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Abstract. In the paper we study sharp localized Lq → Lp estimates for

Fourier multipliers resulting from modulation of the jumps of Lévy processes.
The proofs of these estimates rest on probabilistic methods and exploit re-

lated sharp bounds for differentially subordinated martingales, which are of

independent interest. The lower bounds for the constants involve the analysis
of laminates, a family of certain special probability measures on 2 × 2 matri-

ces. As an application, we obtain new sharp bounds for the real and imaginary

parts of the Beurling-Ahlfors operator.

1. Introduction

This paper is devoted to sharp versions of localized Lq → Lp estimates for a
large class of Fourier multipliers. Recall that for any bounded, complex-valued
function m on Rd, there is a unique bounded linear operator Tm on L2(Rd), called

the Fourier multiplier with the symbol m, which is given by T̂mf = mf̂ . Obviously,
the norm of Tm on L2(Rd) is equal to ||m||L∞(Rd). There is an interesting question
about the class of those m, for which the corresponding Fourier multipliers extend
to bounded linear operators on Lp(Rd), 1 < p <∞. While the full characterization
of such a class seems to be hopeless, much work has been done in the literature to
construct examples and study their properties (cf. [19], [22], [23], [25]). It will be
convenient for us to consider the following class of symbols, studied by Bañuelos and
Bogdan [4] and Bañuelos, Bielaszewski and Bogdan [5]. Let ν be a Lévy measure
on Rd, i.e., a nonnegative Borel measure on Rd which does not charge the origin
and satisfies ∫

Rd
min{|x|2, 1}ν(dx) <∞.

Next, assume that µ is a finite Borel measure on the unit sphere S of Rd and fix
two Borel functions φ on Rd and ψ on S which take values in the unit ball of C.
We define the associated multiplier m = mφ,ψ,µ,ν on Rd by the formula

(1.1) m(ξ) =
1
2

∫
S〈ξ, θ〉

2ψ(θ)µ(dθ) +
∫
Rd [1− cos〈ξ, x〉]φ(x)ν(dx)

1
2

∫
S〈ξ, θ〉2µ(dθ) +

∫
Rd [1− cos〈ξ, x〉]ν(dx)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 denotes the usual
scalar product in Rd. The Fourier multipliers corresponding to these symbols can
be given a martingale representation by the use of transformations of jumps of
Lévy processes; see [4] and [5] for details. Combining this representation with
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Burkholder’s moment inequality (see Theorem 3.1 below), Bañuelos, Bielaszewski
and Bogdan proved the following Lp estimate.

Theorem 1.1. Let 1 < p < ∞ and let m = mφ,ψ,µ,ν be given by (1.1). Then for
any f ∈ Lp(Rd) we have

(1.2) ||Tmf ||Lp(Rd) ≤ (p∗ − 1)||f ||Lp(Rd),

where p∗ = max{p, p/(p− 1)}.

It turns out that the constant p∗− 1 appearing above is the best possible, which
again can be shown with the use of probabilistic tools. See Geiss, Montgomery-
Smith and Saksman [17] and the paper [6] by Bañuelos and the author.

The martingale approach can be used to establish other tight estimates for
Fourier multipliers with symbols from the class (1.1) (see e.g. [30] and [31] for
logarithmic and weak-type inequalities). In the present paper we continue this line
of research and provide a significant improvement of (1.2). Namely, we study the
action of Fourier multipliers, with symbols of the form (1.1), as operators from Lq

to Lp, for any p, q ∈ [1,∞), p < q. It can be easily shown that for essentially all m
we have ||Tm||Lq(Rd)→Lp(Rd) = ∞. However, after an appropriate localization, we
obtain non-trivial results. We will study bounds of the form

||Tmf ||Lp(A) ≤ C||f ||Lq(A)|A|1/p−1/q,

where A ⊂ Rd is a fixed Borel subset and f is assumed to vanish outside A. Our
primary goal is to determine the optimal constants C in the above inequality. Let
us introduce some auxiliary notation. For any 1 ≤ p < q ≤ 2, let h : [0,∞)→ [0,∞)
be a special function described in Theorem 2.1 and put

(1.3) Lp,q =
1

2
(2− p)h(0)p.

Furthermore, for 1 ≤ p < q <∞, define

(1.4) Cp,q =


L

(q−p)/pq
p,q

(
q−p
p

)1/q (
q
q−p

)1/p

if 1 ≤ p < q < 2,

Cq′,p′ if 2 < p < q <∞,
1 otherwise.

Here p′ = p/(p − 1), q′ = q/(q − 1) denote the harmonic conjugates to p and q
respectively. Our main result can be stated as follows.

Theorem 1.2. Suppose that Tm is a Fourier multiplier with a symbol m belonging
to the class (1.1). Let 1 ≤ p < q <∞ and let A be a Borel subset of Rd. Then for
any f ∈ Lq(Rd) which vanishes on the compliment of A we have

(1.5) ||Tmf ||Lp(A) ≤ Cp,q||f ||Lq(Rd)|A|1/p−1/q.

The constant Cp,q is the best possible.

Here by sharpness we mean that for any 1 ≤ p < q <∞ and any ε > 0 there is
a Borel subset A of Rd, a function f ∈ Lq(Rd) and a symbol m from the class (1.1)
for which ||Tmf ||Lp(A) > (Cp,q − ε)||f ||Lq(Rd)|A|1/p−1/q.

We refer the reader to the papers [4] and [5] for various explicit examples of
multipliers which have symbols of the form (1.1). We will only mention here two
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very important examples, strictly related to the so-called Beurling-Ahlfors trans-
form BA on C. This operator is a Fourier multiplier with the symbol m(ξ) = ξ/ξ,
ξ ∈ C; alternatively, it can be defined by the singular integral

BAf(z) = − 1

π
p.v.

∫
C

f(w)

(z − w)2
dw.

The Beurling-Ahlfors transform is of fundamental importance in the study of partial
differential equations and quasiconformal mappings, since it changes the complex
derivative ∂ to ∂. Precisely, we have BA(∂f) = ∂f for any f from the Sobolev space
W 1,2(C,C) of complex valued locally integrable functions on C whose distributional
first derivatives are in L2 on the plane. For more on this interplay, consult e.g. the
monograph [2] by Astala, Iwaniec and Martin.

The Beurling-Ahlfors operator can be decomposed as BA = R2
2 −R2

1 − 2iR1R2,
where R1, R2 are planar Riesz transforms (i.e., Fourier multipliers with the symbols
−iξ1/|ξ| and −iξ2/|ξ|, respectively). This follows at once from the identity

ξ

ξ
=
ξ2
1 − ξ2

2

ξ2
1 + ξ2

2

+ i
2ξ1ξ2
ξ2
1 + ξ2

2

.

