U(x+t, y+\varepsilon t, z) \leq U(x, y, z)
$$

By homogeneity of U, this gives

$$
\begin{equation*}
\frac{t}{t+\delta} U(x-\delta, y-\varepsilon \delta, z)+\frac{\delta(x+t)}{t+\delta} U\left(1, \frac{y+\varepsilon t}{x+t}, 1\right) \leq U(x, y, z) \tag{2.12}
\end{equation*}
$$

Now we let $t \rightarrow \infty$; the inequality (2.6) will follow if we show that

$$
\begin{equation*}
\liminf _{s \rightarrow 1} U(1, s, 1) \geq U(1,1,1)=0 \tag{2.13}
\end{equation*}
$$

For $s>1$, use (2.4) with $x=z=1, y=s, \varepsilon=-1, t_{1}=-1, t_{2}=(s-1) / 2$ and get

$$
U(1, s, 1) \geq \frac{s-1}{s+1} U(0, s+1,1)+\frac{2}{s+1} U\left(\frac{s+1}{2}, \frac{s+1}{2}, \frac{s+1}{2}\right) \geq \frac{s-1}{s+1}(s+1-\beta),
$$

the latter inequality being a consequence of (2.3) and the homogeneity of U. For $0<s<1$, apply (2.12) to $x=z=1, y=s, \varepsilon=-1, \delta=(1-s) / 2$ and $t=2 s /(1-s)$ (so that $(y+\varepsilon t) /(x+t)=-s)$ to obtain

$$
U(1, s, 1) \geq \frac{2}{s+1} U\left(\frac{1+s}{2}, \frac{1+s}{2}, 1\right)
$$

Now we use the fact that, by (2.4), the function $s \mapsto U(s, s, 1)$ is concave and therefore continuous. This completes the proof of (2.13) and, in consequence, we have $U \in \mathcal{U}^{\prime}(\beta)$, so this class is nonempty. All that is left is to use Theorem 2.2.

Thus, to establish the inequality (1.2), we need to find an element U in $\mathcal{U}\left(\beta_{0}\right)$. This will be done in the next section.

3. The proofs of the inequalities (1.1) and (1.2)

Here we construct the special function U corresponding to the maximal inequality (1.2). This is the main section of the paper.

Let S denote the strip $[-1,1] \times \mathbb{R}$. Consider the following subsets of S.

$$
\begin{aligned}
D_{1} & =\left\{(x, y): 0 \leq x<\frac{2}{3}, x+y \geq \frac{2}{3}\right\} \\
D_{2} & =\left\{(x, y): \frac{2}{3} \leq x \leq 1, x-y \leq \frac{2}{3}\right\} \\
D_{3} & =\left\{(x, y): 0 \leq x<\frac{2}{3}, y \geq 0, x+y \leq \frac{2}{3}\right\} \\
D_{4} & =\left\{(x, y): \frac{2}{3}<x \leq 1, y \geq 0, x-y>\frac{2}{3}\right\}
\end{aligned}
$$

Let the function u be defined on S by the condition $u(x, y)=u(|x|,|y|)$ and

$$
u(x, y)= \begin{cases}y-\beta_{0}+x\left\{\exp \left[-\frac{3}{2}\left(y+x-\frac{2}{3}\right)\right]+1\right\}, & (x, y) \in D_{1} \\ y-\beta_{0}+\left(\frac{4}{3}-x\right) \exp \left[-\frac{3}{2}\left(y-x+\frac{2}{3}\right)\right]+x, & (x, y) \in D_{2} \\ y-\beta_{0}-x \log \left[\frac{3}{2}(x+y)\right]+2 x, & (x, y) \in D_{3} \\ -\beta_{0}-\frac{1}{3}(2-2 x-y)(3-3 x+3 y)^{1 / 2}+\frac{14}{9}, & (x, y) \in D_{4}\end{cases}
$$

A function defined on the strip S is said to be diagonally concave if it is concave on the intersection of S with any line of slope 1 or -1 . The proof of the following statement is just a matter of elementary calculations.

