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Abstract. Let X = (Xt)t≥0 be a semimartingale and H = (Ht)t≥0 be a pre-
dictable process taking values in [−1, 1]. Let Y denote the stochastic integral
of H with respect to X. We show that if X is a martingale, then

|| sup
t≥0

Yt||1 ≤ β0|| sup
t≥0

|Xt|||1,

where β0 = 2, 0856 . . . is the best possible. Furthermore, if X is assumed to
be a nonnegative supermartingale, then

|| sup
t≥0

Yt||1 ≤ β+
0 || sup

t≥0

Xt||1,

where β+
0 = 14

9
is the best possible.

1. Introduction

Let (Ω,F , P) be a complete probability space, which is filtered by a nondecreasing
right-continuous family (Ft)t≥0 of sub-σ-fields of F . Assume that F0 contains all
the events of probability 0. Suppose X = (Xt)t≥0 is an adapted real-valued right-
continuous semimartingale with left limits. Let Y be the Itô integral of H with
respect to X,

Yt = H0X0 +
∫

(0,t]

HsdXs, t ≥ 0,

where H is a predictable process with values in [−1, 1]. Let ||Y ||1 = supt≥0 ||Yt||1
and X∗ = supt≥0 Xt.

The main interest of this paper is in the comparison of the sizes of Y ∗ and |X|∗.
Let us first describe two related results from the literature. In [4], Burkholder
introduced a method of proving maximal inequalities for martingales and obtained
the following sharp estimate.

Theorem 1.1. If X is a martingale and Y is as above, then we have

(1.1) ||Y ||1 ≤ γ|| |X|∗||1,

where γ = 2, 536 . . . is the unique solution of the equation

γ − 3 = − exp
(1− γ

2
)
.

The constant is the best possible.
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It was then proved by the author in [5], that if X is positive, then the optimal
constant γ in (1.1) equals 2 + (3e)−1 = 2, 1226 . . ..

We study here a related estimate with Y is replaced by its one-sided supremum:

(1.2) ||Y ∗||1 ≤ β|| |X|∗||1.

Let β0 = 2, 0856 . . . be the positive solution to the equation

2 log
(

8
3
− β0

)
= 1− β0

and β+
0 = 14

9 = 1, 555 . . .. The main result of the paper can be stated as follows.

Theorem 1.2. (i) If X is a martingale and Y is as above, then (1.2) holds with
β = β0 and the inequality is sharp.

(ii) If X is a nonnegative supermartingale and Y is as above, then (1.2) holds
with β = β+

0 and the constant is the best possible. It is already the best even if X
is assumed to be a positive martingale.

To prove this theorem, we establish first its discrete-time version. Let (Ω,F , P)
be a probability space, equipped with filtration (Fn)n≥0. Adding σ-field F−1 if
necessary, we may assume that F0 = {∅,Ω}. Let f = (fn)n≥0 be an adapted
sequence of integrable variables and g = (gn)n≥0 be its transform by a predictable
sequence v = (vn)n≥0 bounded in absolute value by 1. That is, for any n =
0, 1, 2, . . . we have

fn =
n∑

k=0

dfk and gn =
n∑

k=0

vkdfk.

By predictability of v we mean that v0 is F0-measurable (and hence deterministic)
and for any k ≥ 1, vk is measurable with respect to Fk−1. In the special case
when each vk is deterministic and takes values in {−1, 1} we will say that g is a ±1
transform of f . Let f∗n = maxk≤n fk and f∗ = supk fk.

A discrete-time version of Theorem 1.2 is the following.

Theorem 1.3. Let f , g, β0, β+
0 be as above.

(i) If f is a martingale, then

(1.3) ||g∗||1 ≤ β0|||f |∗||1,

and the constant β0 is the best possible.
(ii) If f is a nonnegative supermartingale, then

(1.4) ||g∗||1 ≤ β+
0 ||f∗||1,

and the constant β+
0 is the best possible. It is already the best possible if f is assumed

to be a nonnegative martingale.