Note that both R2
2 − R2

1 and 2R1R2 can be represented as the Fourier multipliers
with the symbols of the form (1.1). For example, the choice d = 2, µ = δ(1,0)+δ(0,1),
ψ(1, 0) = −1 = −ψ(0, 1) and ν = 0 gives rise to Tm = Re (BA); likewise, d = 2,

µ = δ(1/
√

2,1/
√

2) +δ(1/
√

2,−1/
√

2), ψ(1/
√

2, 1/
√

2) = 1 = ψ(1/
√

2,−1/
√

2) and ν = 0

leads to Tm = Im (BA). Thus, Theorem 1.2 provides new information on the local
behavior of the Beurling-Ahlfors operator, as well as its real and imaginary parts.
Actually, we will prove that the optimality of the constants Cp,q in (1.5) is achieved
on these particular operators. In fact, we will manage to establish a more general,
higher dimensional result, which is of interest in the theory of elliptic differential
operators and potential theory.

Theorem 1.3. Suppose that f is of class C2, supported on a Borel set A ⊂ Rd.
Then for 1 ≤ p < q <∞ and any distinct j, k ∈ {1, 2, . . . , d} we have

(1.6)

∣∣∣∣∣
∣∣∣∣∣∂2f

∂x2
j

− ∂2f

∂x2
k

∣∣∣∣∣
∣∣∣∣∣
Lp(A)

≤ Cp,q||∆f ||Lq(Rd)|A|1/p−1/q

and

(1.7)

∣∣∣∣∣∣∣∣2 ∂2f

∂xj∂xk

∣∣∣∣∣∣∣∣
Lp(A)

≤ Cp,q||∆f ||Lq(Rd)|A|1/p−1/q.

Both estimates are sharp for each d, j and k.

One easily sees that (1.6) and (1.7) follow from (1.5). Indeed, a similar choice of
µ, ν and ψ as above shows that for any d and any distinct j, k ∈ {1, 2, . . . , d} the
multipliers R2

j −R2
k, 2RjRk have the symbols from the class (1.1). Thus, it suffices

to use (1.5) and apply R2
j − R2

k and 2RjRk to ∆f (a straightforward comparison

of Fourier transforms gives the identity RjRk∆f = − ∂2f
∂xj∂xk

for all j, k). The

difficult part is to establish the sharpness of the two estimates. To handle this,
we explore a very interesting connection between the theory of martingales and
that of laminates, discovered recently by Boros, Shékelyhidi Jr. and Volberg in [8].
This will allow us to show that the constant Cp,q in (1.6) and (1.7) is optimal for
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d = 2. Then we will apply appropriate transference-type arguments to obtain the
sharpness for all d.

A few words about the organization of the paper. The next section contains some
preliminary material; we analyze there a certain class of differential equations, the
solutions to which will be important in our further considerations. Section 3 is
devoted to the proof of a certain martingale inequality, which can be regarded as
a probabilistic counterpart of (1.5). In Section 4 we exploit the martingale repre-
sentation of Fourier multipliers to deduce the inequality (1.5) from its stochastic
version proved in Section 3. The final paper concerns the sharpness of (1.5). We
will prove more: the constant Cp,q in (1.6) and (1.7) cannot be improved.

2. A differential equation

Throughout this section, we assume that 1 ≤ p < q ≤ 2 are given and fixed.
Consider the differential equation

(2.1) p(2− p)h′(x) + p = q(q − 1)xq−2h(x)2−p.

This equation has already appeared in [27], during the study of related class of
martingale inequalities. Unfortunately, the results of [27] are too weak for our
purposes and do not lead to any form of (1.5). However, as we will see, a deeper
investigation into the structure of the solutions to (2.1) gives us the possibility
to establish stronger inequalities for martingales. These, in turn, will lead to the
estimates for Fourier multipliers announced in Introduction.

We start with the following fact, established in [27] (see Theorem 2.1 and its
proof there). See also Figure 1 below for the exemplary case p = 3/2, q = 7/4.

Theorem 2.1. There exists a unique nondecreasing, concave solution h : [0,∞)→
[0,∞) of (2.1) satisfying h(0) > 0 and h′(t)→ 0, h(t)→∞, as t→∞.

In all the considerations below, the special solution described in the above the-
orem will be denoted by h. We will require the following auxiliary fact about this
object. Let F : [0,∞)→ R be given by

F (u) = (h(u) + u)q − uq − quq−1h(u)− (p− 1)h(u)p − 2− p
2

h(0)p.

Lemma 2.2. We have F (u) ≥ 0 for all u ≥ 0.

Proof. First we show the estimate for large u. Since q ≤ 2, an application of the
mean value property and then (2.1) gives

F (u) ≥ q(q − 1)

2
(h(u) + u)q−2h(u)2 − (p− 1)h(u)p − 2− p

2
h(0)p

=
1

2
h(u)p

[(
h(u) + u

u

)q−2

· q(q − 1)uq−2h(u)2−p − 2(p− 1)

]
− 2− p

2
h(0)p

≥ 1

2
h(u)p

[(
h(u) + u

u

)q−2

p− 2(p− 1)

]
− 2− p

2
h(0)p →∞

as u → ∞. Next, suppose that F attains a local minimum at some point u0 ∈
(0,∞). We compute that

(2.2) F ′(u) = (h′(u) + 1)
[
q((h(u) + u)q−1 − uq−1)− ph(u)p−1

]
,
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Figure 1. The structure of the solutions to (2.1) for p = 3/2
and q = 7/4. When h(0) is small, the maximal domain of the
solution is bounded. On the other hand, if h(0) is large, then the
solution is convex for sufficiently large arguments. The bold curve
corresponds to the graph of the solution described in Theorem 2.1.

so

q((h(u0) + u0)q−1 − uq−1
0 )− ph(u0)p−1 = 0

and in consequence,

F (u0) = (−q + 1)uq−1
0 h(u0) +

(
p

q
− p+ 1

)
h(u0)p +

p

q
h(u0)p−1u0 −

2− p
2

h(0)p.

We will prove that F (u0) ≥ 0; multiplying this estimate by qh(u0)1−p, we get the
equivalent form

(p− pq + q)h(u0) + pu0 − q(q − 1)uq−1
0 h(u0)2−p − 2− p

2
qh(0)ph(u0)1−p ≥ 0,

or, combining this with (2.1),

(2.3) (p− pq + q)h(u0)− p(2− p)u0h
′(u0)− 2− p

2
qh(0)ph(u0)1−p ≥ 0.

To show this bound, recall that h is a concave function; thus, differentiating both
sides of (2.1), we obtain

(2.4) h(u0) ≥ 2− p
2− q

u0h
′(u0).

Furthermore, again by the concavity of h,

(2.5) h(u0) ≥ u0h
′(u0) + h(0).
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Mutiplying (2.4) by (2 − q)(p − 1) and (2.5) by 2 − p, and adding the obtained
bounds, we get

(p− pq + q)h(u0)− p(2− p)u0h
′(u0)− (2− p)h(0) ≥ 0.

This implies (2.3), since h(u0) ≥ h(0) and q ≤ 2.
Therefore, to complete the proof, we need to show that the inequality F (0) <

0 cannot hold. Suppose on contrary, that F (0) is negative; then, by the above
reasoning, F ′ does not vanish inside (0,∞), so F ′(0+) ≥ 0. However, in view of
(2.2), this means qh(0)q−1 ≥ ph(0)p−1 or h(0)q−p ≥ p/q; it remains to observe that

F (0) = h(0)q − p

2
h(0)p = h(0)p

[
h(0)q−p − p

2

]
≥ 0,

a contradiction. �

We conclude this section by introducing another function to be used later: let
H : [h(0),∞)→ [0,∞) be the inverse to t 7→ t+ h(t). Then, of course,

(2.6) h(H(t)) +H(t) = t and h′(H(t)) + 1 =
1

H ′(t)
.