Lemma 3.1. For any real number y we have

$$
\begin{gather*}
u(0, y)=|y|-\beta_{0}, \quad u(1, y) \geq|y|-\beta_{0} \tag{3.1}\\
u \text { is diagonally concave, } \tag{3.2}\\
u(1, \cdot) \text { is convex, } \tag{3.3}\\
u(1-\delta, y \pm \delta) \leq u(1, y) \text { for any } \delta \in[0,1], \tag{3.4}\\
u(1,1)=0 \tag{3.5}
\end{gather*}
$$

Define $U: D \rightarrow \mathbb{R}$ by

$$
U(x, y, z)=(x \vee z) u\left(\frac{x}{x \vee z}, \frac{y}{x \vee z}\right)
$$

We have the following statement.
Lemma 3.2. The function U belongs to $\mathcal{U}\left(\beta_{0}\right)$.
This fact can be proved exactly in the same manner as Lemma 3.1 in [4]. We omit the details. Now we are ready to prove the maximal inequalities.

Proof of the inequality (1.2): It is an immediate consequence of Theorem 2.1, Theorem 2.3 and Lemma 3.2.

Proof of inequality (1.1): This follows by approximation argument. See Section 16 of [2], where it is shown how the result of Bichteler [1] can be used to deduce the estimates for stochastic integrals from their discrete-time versions.

4. Sharpness

Clearly, we need only to focus on the sharpness of (1.2), since it immediately implies that β_{0} is also the best possible in (1.1).

Let $\beta=\beta$ (posmar). By Theorem 2.3, we need to prove $\beta \geq \beta_{0}$. This can be done by constructing an appropriate example. However, we take a different approach.

By Theorem 2.1, the class $\mathcal{U}(\beta)$ is nonempty, we can consider its minimal element U^{0} and, as we have already proved, the function U given by (2.11) belongs to $\mathcal{U}^{\prime}(\beta)$. Define $u: S \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(x, y)=U(x, y, 1) \tag{4.1}
\end{equation*}
$$

The conditions (2.3), (2.4) and (2.6) imply that

$$
\begin{equation*}
u(x, y) \geq|y|-\beta \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
u(x, y) \geq u(x-\delta, y \pm \delta) \text { for } \delta \in[0, x] \tag{4.3}
\end{equation*}
$$

and, moreover, we have

$$
\begin{equation*}
u(1,1)=U(1,1,1)=0 \tag{4.5}
\end{equation*}
$$

Furthermore, note that for any y, by definition of U^{0},

$$
\begin{equation*}
u(0, y)=U^{0}(0, y, 1)=|y|-\beta \tag{4.6}
\end{equation*}
$$

since the only nonnegative martingale starting from 0 is the constant one.
We will show that the existence of u satisfying the properties (4.2) - (4.6) implies $\beta \geq \beta_{0}$. This will be done in several steps. Set $B(x)=u(1, x+1 / 3)$ and $C(x)=$ $u(2 / 3, x)$.

Step 1. By properties (4.3) and (4.6), we have

$$
\begin{gathered}
u\left(\frac{2}{3}+\delta, 2 k \delta+\delta\right) \geq(1-3 \delta) C(2 k \delta)+3 \delta B(2 k \delta), \\
C((2 k+2) \delta)
\end{gathered}
$$

from which we deduce that

$$
\begin{equation*}
C((2 k+2) \delta) \geq \frac{2(1-3 \delta)}{2+3 \delta} C(2 k \delta)+\frac{6 \delta}{2+3 \delta} B(2 k \delta)+\frac{3 \delta}{2+3 \delta}\left(2 k \delta+2 \delta+\frac{2}{3}-\beta\right) \tag{4.7}
\end{equation*}
$$

Furthermore, (4.3) and (4.4) yield

$$
B(2 k \delta) \geq u\left(1-\delta, 2 k \delta+\delta+\frac{1}{3}\right) \geq(1-3 \delta) B((2 k+2) \delta)+3 \delta C((2 k+2) \delta)
$$