A few words about the organization of the paper. The proof of Theorem 1.3 is
based on Burkholder’s technique, which reduces the problem of proving a martingale
inequality to finding a certain special function. The description of this technique
can be found in Section 2. Then, in the following two sections we provide the special
functions corresponding to (1.3) and (1.4) and study their properties. In the last
section we complete the proofs of Theorem 1.2 and Theorem 1.3 by showing that
the constants β0 and β+

0 can not be replaced by smaller ones.



SHARP MAXIMAL INEQUALITY FOR MARTINGALES AND STOCHASTIC INTEGRALS 3

2. Burkholder’s method

Throughout this section we deal with discrete-time setting. Let us start with
some standard reductions. Assume f , g are as in the statement of Theorem 1.3.
With no loss of generality we may assume that the process f is simple: for any
integer n the random variable fn takes only a finite number of values and there
exists a number N such that fN = fN+1 = . . . with probability 1. Furthermore,
it suffices to prove Theorem 1.3 for ±1 transforms. To see this, let us consider the
following extension of the Lemma A.1 from [4]. The proof is identical as in the
original setting and hence it is omitted.

Lemma 2.1. Let g be the transform of a martingale (resp., nonnegative martingale,
nonnegative supermartingale) f by a real-valued predictable sequence v uniformly
bounded in absolute value by 1. Then there exist martingales (resp., nonnegative
martingales, nonnegative supermartingales) F j = (F j

n)n≥0 and Borel measurable
functions φj : [−1, 1] → {−1, 1} such that, for j ≥ 1 and n ≥ 0,

fn = F j
2n+1, |f |∗ = |F j |∗,

gn =
∞∑

j=1

2−jφj(v0)G
j
2n+1,

where Gj is the transform of F j by ε = (εk)k≥0 with εk = (−1)k.

Suppose we have established Theorem 1.3 for ±1 transforms and let β denote
β0 or β+

0 , depending on whether f is a martingale or nonnegative supermartingale.
Lemma 2.1 gives us the processes F j and the functions φj , j ≥ 1. As v0 is deter-
ministic, for any j ≥ 1 the sequence φj(v0)Gj is a ±1 transform of F j and hence
we may write

||g∗||1 ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

j=1

2−j sup
n

(
φj(v0)G

j
2n+1

)∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤
∞∑

j=1

2−j
∣∣∣∣∣∣(φj(v0)Gj

)∗∣∣∣∣∣∣
1

≤ β

∞∑
j=0

2−j |||F j |∗||1 = β|||f |∗||1.

The final reduction is that it suffices to prove that for any integer n we have

(2.1) E [g∗n − β|fn|∗] ≤ 0.

To establish the above estimate, consider the following general problem, first in
the martingale setting. Let D = R×R× (0,∞)× (0,∞) and V : D → R be a Borel
function. Suppose we want to prove the inequality

(2.2) EV (fn, gn, |fn|∗, g∗n) ≤ 0

for any integer n, any martingale f and g being its ±1 transform.
The key idea is to study the family U of all functions U : D → R satisfying the

following three properties.

(2.3) U(x, y, z, w) = U(x, y, |x| ∨ z, y ∨ w), if (x, y, z, w) ∈ D,

(2.4) V (x, y, z, w) ≤ U(x, y, z, w), if (x, y, z, w) ∈ D
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and, furthermore,

(2.5)
αU(x + t1, y + εt1, z, w) + (1− α)U(x + t2, y + εt2, z, w) ≤ U(x, y, z, w),

for any |x| ≤ z, y ≤ w, ε ∈ {−1, 1}, α ∈ (0, 1) and t1, t2
with αt1 + (1− α)t2 = 0.

The relation between the class U and the estimate (2.2) is described in the
following theorem. It is a simple modification of Theorems 2.2 and 2.3 in [4] (see
also Section 11 in [2] and Theorem 2.1 in [3]). We omit the proof.

Theorem 2.2. The inequality (2.2) holds for all n and all pairs (f, g) as above if
and only if the class U is nonempty. Furthermore, if U is nonempty, then there
exists the least element in U , given by

(2.6) U0(x, y, z, w) = sup{EV (f∞, g∞, |f |∗ ∨ z, g∗ ∨ w)}.

Here the supremum runs over all the pairs (f, g), where f is a simple martingale,
P((f0, g0) = (x, y)) = 1 and dgk = ±dfk almost surely for all k ≥ 1.