3. A martingale inequality

The key role in the proof of (1.5) is played by a certain related inequality for
differentially subordinated martingales. Let us introduce the necessary background
and notation. Assume that (Ω,F ,P) is a complete probability space, equipped with
(Ft)t≥0, a nondecreasing family of sub-σ-fields of F , such that F0 contains all the
events of probability 0. Let X, Y be two adapted martingales taking values in a
certain separable Hilbert space (H, | · |), which may and will be taken to be equal
to `2. As usual, we assume that both processes have right-continuous trajectories
which have limits from the left. The symbol [X,Y ] will stand for the quadratic
covariance process (square bracket) of X and Y . See e.g. Dellacherie and Meyer
[16] for details in the case when the processes are real-valued, and extend the
definition to the vector setting by [X,Y ] =

∑∞
k=0[Xk, Y k], where Xk, Y k are the

k-th coordinates of X, Y . Following Bañuelos and Wang [7] and Wang [34], we
say that Y is differentially subordinate to X, if the process ([X,X]t− [Y, Y ]t)t≥0 is
nonnegative and nondecreasing as a function of t.

A celebrated theorem of Burkholder [9] compares the Lp-norms of differentially
subordinated martingales. We would like to mention that the result was originally
formulated in the discrete-time case, and the extension below is due to Wang [34]
(see also [9]). We use the notation ||X||p = supt≥0 ||Xt||p for 1 ≤ p ≤ ∞.

Theorem 3.1. Assume that X, Y are H-valued martingales such that Y is differ-
entially subordinate to X. Then for 1 < p <∞ we have

(3.1) ||Y ||p ≤ (p∗ − 1)||X||p,

where, as above, p∗ = max{p, p/(p− 1)}. The constant p∗ − 1 is the best possible.

This result has proved to be very useful in many applications. The literature is
too vast to review it here, we refer the interested reader to the papers [3]-[11], [17]
and the references therein. Furthermore, the above theorem has been extended in
many directions; consult, for instance, [10], [12], [13], [14], [18], [29] and [33].
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We will require a certain version of the above estimate, in which the order of the
moments of X and Y are different. The main result of this section can be stated
as follows.

Theorem 3.2. Assume that X, Y are H-valued martingales such that Y is differ-
entially subordinate to X. If 1 ≤ p < q < 2, then for any t ≥ 0 we have

(3.2) E(|Yt|p − Lp,q)+ ≤ E|Xt|q.

The constant Lp,q is the best possible.

Here by the optimality of Lp,q we mean that for any L < Lp,q, there exists
a pair X, Y of martingales such that Y is differentially subordinate to X and
E(|Yt|p − L)+ > E|Xt|q.

The proof of (3.2) is based on the so-called Burkholder’s method. Namely, the
validity of this estimate will be shown by constructing certain special functions and
exploiting their properties (see [29] for the detailed description of the technique
and numerous examples). To construct these special objects, we need an auxiliary
function W1 : H×H → R, given by the formula

W1(x, y) =

{
|y|2 − |x|2 if |x|+ |y| ≤ 1,

1− 2|x| if |x|+ |y| > 1.

The crucial property of this function is the following (for the proof, see Wang [34]
or Lemma 2.2 in [28]).

Theorem 3.3. Suppose that X, Y are H-valued martingales such that Y is differ-
entially subordinate to X. Then for any t ≥ 0 we have

EW1(Xt, Yt) ≤ 0.

We will also need the following evident property of W1: for a fixed x ∈ H,

(3.3) W1(x, y1) ≤W (x, y2) provided |y1| ≤ |y2|.

We are ready to introduce the special functions corresponding to the martingale
inequality (3.2). For 1 ≤ p < q < 2, let h be the solution to (2.1) described in
Theorem 2.1. Put

wp,q(t) =
p(2− p)

2
h(H(t))p−3h′(H(t))H ′(t)t2

and define Up,q by

(3.4) Up,q(x, y) =

∫ ∞
h(0)

wp,q(t)W1(x/t, y/t)dt+
(2− p)h(0)p

2
.

If X, Y are martingales such that Y is differentially subordinate to X, then, ob-
viously, for any t > 0 the martingale Y/t is differentially subordinate to X/t.
Therefore, by Theorem 3.3 and Fubini’s theorem, we obtain

(3.5) EUp,q(Xt, Yt) ≤ Up,q(0, 0) for t ≥ 0.

The function Up,q admits the following explicit formulas (see Lemma 4.1 in [27]).

Lemma 3.4. We have

(3.6) Up,q(x, y) = p
|y|2 − |x|2

2h(0)2−p +
(2− p)h(0)p

2
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if |x|+ |y| ≤ h(0), and

Up,q(x, y) =p|y|h(H(|x|+ |y|))p−1 − (p− 1)h(H(|x|+ |y|))p

−H(|x|+ |y|)q − qH(|x|+ |y|)q−1
(
|x| −H(|x|+ |y|)

)
,

(3.7)

if |x|+ |y| > h(0).

Now we turn to the following majorization property. Let Vp,q : H ×H → R be
given by Vp,q(x, y) = max{|y|p, Lp,q} − |x|q.

Lemma 3.5. For any (x, y) ∈ H ×H we have Up,q(x, y) ≥ Vp,q(x, y).

Proof. Clearly, it suffices to prove the lemma for H = R, since the dependence of
Up,q and Vp,q on x, y is only through the norms |x|, |y|. Furthermore, we will be
done if we consider the case x, y ≥ 0. For the convenience of the reader, the proof
is split into a few parts.

Step 1: y = 0. If x ≥ h(0) and we substitute u = H(x), the majorization is
equivalent to the assertion of Lemma 2.2. If x ∈ (0, h(0)), we derive that

∂

∂x

[
Up,q(x, 0)− Vp,q(x, 0)

]
= x

(
− ph(0)p−2 + qxq−2

)
.

Therefore, the derivative is positive for small x and changes sign at most once
in the interval (0, h(0)). Since Up,q(0, 0) = Lp,q = Vp,q(0, 0) and Up,q(h(0), 0) ≥
Vp,q(h(0), 0), the majorization follows.

Step 2: y ∈ (0, Lp,q). For a fixed x, the function y 7→ Vp,q(x, y) is constant
on [0, Lp,q], while y 7→ Up,q(x, y) is nondecreasing on this interval (which follows
immediately from (3.3) and (3.4)). Therefore, Up,q(x, y)− Vp,q(x, y) ≥ Up,q(x, 0)−
Vp,q(x, 0) ≥ 0, by virtue of Step 1.

Step 3: y ≥ Lp,q, x+ y < h(0). We easily compute that

∂

∂y

[
Up,q(x, y)− Vp,q(x, y)

]
= py(h(0)p−2 − yp−2) < 0,

so Up,q(x, y)−Vp,q(x, y) ≥ Up,q(x, h(0)−x)−Vp,q(x, h(0)−x). Therefore, it suffices
to deal with the case x+ y ≥ h(0), which will be done in Step 4 below.