Multiply this inequality throughout by $\alpha>0$ and add it to (4.7). We obtain

$$
\begin{aligned}
& C((2 k+2) \delta)(1-3 \alpha \delta)-\alpha(1-3 \delta) B((2 k+2) \delta) \\
& \quad \geq \frac{2(1-3 \delta)}{2+3 \delta} C(2 k \delta)-\left(\alpha-\frac{6 \delta}{2+3 \delta}\right) B(2 k \delta)+\frac{3 \delta}{2+3 \delta}\left((2 k+2) \delta+\frac{2}{3}-\beta\right)
\end{aligned}
$$

or, equivalently, after substitution

$$
\begin{equation*}
\bar{B}(t)=B(t)-t-\frac{2}{3}+\beta, \quad \bar{C}(t)=C(t)-t-\frac{2}{3}+\beta, \tag{4.8}
\end{equation*}
$$

we get

$$
\begin{align*}
\bar{C}((2 k+2) \delta)-\frac{\alpha(1-3 \delta)}{1-3 \alpha \delta} \bar{B}((2 k+2) \delta) & \\
\geq \frac{2(1-3 \delta)}{(2+3 \delta)(1-3 \alpha \delta)}[\bar{C}(2 k \delta) & \left.-\frac{2 \alpha+3 \alpha \delta-6 \delta}{2(1-3 \delta)} \bar{B}(2 k \delta)\right] \tag{4.9}\\
& +\frac{2 \delta}{1-3 \alpha \delta}\left(\alpha-\frac{2}{2+3 \delta}\right)
\end{align*}
$$

Step 2. Now we will use the inequality (4.9) several times. The choice

$$
\alpha=\frac{5 \pm \sqrt{9-24 \delta}}{2(2+3 \delta)}
$$

gives

$$
\frac{\alpha(1-3 \delta)}{1-3 \alpha \delta}=\frac{2 \alpha+3 \alpha \delta-6 \delta}{2(1-3 \delta)}
$$

and using (4.9) for $k-1, k-2, \ldots, l$ yields

$$
\begin{align*}
\bar{C}(2 k \delta) & -\frac{\alpha(1-3 \delta)}{1-3 \alpha \delta} \bar{B}(2 k \delta) \tag{4.10}\\
\quad \geq & {\left[\frac{2(1-3 \delta)}{(2+3 \delta)(1-3 \alpha \delta)}\right]^{k-l}\left[\bar{C}(2 l \delta)-\frac{\alpha(1-3 \delta)}{1-3 \alpha \delta} \bar{B}(2 l \delta)\right]+\eta, }
\end{align*}
$$

where

$$
\begin{aligned}
\eta=\frac{2 \delta}{1-3 \alpha \delta} & \left(\alpha-\frac{2}{2+3 \delta}\right) \sum_{r=0}^{k-l-1}\left[\frac{2(1-3 \delta)}{(2+3 \delta)(1-3 \alpha \delta)}\right]^{r} \\
& =\frac{2(2 \alpha+3 \delta \alpha-2)}{-9+6 \alpha+9 \alpha \delta}\left\{\left[\frac{2(1-3 \delta)}{(2+3 \delta)(1-3 \alpha \delta)}\right]^{k-l}-1\right\}
\end{aligned}
$$