A similar statement is valid when we want the inequality (2.2) to hold for any
nonnegative martingale f and its ±1 transform g. Let D+ = [0,∞)×R× (0,∞)×
(0,∞) and let U+ denote the class of functions U : D+ → R satisfying (2.3), (2.4)
and (2.5) (with D replaced by D+ and, in (2.5), an extra assumption t1, t2 ≥ −x).

Theorem 2.3. The inequality (2.2) holds for all n and all pairs (f, g) as above if
and only if the class U+ is nonempty. Furthermore, if U+ is nonempty, then there
exists the least element in U+, given by

(2.7) U+
0 (x, y, z, w) = sup{EV (f∞, g∞, |f |∗ ∨ z, g∗ ∨ w)}.

Here the supremum runs over all the pairs (f, g), where f is a simple nonnegative
martingale, P((f0, g0) = (x, y)) = 1 and dgk = ±dfk almost surely for all k ≥ 1.

In the case when f is assumed to be a nonnegative supermartingale we need to
impose another condition on the special functions. Let U+ be a subclass of U+

such that if U ∈ U+, then

(2.8) U(x, y, z, w) ≥ U(x− δ, y ± δ, z, w), if (x, y, z, w) ∈ D+, δ ∈ [0, x].

Here is the analogue of Theorems 2.2 and 2.4. Again, we omit the straightforward
proof.

Theorem 2.4. The inequality (2.2) holds for all n and all pairs (f, g) as above if
and only if the class U+ is nonempty.

Let us now turn to (1.3) and assume, from now on, that the function V is given
by

V (x, y, z, w) = V (x, y, |x| ∨ z, y ∨ w) = y ∨ w − β(x ∨ z),

where β > 0 is a fixed number. Denote by U(β), U+(β) and U+(β) the classes U ,
U+ and U+ corresponding to this choice of V . The purpose of the next two sections
is to show that the classes U(β0) and U+(β+

0 ) are nonempty.
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3. The special function: a general case

We start with the class U(β0). Let us introduce an auxiliary parameter. The
equation

(3.1) 2 log
(

2− 2
3a

)
=

a− 2
3a

, a >
1
3
,

has a unique solution a = 0.46986 . . ., related to β0 by the identity

β0 =
2a + 2

3a
.

Let S denote the strip [−1, 1]× (−∞, 0] and consider the following subsets of S.

D1 = {(x, y) : |x|+ y > 0},
D2 = {(x, y) : 0 ≥ |x|+ y > 1− β0},
D3 = {(x, y) : |x|+ y ≤ 1− β0}.

Introduce the special function u : S → R by

u(x, y) =


a(2|x| − y − 2)(1− |x| − y)1/2 − 3a|x|+ y if (x, y) ∈ D1,

3a(2− |x|) exp( 1
2 (|x|+ y)) + (1− 3a)y − 8a if (x, y) ∈ D2,

9a2

4(3a−1) (1− |x|) exp(|x|+ y)− β0 if (x, y) ∈ D3.

A function defined on the strip S is said to be diagonally concave if it is concave
on the intersection of S with any line of slope 1 or −1. We have the following fact.

Lemma 3.1. The function u has the following properties.

(3.2) u(1, ·) is convex,

(3.3) u(1, y) ≥ −β0,

(3.4) u(x, 0) ≥ −β0,

(3.5) u is diagonally concave.

Proof. It is easy to check that u is of class C1 in the interior of S. Now the condition
(3.2) is apparent and hence so is (3.3). To see that (3.4) holds, note that

u(x, 0) = −a(2(1− |x|)3/2 + 3|x|)
attains its minimum −2a > −β0 at x = 0. Due to the symmetry, it suffices to check
the diagonal concavity of u restricted to the set (0, 1) × (−∞, 0). This is obvious
on the lines of slope −1. On the remaining lines, fix (x, y) ∈ (0, 1) × (−∞, 0) and
introduce the function F by F (t) = u(x + t, y + t) for t belonging to a certain open
interval containing 0. Denoting by Ao the interior of a set A, we easily check that

F ′′(0) =


3ay(1− x− y)−3/2 if (x, y) ∈ Do

1,

−3ax exp( 1
2 (x + y)) if (x, y) ∈ Do

2,

− 9a2

3a−1x exp(x + y) if (x, y) ∈ Do
3

is nonpositive. This completes the proof. �

Define U : R× R× (0,∞)× (0,∞) → R by

(3.6) U(x, y, z, w) = y ∨ w + (|x| ∨ z)u
(

x

|x| ∨ z
,
y − (y ∨ w)
|x| ∨ z

)
.