Step 4: y ≥ Lp,q, x + y ≥ h(0). Fix r ≥ h(0) and suppose that |x| + |y| = r.
Denoting s = |y|, we see that the inequality Up,q(x, y) ≥ Vp,q(x, y) is equivalent to
G(s) ≥ 0 for s ∈ [Lp,q, r], where

G(s) =psh(H(r))p−1 − (p− 1)h(H(r))p

−H(r)q − qH(r)q−1h(H(r))− sp + (r − s)q, s ≥ 0.

We have G(h(H(r))) = G′(h(H(r))) = 0. Furthermore, the second derivative of
G, equal to G′′(s) = −p(p− 1)sp−2 + q(q − 1)(r − s)q−2, is negative on (0, s0) and
positive on (s0, r) for some s0 ∈ (0, r). Therefore, to show that G ≥ 0 on [Lp,q, r],
it suffices to prove that G(Lp,q) ≥ 0. But this follows immediately from continuity
and Step 2. �

We are ready to establish the main result of this section.

Proof of (3.2). Observe that we may assume that ||X||q <∞, since otherwise there
is nothing to prove. The martingale inequality is equivalent to

Emax{|Yt|p, Lp,q} ≤ E|Xt|q + Lp,q, t ≥ 0,
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i.e., to EVp,q(Xt, Yt) ≤ Up,q(0, 0). But this follows at once from (3.5) and the
assertion of Lemma 3.5. The sharpness of (3.2) will be established later, while
providing lower bounds for Fourier multipliers, see the beginning of Section 5. �

4. Norm inequalities for Fourier multipliers

We start by recalling the martingale representation of the multipliers from the
class (1.1). This is described in full detail in [4] and [5], so we shall be brief. Let
m be the multiplier as in (1.1), with the corresponding parameters φ, ψ, µ and ν.
Assume in addition that ν(Rd) is finite and nonzero. Then for any s < 0 there is a
Lévy process (Xs,t)t∈[s,0] with Xs,s ≡ 0, for which Lemmas 4.1 and 4.2 below hold

true. To state these, we need some notation. For a given f ∈ L∞(Rd), define the
corresponding parabolic extension Uf to (−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).

Next, fix x ∈ Rd, s < 0 and let f, φ ∈ L∞(Rd). We introduce the processes

F = (F x,s,ft )s≤t≤0 and G = (Gx,s,f,φt )s≤t≤0 by

Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[
(Fu − Fu−) · φ(Xs,u −Xs,u−)

]
−
∫ t

s

∫
Rd

[
Uf (v, x+Xs,v− + z)− Uf (v, x+Xs,v−)

]
φ(z)ν(dz)dv.

(4.1)

Finally, fix s < 0, a function φ on Rd taking values in the unit ball of C and define
the operator T = T s by the bilinear form

(4.2)

∫
Rd
T f(x)g(x)dx =

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx,

where f, g ∈ C∞0 (Rd). By the results from [4] and [5], the family
{

(Xs,t)s≤t≤0

}
s<0

can be chosen so that the following statements are valid.

Lemma 4.1. For any fixed x, s, f, φ as above, the processes F x,s,f , Gx,s,f,φ are
martingales with respect to (Ft)s≤t≤0 = (σ(Xs,t : s ≤ t))s≤t≤0. Furthermore, if
||φ||∞ ≤ 1, then Gx,s,f,φ is differentially subordinate to F x,s,f .

Lemma 4.2. Let 1 < p < ∞ and d ≥ 2. The operator T s is well defined and
extends to a bounded operator on Lp(Rd), which can be expressed as a Fourier
multiplier with the symbol

M(ξ) = Ms(ξ)

=

[
1− exp

(
2s

∫
Rd

(1− cos〈ξ, z〉)ν(dz)

)] ∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)

if
∫
Rd(1 − cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise. Furthermore, the identity

(4.2) holds if f ∈ C∞0 (Rd) and g ∈ Lq(Rd) for some 1 < q <∞.

Equipped with the necessary background, we are ready to establish the main
estimate for Fourier multipliers.

Proof of (1.5). Of course, we may assume that |A| < ∞. It is convenient to split
the reasoning into a few parts.
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Step 1. It suffices to deal with the estimate when both p, q lie in [1, 2] or both
lie in [2,∞). Indeed, having this done, if we take p, q such that 2 lies between p
and q, then

|A|−1/p||Tmf ||Lp(A) ≤ |A|−1/2||Tmf ||L2(A)

≤ C2,q||f ||Lq(Rd)|A|−1/q = Cp,q||f ||Lq(Rd)|A|−1/q,

as desired.
Step 2. Suppose that 1 ≤ p < q ≤ 2. First we show the estimate for the

multipliers of the form

(4.3) Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
.

In addition, we assume that 0 < ν(Rd) < ∞, so that the above approach using
Lévy processes is applicable. Fix s < 0, a Borel subset A of Rd satisfying |A| <∞
and a function f ∈ C∞0 (Rd). We will prove that

(4.4) ||T sf ||Lp(A) ≤
[
||f ||q

Lq(Rd)
+ Lp,q|A|

]1/p
.

To this end, set g = χA|T sf |p−2T sf (if T sf = 0, put g = 0). This function
belongs to L2; indeed, if p = 1, then there is nothing to prove, and for p > 1 this
follows from Hölder inequality and (1.2) (the function f belongs to Lr(Rd) for all
1 < r <∞). Now, assume that p = 1. For a fixed x ∈ Rd, we have, by (3.2),

E|Gx,s,f,φ0 | · |g(x+Xs,0)| = Eχ{x+Xs,0∈A}|G
x,s,f,φ
0 |

≤ Eχ{x+Xs,0∈A}

[
(|Gx,s,f,φ0 | − Lp,q)+ + Lp,q

]
≤ E(|Gx,s,f,φ0 | − Lp,q)+ + Lp,qP(x+Xs,0 ∈ A)

≤ E|F x,s,f0 |q + Lp,qP(x+Xs,0 ∈ A).

(4.5)

Thus, by Fubini’s theorem,

∫
A

|T sf(x)|dx =

∫
Rd
T sf(x)g(x)dx

=

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx

≤
∫
Rd

[
E|F x,s,f0 |q + Lp,qP(x+Xs,0 ∈ A)

]
dx

= ||f ||q
Lq(Rd)

+ Lp,q|A|,

(4.6)
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which is (4.4). On the other hand, if p > 1, then using Hölder’s inequality and
Fubini’s theorem, we obtain∫

A

|T sf(x)|pdx

=

∫
Rd
T sf(x)g(x)dx

=

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx

≤
[∫

Rd
Eχ{x+Xs,0∈A}|G

x,s,f,φ
0 |pdx

]1/p [∫
Rd

E|g(x+Xs,0)|p
′
dx

]1/p′

=

[∫
Rd

Eχ{x+Xs,0∈A}|G
x,s,f,φ
0 |pdx

]1/p

||g||Lp′ (Rd)

=

[∫
Rd

Eχ{x+Xs,0∈A}|G
x,s,f,φ
0 |pdx

]1/p

||T sf ||p/p
′

Lp(Rd)
.