Now fix $K>L \geq 0$ with L / K rational. Then we may find arbitrarily large integers k and l such that $K=2 k \delta$ and $L=2 l \delta$ for some $\delta>0$. Letting $k, l \rightarrow \infty$, we have $\delta \rightarrow 0, \alpha \rightarrow 2^{ \pm 1}$ and (4.10) leads to
$\bar{C}(K)-\alpha \bar{B}(K)+\frac{4(\alpha-1)}{-9+6 \alpha} \geq \exp \left(\frac{(K-L)(-9+6 \alpha)}{4}\right)\left[\bar{C}(L)-\alpha \bar{B}(L)+\frac{4(\alpha-1)}{-9+6 \alpha}\right]$.
Now we come back to the original functions B, C. For $\alpha=2$, the inequality above takes form
(4.11) $C(K)+K+2-\beta-2 B(K) \geq \exp \left(\frac{3}{4}(K-L)\right)[C(L)+L+2-\beta-2 B(L)]$, while for $\alpha=1 / 2$, we get

$$
\begin{equation*}
2 C(K)-K+\beta-B(K) \geq \exp \left(-\frac{3}{2}(K-L)\right)[2 C(L)-L+\beta-B(L)] \tag{4.12}
\end{equation*}
$$

Step 3. This is the final part. By (4.2) and (4.4), we have $B(K) \geq K+\frac{1}{3}-\beta$ and $B(K) \geq C(K)$. Plugging these estimates into (4.11) we get that for any L,

$$
\begin{equation*}
C(L)+L+2-\beta-2 B(L) \leq 0 . \tag{4.13}
\end{equation*}
$$

Furthermore, the conditions (4.3) and (4.6) yield

$$
\begin{equation*}
C(0) \geq \frac{2}{3} B(0)+\frac{1}{3} u\left(0,-\frac{2}{3}\right)=\frac{2}{3} B(0)+\frac{1}{3}\left(\frac{2}{3}-\beta\right) . \tag{4.14}
\end{equation*}
$$

Combining (4.14) with (4.13) applied to $L=0$ gives

$$
0 \geq C(0)+2-\beta-2 B(0) \geq-\frac{4}{3} B(0)-\frac{4}{3} \beta+\frac{20}{9}
$$

which implies

$$
\begin{equation*}
\beta+B(0) \geq \frac{5}{3} \tag{4.15}
\end{equation*}
$$

The inequality (4.13), applied to $L=2 / 3$, gives

$$
\begin{equation*}
C\left(\frac{2}{3}\right) \leq \beta-\frac{8}{3} \tag{4.16}
\end{equation*}
$$

since $B(2 / 3)=0$, due to (4.5). Now use (4.12) for $K=2 / 3$ and $L=0$ to obtain

$$
2 C\left(\frac{2}{3}\right)-\frac{2}{3}+\beta \geq \frac{1}{e}(2 C(0)+\beta-B(0)) .
$$

Combining this estimate with (4.14), (4.15) and (4.16) yields

$$
3 \beta-6 \geq \frac{1}{e}\left(\frac{5}{9}+\frac{4}{9}\right)=\frac{1}{e}
$$

or $\beta \geq 2+(3 e)^{-1}$. This completes the proof of the sharpness of the inequality (1.2).
Acknowledgement: The results were obtained while the author was visiting Université de Franche-Comté in Besançon, France.

References

[1] K. Bichteler, Stochastic integration and L^{p}-theory of semimartingales, Ann. Probab. 9 (1980), pp. 49-89.
[2] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), pp. 647-702.
[3] \qquad , Explorations in martingale theory and its applications, Ecole d'Ete de Probabilits de Saint-Flour XIX—1989, pp. 1-66, Lecture Notes in Math., 1464, Springer, Berlin, 1991.
[4] —, Sharp norm comparison of martingale maximal functions and stochastic integrals, Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), pp. 343-358, Proc. Sympos. Appl. Math., 52, Amer. Math. Soc., Providence, RI, 1997.

Department of Mathematics, Informatics and Mechanics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

Current address: Laboratoire de Mathematiques, Université de Franche-Comté, Rue de Gray
16, Besançon 25030 Cedex, France
E-mail address: ados@mimuw.edu.pl

[^0]: 2000 Mathematics Subject Classification. Primary: 60HO5. Secondary: 60G42.
 Key words and phrases. Martingale, supermartingale, martingale transform, norm inequality, stochastic integral, maximal inequality.

 Partially supported by MEiN Grant 1 PO3A 01229.