We have
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Lemma 3.2. The function U belongs to U(β0).

Proof. The condition (2.3) follows from the definition of U . The inequality (2.4) is
equivalent to u ≥ −β0 on the whole strip S, an estimate which follows directly from
(3.3), (3.4) and (3.5). The main technical difficulty lies in proving (2.5). Let us start
with some reductions. First, we may assume ε = 1, as U(x, y, z, w) = U(−x, y, z, w).
Secondly, by homogeneity, it is enough to show (2.5) for z = 1. Finally, we may set
w = 0, since U(x, y, z, w) = U(x, y−w, z, 0) + w. Now fix (x, y) ∈ S and introduce
the function Φ : R → R by Φ(t) = U(x + t, y + t, 1, 0). The condition (2.5) will
follow if we show that there exists a concave function Ψ on R such that Φ ≤ Ψ and
Φ(0) = Ψ(0). The existence will be a consequence of the properties (3.7) – (3.11)
below.

(3.7) Φ is continuous,

(3.8) Φ is concave on [−1− x, 1− x],

(3.9) Φ is convex on (−∞,−1− x] and on [1− x,∞),

(3.10) lim
t→−∞

Φ′(t) ≥ lim
t↓−1−x

Φ′(t),

(3.11) lim
t→∞

Φ′(t) ≤ lim
t↑1−x

Φ′(t).

The property (3.7) is straightforward to check. If 1 − x ≤ −y, then the condition
(3.8) follows from (3.5). If 1 − x > −y then (3.5) gives the concavity only on
[−1− x,−y], but for t ∈ (−y, 1− x) we have

Φ(t) = y + t− a(2(1− |x + t|)3/2 + 3|x + t|),

so Φ′′(t) < 0. In addition, one-sided derivatives of Φ match at −y and we are done.
To show (3.9), fix α1, α2 > 0 satisfying α1 +α2 = 1, choose t1, t2 ∈ (−∞,−1−x]

and let t =
∑

αktk. We have∑
αkΦ(tk) =

∑
αkU(x + tk, y + tk, 1, 0)

=
∑

αk

[
(−x− tk)u

(
−1,

y + tk
−x− tk

)]
= −(x + t)

∑ αk(x + tk)
x + t

u

(
1,

y + tk
−x− tk

)
By (3.2), this can be bounded from below by

−(x + t)u
(

1,
∑ y + tk

−x− tk
· αk(x + tk)

x + t

)
= −(x + t)u

(
1,−y + t

x + t

)
= Φ(t).

Hence Φ is convex on (−∞,−1−x]. If 1−x < −y, then convexity on [1−x,−y] can
be established exactly in the same manner. Furthermore, for t > max{1 − x,−y}
we have

(3.12) Φ(t) = y − 3ax + (1− 3a)t

and one-sided derivatives of Φ are equal at max{1− x,−y}. Thus (3.9) follows.
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To prove (3.10), note that the limit on the left equals 1 + 2a, while the one on
the right equals

3a− 3
2
a(−y + 1 + x)1/2 ≤ 3a, if − x + y ≥ 0,

3a

2
exp(

1
2
(y − x)) ≤ 3a

2
, if 1− β0 ≤ −x + y < 0,

9a2

4(3a− 1)
exp(y − x) ≤ 3a− 1, if − x + y < 1− β0.

