
SHARP NORM INEQUALITY FOR BOUNDED
SUBMARTINGALES

ADAM OSȨKOWSKI

Abstract. Let α ∈ [0, 1] be a fixed number and f = (fn) be a nonnega-

tive submartingale bounded from above by 1. Assume g = (gn) is a process
satisfying, with probability 1,

|dgn| ≤ |dfn|, |E(dgn+1|Fn)| ≤ αE(dfn+1|Fn), n = 0, 1, 2, . . . .

We provide a sharp bound for the first moment of the process g. A related

estimate for stochastic integrals is also established.
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1. Introduction

Let (Ω,F , P) be a probability space and let (Fn)n≥0 be a filtration, a nondecreas-
ing sequence of sub-σ-algebras of F . Throughout the paper, α is a fixed number
belonging to the interval [0, 1]. Let f = (fn)n≥0, g = (gn)n≥0 denote adapted real-
valued integrable processes, such that f is a submartingale and g is α-subordinate
to f : for any n = 0, 1, 2, . . . we have, almost surely,

(1.1) |dgn| ≤ |dfn|
and

(1.2) |E(dgn+1|Fn)| ≤ αE(dfn+1|Fn).

Here df = (dfn)n≥0 and dg = (dgn) stand for the difference sequences of f and g,
given by

df0 = f0, dfn = fn − fn−1, dg0 = g0, dgn = gn − gn−1, n = 1, 2, . . . .

The main objective of this paper is to provide some bounds on the size of the
process g under some additional assumptions on boundedness of f . Let us provide
some information about related estimates which have appeared in the literature.
Let Φ be an increasing convex function on [0,∞) such that Φ(0) = 0, the integral∫∞
0

Φ(t)e−tdt is finite and Φ is twice differentiable on (0,∞) with a strictly convex
first derivative satisfying Φ′(0+) = 0. For example, one can take Φ(t) = tp, p > 2,
or Φ(t) = eat − 1− at for a ∈ (0, 1).
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In [2] Burkholder proved a sharp Φ-inequality

sup
n

EΦ(|gn|) <
1
2

∫ ∞

0

Φ(t)e−tdt

under the assumption that f is a martingale (and so is g, by (1.2)), which is
bounded in absolute value by 1. This inequality was later extended in [5] to the
submartingale case: if f is a nonnegative submartingale bounded from above by 1
and g is 1-subordinate to f , then we have a sharp estimate

sup
n

EΦ
( |gn|

2
)

<
2
3

∫ ∞

0

Φ(t)e−tdt.

Finally, Kim and Kim proved in [8], that if the 1-subordination is replaced by
α-subordination, then we have

(1.3) EΦ
( |gn|
1 + α

)
<

1 + α

2 + α

∫ ∞

0

Φ(t)e−tdt,

if f is a nonnegative submartingale bounded by 1.
There are other related results, concerning tail estimates of g. Let us state here

Hammack’s inequality, an estimate we will need later on. In [7] it is proved that if
f is a submartingale bounded in absolute value by 1 and g is 1-subordinate to f ,
then, for λ ≥ 4,

(1.4) P(sup
n
|gn| ≥ λ) ≤ (8 +

√
2)e

12
exp(−λ/4).

For other similar results, see papers by Burkholder [3], Hammack [7] and the author
[9].

A natural question arises: what can be said about the Φ-inequalities for other
functions Φ? The purpose of this paper is to give the answer for Φ(t) = t. The
main result can be stated as follows.

Theorem 1.1. Suppose f is a nonnegative submartingale such that supn fn ≤ 1
almost surely and let g be α-subordinate to f . Then

(1.5) ||g||1 ≤
(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
.

The constant on the right is the best possible.

In a special case α = 1, this leads to an interesting inequality for stochastic inte-
grals. Suppose (Ω,F , P) is a complete probability space, filtered by a nondecreasing
family (Ft)t≥0 of sub-σ-algebras of F and assume that F0 contains all the events
A with P(A) = 0. Let X = (Xt)t≥0 be an adapted nonnegative right-continuous
submartingale with left limits, satisfying P(Xt ≤ 1) = 1 for all t and let H = (Ht)
be a predictable process with values in [−1, 1]. Let Y = (Yt) be an Itô stochastic
integral of H with respect to X, that is,

Yt = H0X0 +
∫

(0,t]

HsdXs.

Let ||Y ||1 = supt ||Yt||1.

Theorem 1.2. For X, Y as above, we have

(1.6) ||Y ||1 ≤
14
9
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and the constant is the best possible. It is already the best possible if H is assumed
to take values in the set {−1, 1}.