(4.7)

Here, as usual, p′ = p/(p − 1) denotes the harmonic conjugate to p. A similar
argument to that in (4.5) gives that for any x,

Eχ{x+Xs,0∈A}|G
x,s,f,φ
0 |p ≤ E|F x,s,f0 |q + Lp,qP(x+Xs,0 ∈ A)

and therefore the expression in the last square brackets in (4.7) is bounded from

above by
∫
Rd |f(x)|qdx+ Lp,q|A|. It suffices to divide throughout by ||T sf ||p/p

′

Lp(Rd)
,

and (4.4) follows.
Next, let us use a homogenization argument: apply (4.4) to λf , divide through-

out by λ and optimize over this parameter. We get

||T sf ||Lp(A) ≤ Cp,q||f ||Lq(Rd)|A|1/p−1/q.

Now if we let s→ −∞, then Ms converges pointwise to the multiplier Mφ,ν given by
(4.3). By Plancherel’s theorem, T sf → TMφ,ν

f in L2 and hence there is a sequence
(sn)∞n=1 converging to −∞ such that limn→∞ T snf → TMφ,ν

f almost everywhere.
Thus Fatou’s lemma yields the desired bound for the multiplier TMφ,ν

.

Step 3. Let us still keep p, q between 1 and 2. Now we deduce the result for the
general multipliers as in (1.1) (in particular, involving the measure µ) and drop the
assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy measure νε in polar
coordinates (r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)µ(dθ),

where δε denotes Dirac measure on {ε}. Next, consider a multiplier mε as in (4.3),
in which the Lévy measure is 1{|x|>ε}ν + νε and the jump modulator is given by
1{|x|>ε}φ(x) + 1{|x|=ε}ψ(x/|x|). If we let ε→ 0, we see that∫

Rd
[1− cos〈ξ, x〉]ψ(x/|x|)νε(dx) =

∫
S
φ(θ)

1− cos〈ξ, εθ〉
ε2

µ(dθ)

→ 1

2

∫
S
〈ξ, θ〉2φ(θ)µ(dθ).

This yields the claim by the similar argument as above, using of Plancherel’s theo-
rem and the passage to the subsequence which converges almost everywhere.
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Step 4. Now, assume that 2 ≤ p < q <∞. We will use duality and the fact that
for a symbol m as in (1.1), its conjugate m̄ also belongs to this class. For any f as
in (1.5), put g = |Tmf |p−2Tmf and write∫

A

|Tmf(x)|pdx =

∫
Rd
Tmf(x)g(x)χA(x)dx

=

∫
Rd
m(ξ)f̂(ξ)ĝχA(ξ)dξ

=

∫
Rd
f(x)Tm̄(gχA)(x)dx

=

∫
Rd
f(x)χA(x)Tm̄(gχA)(x)dx

≤ ||f ||Lq(Rd)||Tm̄(gχA)||Lq′ (A)

≤ Cq′,p′ ||f ||Lq(Rd)||gχA||Lp′ (A)|A|
1/q′−1/p′

= Cp,q||f ||Lq(Rd)

(∫
A

|Tmf(x)|pdx
)1/p′

|A|1/p−1/q.

It remains to divide throughout by
(∫
A
|Tmf(x)|pdx

)1/p′
to get the claim. �

Remark 4.3. We have shown above that if f is supported on A, then

||Tmf ||Lp(A) ≤ Cp,q||f ||Lq(Rd)|A|1/p−1/q.

A careful inspection of the above proof (Steps 1−3) shows that if p ≤ 2, then this
estimate holds for all f ∈ Lq(Rd), that is, the condition f ≡ 0 on Rd \ A can be
removed. Unfortunately, this is no longer true for p > 2 and we do not know the
optimal values of Cp,q in this case.

In the remainder of this section we discuss the possibility of extending the asser-
tion of Theorem 1.2 to the vector-valued multipliers. For any bounded function m =
(m1,m2, . . . ,mn) : Rd → Cn, we may define the associated Fourier multiplier acting
on complex valued functions on Rd by the formula Tmf = (Tm1

f, Tm2
f, . . . , Tmnf).

As we shall see, the reasoning presented above can be easily modified to yield the
following statement.

Theorem 4.4. Let ν, µ be two measures on Rd and S, respectively, satisfying the
assumptions of Theorem 1.2. Assume further that φ, ψ are two Borel functions
on Rd taking values in the unit ball of Cn and let m : Rd → Cn be the associated
symbol given by (1.1). Then for any Borel subset A of Rd and any f ∈ Lp(Rd)
which vanishes outside A we have

||Tmf ||Lp(A) ≤ Cp,q||f ||Lq(Rd)|A|1/p−1/q.

Proof. Suppose first that ν is finite. For a given C∞ function f : Rd → C, we
introduce martingales F and G = (G1, G2, . . . , Gn) by the formula (4.1). It is
easy to check that G is differentially subordinate to F , arguing as in [4] or [5].
Applying the representation (4.2) to each coordinate of G separately, we obtain the
associated multiplier T = (T 1, T 2, . . . , T n), where T j has symbol Mφj ,νj defined
in (4.3). Now we repeat the reasoning from (4.5) and (4.7), with a vector valued
function g = χA|T sf |p−2T sf : Rd → Cn. An application of (3.2) gives (4.4) and
hence, by homogenization, the result follows. �
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5. Sharpness

In the final part of the paper we show that the constant Cp,q in (1.5) is the
best possible. This, of course, will immediately imply that the constant Lp,q is
optimal in (3.2) (otherwise, its improvement would lead to a smaller constant in
(1.5)). As explained in the introductory section, we will be done if we establish the
sharpness of (1.6) and (1.7). One easily checks that the multipliers corresponding
to the operators R2

j − R2
k and 2R`Rm are isometric; i.e., if T1, T2 are two such

multipliers and m1, m2 denote the corresponding symbols, then there is an isometry
I : Rd → Rd such that m1 ◦ I = m2. Consequently, in view of Parseval’s identity,
the optimal constants in (1.6) and (1.7) are the same for all j, k. Hence it is enough
to focus on the sharpness of the bound

(5.1) ||(R2
1 −R2

2)f ||Lp(A) ≤ C||f ||Lq(A)|A|1/p−1/q.

Our approach will be based on the properties of certain special probability measures,
the so-called laminates. For the sake of convenience and clarity, we have decided
to split this section into a few separate parts.

5.1. Necessary definitions. Let Rm×n denote the space of all real matrices of
dimension m× n and let Rn×nsym be the class of all real symmetric n× n matrices.

Definition 5.1. A function f : Rm×n → R is said to be rank-one convex, if
t 7→ f(A+ tB) is convex for all A,B ∈ Rm×n with rank B = 1.

Let P = P(Rm×n) stand for the class of all compactly supported probability
measures on Rm×n. For ν ∈ P, we denote by ν =

∫
Rm×n Xdν(X) the center of

mass or barycenter of ν.