Finally, let us turn to (3.11). The limit on the left is equal to 1− 3a, due to (3.12).
If −x + y ≥ −1 + β0, then the right hand side is also 1− 3a; for −x + y ≤ −1 + β0

the inequality (3.11) becomes

− 9a2

2(3a− 1)
exp(2− x + y) ≥ 1− 3a,

which is a consequence of the fact that the left hand side is a nonincreasing function
of y and both sides are equal for −x + y = −1 + β0. �

4. The special function for the case of positive supermartingales

Let S+ denote the strip [0, 1]× (−∞, 0] and let

D1 =
{
(x, y) ∈ S+ : x− y > 2

3 , x ≤ 2
3

}
,

D2 =
{
(x, y) ∈ S+ : x + y < 2

3 , x > 2
3

}
,

D3 =
{
(x, y) ∈ S+ : x + y ≥ 2

3

}
,

D4 =
{
(x, y) ∈ S+ : x− y ≤ 2

3

}
.

Introduce the function u+ : S+ → R by

u+(x, y) =


x exp[ 32 (−x + y) + 1]− β+

0 , if (x, y) ∈ D1,

( 4
3 − x) exp[ 32 (x + y)− 1]− β+

0 , if (x, y) ∈ D2,

−x + y − 1√
3
(1− x− y)1/2(2− 2x + y), if (x, y) ∈ D3,

x− xlog( 3
2 (x− y))− β+

0 , if (x, y) ∈ D4.

Here is the analogue of Lemma 3.1.

Lemma 4.1. The function u+ has the following properties.

(4.1) u+(1, ·) is convex,

(4.2) u+(1, y) ≥ −β+
0 for y ≤ 0,

(4.3) u+(x, 0) ≥ −β+
0 for x ∈ [0, 1].

(4.4) u+ is diagonally concave.

Proof. It is not difficult to check that u+ has continuous partial derivatives in
the interior of S+. Now the properties (4.1) and (4.2) are easy to see. To show
(4.3) observe that the function u+(·, 0) is concave on [0, 1] and u+(0, 0) = −β+

0 <
u+(1, 0). Finally, it is obvious that u+ is concave along the lines of slope 1 on
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D1 ∪ D4, and along the lines of slope −1 on D2 ∪ D3. For x ∈ Do
1 ∪ Do

4, let
F−(t) = u(x + t, y − t) and derive that

F ′′
−(0) =

{
(9x− 6) exp[ 32 (−x + y) + 1], if (x, y) ∈ Do

1,

4y(x− y)−2, if (x, y) ∈ Do
2,

so F ′′
−(0) < 0. Similarly, for x ∈ Do

2 ∪ Do
3, introduce F+(t) = u(x + t, y + t) and

check that

F ′′
+(0) =

{
(−9x + 6) exp[ 32 (x + y)− 1], if (x, y) ∈ Do

2,√
3y(1− x− y)−3/2, if (x, y) ∈ Do

3,

which gives F ′′
+(0) < 0. This completes the proof. �

Now we define the special function U+ : D+ → R by the same formula as in
(3.6), namely

(4.5) U+(x, y, z, w) = y ∨ w + (|x| ∨ z)u+

(
x

|x| ∨ z
,
y − (y ∨ w)
|x| ∨ z

)
.

The following is the analogue of Lemma 3.2.

Lemma 4.2. The function U+ belongs to U+(β+
0 ).

Proof. The condition (2.3) is immediate, while (2.4) follows from (4.2), (4.3), (4.4)
and the equality u+(0, y) = −β+

0 . Again, the condition (2.5) is the most elaborate.
As previously, we may assume z = 1 and w = 0. We fix ε ∈ {−1, 1} x ∈ [0, 1],
y ∈ (−∞, 0], introduce the function Φ(t) = U+(x+ t, y +εt, 1, 0) (given for t ≥ −x)
and observe that (2.5) follows from existence of a concave function Ψ satisfying
Ψ ≥ Φ and Ψ(0) = Φ(0). Let us list the properties of Φ which imply the existence.
The proof is left to the reader.

(4.6) Φ is continuous,

(4.7) Φ is concave on [−x, 1− x].

(4.8) Φ is convex on (1− x,∞),

�(4.9) lim
t↑1−x

Φ′(t) ≥ lim
t→∞

Φ′(t).

Proof of Theorem 1.2. This follows from Theorem 1.3 and the approximation result
by Bichteler [1]. For similar argumentation, see [2]. �

5. Optimality of the constants

In this section we prove that the inequalities (1.3) and (1.4) are sharp.

The constant β0 is optimal in (1.3). By Theorem 2.2, the class U(β0) is nonempty
and let U0 denote its minimal element. This function enjoys the following proper-
ties.