The proofs are based on Burkholder’s techniques, developed in [2] and [3]. These
enable to reduce the proof of the submartingale inequality (1.5) to finding a special
function, satisfying some convexity-type properties or, equivalently, to solving a
certain boundary value problem.

The paper is organized as follows. In the next section we introduce the special
function corresponding to the moment inequality and study its properties. Section 3
contains the proofs of inequalities (1.5) and (1.6). The sharpness of these estimates
is postponed to the last section, Section 4.

2. The special function

Let S denote the strip [0, 1]× R. Consider the following subsets of S.

D1 = {(x, y) ∈ S : x ≤ α

2α + 1
, x + |y| > α

2α + 1
},

D2 = {(x, y) ∈ S : x ≥ α

2α + 1
, −x + |y| > − α

2α + 1
},

D3 = {(x, y) ∈ S : x ≥ α

2α + 1
, −x + |y| ≤ − α

2α + 1
},

D4 = {(x, y) ∈ S : x ≤ α

2α + 1
, x + |y| ≤ α

2α + 1
}.

Consider a function H : R2 → R defined by

H(x, y) = (|x|+ |y|)1/(α+1)((α + 1)|x| − |y|).

Let u : S → R be given by

u(x, y) = −αx + |y|+ α + exp
[
− 2α + 1

α + 1

(
x + |y| − α

2α + 1

)](
x +

1
2α + 1

)
if (x, y) ∈ D1,

u(x, y) = −αx + |y|+ α + exp
[
− 2α + 1

α + 1

(
− x + |y|+ α

2α + 1

)]
(1− x)

if (x, y) ∈ D2,

u(x, y) = −(1− x) log
[2α + 1

α + 1
(1− x + |y|)

]
+ (α + 1)(1− x) + |y|

if (x, y) ∈ D3 and

u(x, y) = − α2

(2α + 1)(α + 2)

[
1 +

(2α + 1
α

)(α+2)/(α+1)

H(x, y)
]

+
2α2

2α + 1
+ 1

if (x, y) ∈ D4.
The key properties of the function u are described in the two lemmas below.

Lemma 2.1. The following statements hold true.
(i) The function u has continuous partial derivatives in the interior of S.
(ii) We have

(2.1) ux ≤ −α|uy|.
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(iii) For any real numbers x, h, y, k such that x, x + h ∈ [0, 1] and |h| ≥ |k| we
have

(2.2) u(x + h, y + k) ≤ u(x, y) + ux(x, y)h + uy(x, y)k.

Proof. Let us first compute the partial derivatives in the interiors Do
i of the sets

Di, i ∈ {1, 2, 3, 4}. We have that ux(x, y) equals

−α + exp
[
− 2α+1

α+1

(
x + |y| − α

2α+1

)](
− 2α+1

α+1 x + α
α+1

)
, (x, y) ∈ Do

1,

−α + exp
[
− 2α+1

α+1

(
− x + |y|+ α

2α+1

)](
− 2α+1

α+1 x + α
α+1

)
, (x, y) ∈ Do

2,

log
[
2α+1
α+1 (1− x + |y|)

]
+ 1−x

1−x+|y| − (α + 1), (x, y) ∈ Do
3,

−α
(

2α+1
α

)1/(α+1)

(x + |y|)−α/(α+1)
(
x + α

α+1 |y|
)
, (x, y) ∈ Do

4,

while uy(x, y) is given by

y′ − 2α+1
α+1 exp

[
− 2α+1

α+1

(
x + |y| − α

2α+1

)](
x + 1

2α+1

)
y′, (x, y) ∈ Do

1,

y′ − 2α+1
α+1 exp

[
− 2α+1

α+1

(
− x + |y|+ α

2α+1

)]
(1− x)y′, (x, y) ∈ Do

2,
y

1−x+|y| , (x, y) ∈ Do
3,(

2α+1
α

)1/(α+1)

(x + |y|)−α/(α+1) α
α+1y, (x, y) ∈ Do

4.

Here y′ = y/|y| is the sign of y. Now we turn to the properties (i) - (iii).
(i) This follows immediately by the formulas for ux, uy above.
(ii) We have that ux(x, y) + α|uy(x, y)| equals

− exp
[
− 2α+1

α+1

(
x + |y| − α

2α+1

)]
(2α + 1)x, (x, y) ∈ D1,

− exp
[
− 2α+1

α+1

(
− x + |y|+ α

2α+1

)](
2α+1
α+1 x(1− α) + 2α2

α+1

)
, (x, y) ∈ D2,

−α + log
[

2α+1
α+1 (1− x + |y|)

]
− |y|(1−α)

1−x+|y| , (x, y) ∈ D3,

−α
(

2α+1
α

)1/(α+1)