Definition 5.2. We say that a measure ν ∈ P is a laminate (and denote it by
ν ∈ L), if

(5.2) f(ν) ≤
∫
Rm×n

fdν

for all rank-one convex functions f . The set of laminates with barycenter 0 is
denoted by L0(Rm×n).

Laminates arise naturally in several applications of convex integration, where
can be used to produce interesting counterexamples, see e.g. [1], [15], [21], [26] and
[32]. We will be particularly interested in the case of 2 × 2 symmetric matrices.
The important fact is that laminates can be regarded as probability measures that
record the distribution of the gradients of smooth maps, see Corollary 5.6 below
and compare it with the discussion in §5.6. Let us briefly explain this; detailed
proofs of the statements below can be found for example in [20], [26] and [32].

Definition 5.3. Let U ⊂ R2×2 be a given set. Then PL(U) denotes the class of
prelaminates generated in U , i.e., the smallest class of probability measures on U
which

(i) contains all measures of the form λδA+(1−λ)δB with λ ∈ [0, 1] and satisfying
rank(A−B) = 1;

(ii) is closed under splitting in the following sense: if λδA + (1− λ)ν̃ belongs to
PL(U) for some ν̃ ∈ P(R2×2) and µ also belongs to PL(U) with µ = A, then also
λµ+ (1− λ)ν̃ belongs to PL(U).
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It follows immediately from the definition that the class PL(U) contains atomic
measures only. Also, by a successive application of Jensen’s inequality, we have the
inclusion PL ⊂ L. Let us state two well-known facts (see [1], [20], [26],[32]).

Lemma 5.4. Let ν =
∑N
i=1 λiδAi ∈ PL(R2×2

sym) with ν = 0. Moreover, let 0 <

r < 1
2 min |Ai − Aj | and δ > 0. For any bounded domain Ω ⊂ R2 there exists

u ∈W 2,∞
0 (Ω) such that ‖u‖C1 < δ and for all i = 1 . . . N∣∣{x ∈ Ω : |D2u(x)−Ai| < r}

∣∣ = λi|Ω|.

Lemma 5.5. Let K ⊂ R2×2
sym be a compact convex set and ν ∈ L(R2×2

sym) with

supp ν ⊂ K. For any relatively open set U ⊂ R2×2
sym with K ⊂⊂ U there exists a

sequence νj ∈ PL(U) of prelaminates with νj = ν and νj
∗
⇀ ν.

Combining these two lemmas and using a simple mollification, we obtain the
following statement, proved by Boros, Shékelyhidi Jr. and Volberg [8]. It links
laminates supported on symmetric matrices with second derivatives of functions,
and will play a crucial role in our argumentation below. Throughout, B will denote
the unit ball in R2.

Corollary 5.6. Let ν ∈ L0(R2×2
sym). Then there exists a sequence uj ∈ C∞0 (B) with

uniformly bounded second derivatives, such that

1

|B|

∫
B
φ(D2uj(x)) dx →

∫
R2×2
sym

φ dν

for all continuous φ : R2×2
sym → R.

5.2. Sharpness in the case 2 ∈ [p, q] and d = 2. We are ready to exploit the
above tools; first we study the easier case in which 2 lies between p and q. In what
follows, we will often use the notation

diag(x, y) =

[
x 0
0 y

]
∈ R2×2

sym.

Consider the probability measure ν = 1
2δdiag(0,1) + 1

2δdiag(0,−1) on R2×2
sym. Directly

from the definition, this measure is a prelaminate. Let us introduce the continuous
functions

φ1(A) = |A11 −A22|p and φ2(A) = |A11 +A22|q,
for which we easily check that (∫

R2×2
sym

φ1dν
)1/p

(∫
R2×2
sym

φ2dν
)1/q

= 1.

Consequently, if we fix ε > 0, Corollary 5.6 guarantees the existence of u ∈ C∞0 (B)
such that

(1− ε)|B|1/p−1/q ≤
(∫
B φ1(D2u(x))dx

)1/p(∫
B φ2(D2u(x))dx

)1/q
=

(∫
B |∂

2
11u(x)− ∂2

22u(x)|pdx
)1/p(∫

B |∂
2
11u(x) + ∂2

22u(x)|qdx
)1/q .
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Thus, if we put f = ∆u, the inequality becomes

||(R2
1 −R2

2)f ||Lp(B) ≥ (1− ε)||f ||Lq(B)|B|1/p−1/q.

Since ε was arbitrary, the sharpness follows.

5.3. Biconvex functions and a special laminate. We turn to the much more
difficult case when 2 /∈ [p, q]. To study it, we need some additional notation. A
function ζ : R× R→ R is said to be biconvex if for any fixed z ∈ R, the functions
x 7→ ζ(x, z) and y 7→ ζ(z, y) are convex. We start with the following inequality
for biconvex functions in the plane. Some heuristic arguments which lead to this
particular statement are presented in §5.6 below. Let 1 ≤ p < q ≤ 2 be fixed and
let h be the solution to (2.1), described in Theorem 2.1.

Lemma 5.7. Suppose that ζ : R× R→ R is biconvex. Then for any T > h(0)/2,

ζ

(
h(0)

2
,
h(0)

2

)
≤ exp

[
−
∫ 2T

h(0)

du

h(H(u))

]
ζ(T, T )

+

∫ T

h(0)/2

ζ(s− h(H(2s)), s) + ζ(s, s− h(H(2s)))

h(H(2s))
exp

[
−
∫ 2s

h(0)

du

h(H(u))

]
ds.

(5.3)

Proof. By a standard regularization argument, it suffices to show the inequality for
ζ ∈ C1(R2). Fix s ≥ h(0)/2. Using biconvexity, we may write, for δ < h(0),

ζ(s, s) ≤ δ

h(H(2s)) + δ
ζ(s− h(H(2s)), s) +

h(H(2s))

h(H(2s)) + δ
ζ(s+ δ, s)

and

ζ(s+ δ, s) ≤ h(H(2s+ 2δ))− δ
h(H(2s+ 2δ))

ζ(s+ δ, s+ δ)

+
δ

h(H(2s+ 2δ))
ζ
(
s+ δ, s+ δ − h(H(2s+ 2δ))

)
.

Plugging the latter estimate into the former, subtracting ζ(s+ δ, s+ δ) from both
sides and dividing throughout by δ gives

ζ(s, s)− ζ(s+ δ, s+ δ)

δ
≤ − h(H(2s)) + h(H(2s+ 2δ))

(h(H(2s)) + δ)h(H(2s+ 2δ))
ζ(s+ δ, s+ δ)

+
ζ(s− h(H(2s)), s)

h(H(2s)) + δ
+
ζ(s+ δ, s+ δ − h(H(2s+ 2δ)))

h(H(2s+ 2δ))
.

Letting δ → 0 yields

− d

ds
ζ(s, s) ≤ − 2

h(H(2s))
ζ(s, s) +

ζ(s− h(H(2s)), s) + ζ(s, s− h(H(2s)))

h(H(2s))
.
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Multiply both sides by exp
[
−
∫ 2s

h(0)
du

h(H(u))

]
and work a little bit to obtain

d

ds

{
exp

[
−
∫ 2s

h(0)

du

h(H(u))

]
ζ(s, s)

}

≥ −ζ(s− h(H(2s)), s) + ζ(s, s− h(H(2s)))

h(H(2s))
exp

[
−
∫ 2s

h(0)

du

h(H(u))

]
.