U0(tx, ty, tz, tw) = tU0(x, y, z, w) for t > 0,

and
U0(x, y, z, w) = U0(x, y + t, z, w + t)− t for t > −w.

Introduce the functions A, B : (−∞, 0] → R, C : [0, 1] → R by

A(y) = U0(0, y, 1, 0), B(y) = U0(1, y, 1, 0) = U0(−1, y, 1, 0), C(x) = U0(x, 0, 1, 0).
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Step 1. We start with the observation that for x ∈ (0, 1] and δ ∈ (0, x], the
property (2.5) gives

C(x) ≥ 2δ

1− x + 2δ
B(x− 1) +

1− x

1− x + 2δ
(C(x− 2δ) + δ)

≥ 2δ

1− x + 2δ
B(x− 1− 2δ) +

1− x

1− x + 2δ
(C(x− 2δ) + δ),

where the latter inequality follows from the fact that B is nondecreasing (by the
very definition). Furthermore,

B(x− 1) ≥ δ + δB(0) +
δ

1− x + 2δ
C(x− 2δ) +

1− x + δ

1− x + 2δ
B(x− 1− 2δ).

Equivalenty,

C(x)− C(x− 2δ) ≥ 2δ

[
B(x− 1− 2δ)

1− x + 2δ
− C(x− 2δ)

1− x + 2δ

]
+

2δ(1− x)
1− x + 2δ

,

2B(x− 1)− 2B(x− 1− 2δ) ≥ 2δ

[
C(x− 2δ)
1− x + 2δ

− B(x− 1− 2δ)
1− x + 2δ

]
+ 2δ(1 + B(0)).

Adding the two estimates above gives

(5.1) C(x)+2B(x−1)−C(x−2δ)−2B(x−1−2δ) ≥ 2δ(2+B(0))− 4δ2

1− x + 2δ
.

Now fix an integer n, substitute δ = 1/(2n), x = k/n, k = 1, 2, . . . , n and sum
these inequalities; we get

C(1) + 2B(0)− C(0)− 2B(−1) ≥ 2 + B(0)− 1
n2

n∑
k=1

1
1− k−1

n

.

Passing to the limit n →∞ and using the equalities C(1) = B(0), C(0) = A(0) we
arrive at

(5.2) 2B(0)−A(0)− 2B(−1) ≥ 2.

Step 2. Now we will show that

(5.3) A(0) ≥ B(−1) + 1.

To do this, use the property (2.5) twice to obtain

A(0) ≥ δ

1 + δ
B(−1) +

1
1 + δ

(C(δ) + δ)

≥ δ

1 + δ
B(−1) +

1
1 + δ

(
δB(−1) + (1− δ)(δ + A(0)) + δ

)
,

or, equivalently, A(0) ≥ B(−1) + 1− δ
2 . As δ is arbitrary, (5.3) follows.

Step 3. The property (2.5), used twice, yields

A(y − 2δ) ≥ δ

1 + δ
B(y − 2δ − 1) +

1
1 + δ

U0(−δ, y − δ, 1, 0)

≥ δ

1 + δ
B(y − 2δ − 1) +

δ

1 + δ
B(y − 1) +

1− δ

1 + δ
A(y)

(5.4)
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if δ < 1 and y ≤ 0. Moreover, if y < 0, δ ∈ (0, 1) and t > −y + 1, then

B(y − 1) ≥ t

t + δ
U0(1− δ, y − 1− δ, 1, 0) +

δ

t + δ
U0(1 + t, y − 1 + t, 1, 0)

=
t

t + δ
U0(1− δ, y + 1− δ, 1, 0) +

δ(1 + t)
t + δ

(
y − 1 + t

1 + t
+ U0(1, 0, 1, 0)

)
,

which gives, if one takes t →∞,

(5.5) B(y − 1) ≥ U0(1− δ, y − 1− δ, 1, 0) + δ(1 + B(0)).

Combining this estimate with the following consequence of (2.5):

U0(1− δ, y − 1− δ, 1, 0) ≥ δA(y − 2δ) + (1− δ)B(y − 1− 2δ)

gives

(5.6) B(y − 1) ≥ δA(y − 2δ) + (1− δ)B(y − 1− 2δ) + δ(1 + B(0)).

Now multiply (5.4) throughout by 1 + δ and add it to (5.6) to obtain

A(y − 2δ)−B(y − 1− 2δ) ≥ (1− δ)(A(y)−B(y − 1)) + δ(1 + B(0)),

which, by induction, leads to the estimate

A(−2nδ)−B(−2nδ − 1)− 1−B(0) ≥ (1− δ)n(A(0)−B(−1)− 1−B(0)),

valid for any nonnegative integer n. Fix y < 0, δ = −y/(2n) and let n → ∞ to
obtain

(5.7) A(y)−B(y− 1)− 1−B(0) ≥ ey/2(A(0)−B(−1)− 1−B(0)) ≥ −B(0)ey/2,

where the latter estimate follows from (5.3).
Now we come back to (5.6) and write it in equivalent form

B(y − 1)−B(y − 1− 2δ) ≥ δ(A(y − 2δ)−B(y − 1− 2δ)) + δ(1 + B(0)).

By (5.7), we get

B(y − 1)−B(y − 1− 2δ) ≥ δ(−ey/2B(0) + 2 + 2B(0)).

This gives, by induction,

B(−1)−B(−2nδ − 1) =
n∑

k=0

[B(−2kδ − 1)−B(−2kδ − 1− 2δ)]

≥ nδ(2 + 2B(0))− δB(0)
1− e−nδ

1− e−δ
.

Now fix y < 0, take δ = −y/(2n) and let n →∞ to obtain

(5.8) B(−1)−B(y − 1) ≥ −y(1 + B(0))−B(0)(1− ey/2).

Now, by (5.2) and (5.3),

B(−1) =
1
3
B(−1) +

2
3
B(−1) ≤ 1

3
A(0) +

2
3
B(−1) +

1
3
≤ 2

3
B(0)− 1.

Furthermore, by the definition of B we have B(y − 1) ≥ −β. Plugging these
estimates into (5.8) yields

β ≥ −y(1 + B(0))−B(0)(1− ey/2) + 1− 2
3
B(0).
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We must have 1 + B(0) ≤ 0, otherwise the estimate above would give β0 = ∞,
which, as we already know, is impossible. Take y ∈ (−∞, 0] satisfying

ey/2 =
2

B(0)
+ 2.

We get

β ≥ −2(1 + B(0)) log
(

2 +
2

B(0)

)
+ 3 +

1
3
B(0)

and the right hand side, as a function of B(0) ∈ (−∞,−1], attains its minimum β0

at B(0) = −3a (where a is given by (3.1)). Hence β ≥ β0 and the proof is complete.

The constant β+
0 is optimal in (1.4), even in the case of nonnegative martingales.

Suppose for any nonnegative martingale f and its ±1 transform g we have

||g∗||1 ≤ β||f∗||1.

Then the class U+(β) is nonempty, so we may consider its minimal element U+
0 .

From the very definition (and from the special form of V ) it follows that

(5.9) U+
0 (tx, ty, tz, tw) = tU+

0 (x, y, z, w) for t > 0,

and
U+

0 (x, y, z, w) = U+
0 (x, y + t, z, w + t)− t for t > −w.

Furthermore,

(5.10) the function U+
0 (1, ·, 1, 0) is nondecreasing.

It will be convenient to work with the functions

A(y) = U+
0

(2
3
, y, 1, 0

)
, B(y) = U+

0 (1, y, 1, 0), C(x) = U+
0 (x, 0, 1, 0).

As previously, we divide the proof into a few intermediate steps.
Step 1. First let us note that the arguments leading to (5.1) are valid for these

functions and hence so is this estimate. For a fixed positive integer n, let us write
(5.1) for δ = 1/(6n), x = 2

3 + 2kδ, k = 1, 2, . . . , n and sum all these inequalities to
obtain

C(1) + 2B(0)− C
(2
3
)
− 2B

(
− 1

3
)
≥ 1

3
(1 + B(0))− 1

9n2

n∑
k=1

1
1
3 −

k−1
3n

.

Now let n →∞ and use C(1) = B(0) to get

(5.11) 3B(0) ≥ C
(2
3
)

+ 2B
(
− 1

3
)

+
1
3
(1 + B(0)).