It suffices to integrate this inequality over s from h(0)/2 to T to get the claim. �

Let µ = µT ∈ P(R2×2) be defined by the right-hand side of (5.3); that is, for
any f ∈ C(R2×2), let∫

f dµT

:= exp

[
−
∫ 2T

h(0)

du

h(H(u))

]
f(diag(T, T )) +

∫ T

h(0)/2

L(s) exp

[
−
∫ 2s

h(0)

du

h(H(u))

]
ds,

where

L(s) =
f(diag(s− h(H(2s)), s)) + f(diag(s, s− h(H(2s))))

h(H(2s))
.

Then µT is a probability with barycenter µT = diag(h(0)/2, h(0)/2). Moreover,
observe that if f is rank-one convex, then (x, y) 7→ f(diag(x, y)) is biconvex. There-
fore, using Lemma 5.7 we see that µT is a laminate. Consequently, the measure µ̃T ,
defined by the identity µ̃T (A) = µT (−A), is also a laminate, and has barycenter
diag(−h(0)/2,−h(0)/2). Introduce another probability measure νT on R2×2 by

νT :=
1

4
µT +

1

4
µ̃T +

1

4
δdiag(−h(0)/2,h(0)/2) +

1

4
δdiag(h(0)/2,−h(0)/2).

Obviously, the barycenter of νT equals 0. Furthermore, νT is a laminate: indeed,
µT , µ̃T have this property, so if f is a rank-one convex function on R2×2, then

∫
R2×2

fdνT ≥
1

4

[
f

(
diag

(
h(0)

2
,
h(0)

2

))
+ f

(
diag

(
−h(0)

2
,−h(0)

2

))

+ f

(
diag

(
−h(0)

2
,
h(0)

2

))
+ f

(
diag

(
h(0)

2
,−h(0)

2

))]
≥ f(diag(0, 0)) = f(ν̄T ).

Here the latter estimate follows directly from rank-one convexity of f . Next, con-
sider the function φ : R2×2

sym → R given by

(5.4) φ(A) = |A11 −A22|p − |A11 +A22|q − Lp,q.



FOURIER MULTIPLIERS 17

We have∫
R2×2
sym

φdµT = exp

[
−
∫ 2T

h(0)

du

h(H(u))

]
(−(2T )q − Lp,q)

+

∫ T

h(0)/2

2((h(H(2s)))p −H(2s)q − Lp,q)
h(H(2s))

exp

[
−
∫ 2s

h(0)

du

h(H(u))

]
ds

= exp

[
−
∫ 2T

h(0)

du

h(H(u))

]
(−(2T )q − Lp,q)

+

∫ 2T

h(0)

(h(H(s)))p −H(s)q − Lp,q
h(H(s))

exp

[
−
∫ s

h(0)

du

h(H(u))

]
ds.

Now we let T go to ∞. Using the substitution r = H(u), we get that

exp

[
−
∫ 2T

h(0)

du

h(H(u))

]
= exp

[
−
∫ H(2T )

0

h′(r) + 1

h(r)
dr

]

=
h(0)

h(H(2T ))
exp

[
−
∫ H(2T )

0

dr

h(r)

]
.

(5.5)

Furthermore, by (2.1) and the concavity of h, we have that if r > 1, then

q(q − 1)rq−2h(r)2−p ≤ p+ p(2− p)h′(1),

that is, h(r) ≤ cr(2−q)/(2−p), where c2−p = (p + p(2 − p)h′(1))/(q(q − 1)). This
implies that for large T ,∫ H(2T )

0

dr

h(r)
≥ 1

c

∫ H(2T )

1

r(q−2)/(2−p)dr = O(T (q−p)/(2−p)),

since

lim
T→∞

H(T )

T
= lim
T→∞

T

h(T ) + T
= 1.

Therefore,

lim
T→∞

exp

[
−
∫ 2T

h(0)

du

h(H(u))

]
(−(2T )q − Lp,q) = 0.

In addition, using the calculations from (5.5), we may write∫ ∞
h(0)

(h(H(s)))p −H(s)q − Lp,q
h(H(s))

exp

[
−
∫ s

h(0)

du

h(H(u))

]
ds

= h(0)

∫ ∞
h(0)

(h(H(s)))p −H(s)q − Lp,q
(h(H(s)))2

exp

[
−
∫ H(s)

0

dr

h(r)

]
ds

= h(0)

∫ ∞
0

h(u)p − uq − Lp,q
h(u)2

exp

[
−
∫ u

0

dr

h(r)

]
(h′(u) + 1)du,

where the latter passage follows from the substitution u = H(s). Now, since

d

du

(
1

h(u)
exp

[
−
∫ u

0

dr

h(r)

])
= −h

′(u) + 1

h(u)2
exp

[
−
∫ u

0

dr

h(r)

]
,
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the integration by parts gives

h(0)

∫ ∞
0

−uq − Lp,q
h(u)2

exp

[
−
∫ u

0

dr

h(r)

]
(h′(u) + 1)du

= −Lp,q − h(0)q

∫ ∞
0

uq−1

h(u)
exp

[
−
∫ u

0

dr

h(r)

]
du

= −Lp,q − h(0)q(q − 1)

∫ ∞
0

uq−2 exp

[
−
∫ u

0

dr

h(r)

]
du.

By (2.1), we have q(q − 1)uq−2 = ph(u)p−2 + p(2− p)h(u)p−2h′(u) and therefore,

h(0)

∫ ∞
0

h(u)p − uq − Lp,q
h(u)2

exp

[
−
∫ u

0

dr

h(r)

]
(h′(u) + 1)du

= −Lp,q + h(0)

∫ ∞
0

h(u)p−2 exp

[
−
∫ u

0

dr

h(r)

] [
h′(u) + 1− p− p(2− p)h′(u)

]
du

= −Lp,q + h(0)(p− 1)

∫ ∞
0

(
h(u)p−1 exp

[
−
∫ u

0

dr

h(r)

])′
du

= −Lp,q − (p− 1)h(0)p = −p
2
h(0)p.

Summarizing, we have proved that

lim
T→∞

∫
R2×2
sym

φdµT = −p
2
h(0)p

and since φ(−A) = φ(A) for any A ∈ R2×2, we also have

lim
T→∞

∫
R2×2
sym

φdµ̃T = −p
2
h(0)p.

Consequently,∫
R2×2
sym

φdνT =
1

2

∫
R2×2
sym

φdµ+
1

2
(h(0)p − Lp,q)

T→∞−−−−→ 2− p
2

h(0)p − Lp,q = 0.

5.4. Sharpness for 2 /∈ [p, q] and d = 2. By duality, it suffices to show that
Cp,q is optimal in the case 1 ≤ p < q < 2. By the above reasoning, if ε > 0 is a
given number, then we can pick T > 0 such that

∫
R2×2
sym

φdνT > −ε. Therefore, an

application of Corollary 5.6 yields the existence of a C∞ function u, supported on
B, such that

∫
B φ(D2u(x))dx > −2ε|B| or, by the definition of φ,∫

B
|∂2

11u(x)− ∂2
22u(x)|pdx ≥

∫
B
|∆u(x)|qdx+ (Lp,q − 2ε) |B|.

Therefore, if we put f = ∆u, we obtain the bound

(5.6)

∫
B
|(R2

1 −R2
2)f(x)|pdx ≥

∫
B
|f(x)|qdx+ (Lp,q − 2ε) |B|.

Now suppose that C is a constant such that

||(R2
1 −R2

2)f ||Lp(B) ≤ C||f ||Lq(B)|B|1/p−1/q

for all integrable f which vanish outside B. Then, by Young’s inequality,∫
B
|(R2

1 −R2
2)f(x)|pdx ≤

∫
B
|f(x)|qdx+

q − p
q

(
p

q

)p/(q−p)
Cpq/(q−p)|B|.
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Combining this with (5.6) and the fact that ε was arbitrary, we see that

q − p
q

(
p

q

)p/(q−p)
Cpq/(q−p) ≥ Lp,q,

which is equivalent to C ≥ Cp,q. This proves the desired sharpness of (1.6) and
(1.7) in the case d = 2.

5.5. The case d ≥ 3. Suppose that for fixed 1 ≤ p < q < ∞ and some positive
constant C we have

(5.7)

(∫
A

|(R2
1 −R2

2)f(x)|pdx
)1/p

≤ C
(∫

A

|f(x)|pdx
)1/p

|A|1/p−1/q

for all Borel subsets A of Rd and all Borel functions f : Rd → R supported on A. For
t > 0, define the dilation operator δt as follows: for any function g : R2×Rd−2 → R,
we let δtg(ξ, ζ) = g(ξ, tζ); for any A ⊂ R2 × Rd−2, let δtA = {(ξ, tζ) : (ξ, ζ) ∈ A}.
If f is supported on A, then δtf is supported on δ−1

t A and hence, by (5.7), the
operator Tt := δ−1

t ◦ (R2
1 −R2

2) ◦ δt satisfies(∫
A

|Ttf(x)|pdx
)1/p

=

(
td−2

∫
δ−1
t A

|(R2
1 −R2

2) ◦ δtf(x)|pdx

)1/p

≤ C

(
td−2

∫
δ−1
t A

|δtf(x)|qdx

)1/q (
td−2|δ−1

t A|
)1/p−1/q

(5.8)

= C

(∫
A

|f(x)|qdx
)1/q

|A|1/p−1/q.

Now fix f ∈ Lq(Rd) ∩ L2(Rd). It is straightforward to check that the Fourier
transform F satisfies the identity F = td−2δt ◦ F ◦ δt, so the operator Tt has the
property that

T̂tf(ξ, ζ) = − ξ2
1 − ξ2

2

|ξ|2 + t2|ζ|2
f̂(ξ, ζ), (ξ, ζ) ∈ R2 × Rd−2.

By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂tf(ξ, ζ) = T̂0f(ξ, ζ)

in L2(Rd), where T̂0f(ξ, ζ) = (ξ2
2 − ξ2

1)f̂(ξ, ζ)/|ξ|2. By Plancherel’s theorem and
Fatou’s lemma, we see that (5.8) implies

(5.9)

(∫
A

|T0f(x)|pdx
)1/p

≤ C
(∫

A

|f(x)|qdx
)1/q

|A|1/p−1/q.

Now pick an arbitrary function g : R2 → R supported on the unit ball B and define
f : R2×Rd−2 → R by f(ξ, ζ) = g(ξ)1[0,1]d−2(ζ). Denoting by R1 and R2 the planar

Riesz transforms, we have T0f(ξ, ζ) = (R2
1 − R2

2)g(ξ)1[0,1]d−2(ζ), because of the
identity

T̂0f(ξ, ζ) = −ξ
2
1 − ξ2

2

|ξ|2
ĝ(ξ) ̂1[0,1]d−2(ζ).
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Plug this into (5.9) with the choice A = B × [0, 1]d−2 to obtain(∫
B
|(R2

1 −R2
2)g(ξ)|pdξ

)1/p

≤ C
(∫
B
|g(ξ)|qdξ

)1/q

|B|1/p−1/q.

As we have computed in the previous subsections, this implies C ≥ Cp,q. The proof
is complete.

5.6. On the search of an appropriate laminate. The inequality which appears
in the statement of Lemma 5.7 is strictly related to the extremal example in (3.2).
Suppose that d = 2 and let us look at the inequality (5.1) in the non-homogeneous
form (which follows easily from Young’s inequality)∫

A

|(R2
1 −R2

2)f(x)|pdx ≤
∫
A

|f(x)|pdx+ Lp,q · |A|,

or, since R2
1 +R2

2 = Id,

1

|A|

∫
A

|(R2
1 −R2

2)f(x)|pdx− Lp,q ≤
1

|A|

∫
A

|(R2
1 +R2

2)f(x)|pdx.

On the other hand, a slightly weaker form of the inequality (3.2) can be rewritten
in the form E|Ft −Gt|p − Lp,q ≤ E|Ft +Gt|q, or

(5.10) Eφ(diag(Ft, Gt)) ≤ 0,

where φ is given by (5.4) and the martingale F −G is differentially subordinate to
F +G. Thus Corollary 5.6 suggests the following approach: find the extremal mar-
tingale pair (F,G) (for which the equality in (5.10) is attained, or almost attained);
then the distribution of the random variable diag(Ft, Gt) is the desired laminate.

The paper [27] contains the description of the extremal pairs of martingales
(F − G,F + G) such that E|Ft − Gt|p − E|Ft + Gt|p − Lp,q is almost 0 for large
t and such that F − G is differentially subordinate to F + G. We recall here the
construction and express it in terms of the pair (F,G) (which is more convenient to
us, in the light of the above remarks). Namely, fix δ > 0, T > h(0)/2 and consider
the discrete-time Markov martingale (f, g) whose transition function is uniquely
determined by the following conditions:

(i) (f, g) starts from (0, 0).

(ii) The state (0, 0) leads to (0, h(0)/2) or (0,−h(0)/2).

(iii) for ε ∈ {−1, 1}, the state (0, εh(0)/2) leads to (−εh(0)/2, εh(0)/2) or to
(εh(0)/2, εh(0)/2).

(iv) for ε ∈ {−1, 1} and h(0)/2 ≤ s ≤ T , the state (εs, εs) leads to (ε(s −
h(H(2s))), εs) or to (ε(s+ δ), εs).

(v) for h(0)/2 ≤ s ≤ T , the state (ε(s+ δ), εs) leads to (ε(s+ δ), ε(s+ δ)) or to
(ε(s+ δ), ε(s+ δ − h(H(2s+ 2δ)))).

(vi) All the remaining states are absorbing.

It is not difficult to check that if we let δ → 0, then the distributions of the
pointwise limits diag(f∞, g∞) converge weakly to the laminate νT exploited in §5.4.
This explains the use of this particular probability measure. See also [8] for a similar
discussion.
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