Step 2. We will show that

(5.12) C
(2
3
)
≥ 2

3
B

(
− 1

3
)

+
4
9
− β

3
.

To this end, note that, using (2.5) twice, for δ < 1/3,

C
(2
3
)
≥ 3δ

1 + 3δ
B

(
− 1

3
)

+
1

1 + 3δ

[
δ + C

(2
3
− δ

)]
≥ 3δ

1 + 3δ
B

(
− 1

3
)

+
1

1 + 3δ

{
δ +

3δ

2
(−β) +

2− 3δ

2

[
δ + C

(2
3
)]}

.
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This is equivalent to

C
(2
3
)
≥ 2

3
B

(
− 1

3
)

+
2
9
(
2− 3

2
δ
)
− β

3
and it suffices to let δ → 0.

Step 3. Using the property (2.5), we get, for y < −1/3 (see (5.5) and the
arguments leading to it),

B(y) ≥ U+
0 (1− δ, y − δ, 1, 0) + δ(1 + B(0)).

Furthermore, again by (2.5),

U+
0 (1− δ, y − δ, 1, 0) ≥ (1− 3δ)B(y − 2δ) + 3δA

(
y +

1
3
− 2δ

)
and hence

(5.13) B(y) ≥ (1− 3δ)B(y − 2δ) + 3δA
(
y +

1
3
− 2δ

)
+ δ(1 + B(0)).

Moreover,

A
(
y +

1
3
− 2δ

)
≥ 3δ

2 + 3δ
U+

0 (0, y − 1
3
− 2δ, 1, 0) +

2
2 + 3δ

U+
0 (

2
3

+ δ, y +
1
3
− δ, 1, 0)

≥ 3δ

2 + 3δ
(−β) +

2
2 + 3δ

[
3δB(y) + (1− 3δ)A(y +

1
3
)
]

.

(5.14)

Step 4. Now we will combine (5.13) and (5.14) and use them several times. Multiply
(5.14) by γ > 0 (to be specified later) and add it to (5.13). We obtain

B(y) ·
(

1− 6γδ

2 + 3δ

)
−A(y +

1
3
) · (2− 6δ)γ

2 + 3δ

≥ B(y − 2δ) · (1− 3δ)−A(y +
1
3
− 2δ) · (γ − 3δ) + δ

(
1 + B(0)− 3βγ

2 + 3δ

)
≥ B(y − 2δ) · (1− 3δ)−A(y +

1
3
− 2δ) · (γ − 3δ) + δ

(
1 + B(0)− 3βγ

2

)
.

Now the choice γ = (5 −
√

9− 24δ)/4 allows to write the inequality above in the
form

(5.15) F (y) ≥ QδF (y − 2δ) + δ

(
1 + B(0)− 3βγ

2

)
,

where

F (y) = B(y) ·
(

1− 6γδ

2 + 3δ

)
−A(y +

1
3
) · (2− 6δ)γ

2 + 3δ

and
Qδ =

1− 3δ

1− 6γδ
2+3δ

.

The inequality (5.15), by induction, leads to

F (−1/3) ≥ Qn
δ F (−1/3 + 2nδ) + δ

(
1 + B(0)− 3βγ

2

)
· Qn

δ − 1
Qδ − 1

.

Now fix Y < −1/3, take δ = (Y + 1/3)/(2n) and let n →∞. Then

γ → 1
2
, Qn

δ → exp
(

3
4
(Y +

1
3
)
)
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and we arrive at

B(−1
3
)− 1

2
A(0) ≥ exp

(
3
4
(Y +

1
3
)
)

(B(Y )− 1
2
A(Y +

1
3
))

+
2
3

(
1 + B(0)− 3β

4

) [
exp

(
3
4
(Y +

1
3
)
)
− 1

]
.

Now we have B(Y ) ≥ −β and A(Y + 1
3 ) ≤ A(0). Hence, letting Y → −∞ yields

(5.16) F (−1/3) ≥ −2
3

(
1 + B(0)− 3β

4

)
.

Now combine (5.11), (5.12) and (5.16) to obtain β ≥ 14/9. The proof is complete.
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