(x + |y|)−α/(α+1)x, (x, y) ∈ D4

and all the expressions are clearly nonpositive.
(iii) There is a well-known procedure to establish (2.2). Fix x, y, h and k satisfy-

ing the conditions of (iii) and consider a function G = Gx,y,h,k : t 7→ u(x+th, y+tk),
defined on {t : 0 ≤ x + th ≤ 1}. The inequality (2.2) reads G(1) ≤ G(0) + G′(0),
so in order to prove it, it suffices to show that G is concave. Since u is of class C1,
it is enough to check G′′(t) ≤ 0 for those t, for which (x + th, y + tk) belongs to
the interior of D1, D2, D3 or D4. Furthermore, by translation argument (we have
G′′

x,y,h,k(t) = G′′
x+th,y+tk,h,k(0)), we may assume t = 0.

If (x, y) ∈ Do
1, we have

G′′(0) =
2α + 1
α + 1

exp
[
− 2α + 1

α + 1

(
x + |y| − α

2α + 1

)]
×

×(h + k)
{[2α + 1

α + 1

(
x +

1
2α + 1

)
− 2

]
h +

2α + 1
α + 1

(
x +

1
2α + 1

)
k
}

,

which is nonpositive; this is due to

|h| ≥ |k|, 2α + 1
α + 1

(
x +

1
2α + 1

)
− 2 ≤ −1 and

2α + 1
α + 1

(
x +

1
2α + 1

)
≤ 1.
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If (x, y) ∈ Do
2, then

G′′(0) =
2α + 1
α + 1

exp
[
− 2α + 1

α + 1

(
− x + |y|+ α

2α + 1

)]
×

×(h− k)
{[2α + 1

α + 1
(1− x)− 2

]
h− 2α + 1

α + 1
(1− x)k

}
≤ 0,

since
|h| ≥ |k|, 2α + 1

α + 1
(1− x)− 2 ≤ −1 and

2α + 1
α + 1

(1− x) ≤ 1.

For (x, y) ∈ Do
3 we have

G′′(0) =
−h + k

1− x + |y|

[(
2− 1− x

1− x + |y|

)
h +

1− x

1− x + |y|
k
]
≤ 0,

because
|h| ≥ |k|, 2− 1− x

1− x + |y|
≥ 1 and

1− x

1− x + |y|
≤ 1.

Finally, for (x, y) ∈ Do
4, this follows by the result of Burkholder: the function

t 7→ −H(x + th, y + tk) is concave, see page 17 of [3]. �

Lemma 2.2. Let (x, y) ∈ S.
(i) We have

(2.3) u(x, y) ≥ |y|.

(ii) If |y| ≤ x, then

(2.4) u(x, y) ≤ u(0, 0) =
(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
.

Proof. (i) Since for any (x, y) ∈ S the function G(t) = u(x + t, y + t) defined on
{t : x + t ∈ [0, 1]} is concave, it suffices to prove (2.3) on the boundary of the strip
S. Furthermore, by symmetry, we may restrict ourselves to (x, y) ∈ ∂S satisfying
y ≥ 0. We have, for y ∈ [0, α/(2α + 1)],

u(0, y) ≥ − α2

(2α + 1)(α + 2)
+

2α2

2α + 1
+ 1 ≥ 1 ≥ y,

while for y > α/(2α + 1), the inequality u(0, y) ≥ y is trivial. Finally, note that we
have u(1, y) = y for y ≥ 0. Thus (2.3) follows.

(ii) As one easily checks, we have uy(x, y) ≥ 0 for y ≥ 0 and hence, by symmetry,
it suffices to prove (2.4) for x = y. The function G(t) = u(t, t), t ∈ [0, 1], is concave
and satisfies G′(0+) = 0. Thus G ≤ G(0) and we are done. �

3. Proofs of the inequalities (1.5) and (1.6)

Proof of inequality (1.5): Let f , g be as in the statement and fix a nonnegative
integer n. Furthermore, fix β ∈ (0, 1) and set f ′ = βf , g′ = βg. Clearly, g′ is
α-subordinate to f ′, so the inequality (2.2) implies that, with probability 1,

(3.1) u(f ′n+1, g
′
n+1) ≤ u(f ′n, g′n) + ux(f ′n, g′n)df ′n+1 + uy(f ′n, g′n)dg′n+1.

Both sides are integrable: indeed, since f is bounded by 1, so is f ′; furthermore,
we have P(|dfk| ≤ 1) = 1 and hence P(|dgk| ≤ 1) = 1 by (1.1). This gives |g′n| =
β|gn| ≤ βn almost surely and now it suffices to note that u is locally bounded on
[0, β]× R and the partial derivatives ux, uy are bounded on this set.
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Therefore, taking the conditional expectation of (3.1) with respect to Fn yields

E(u(f ′n+1, g
′
n+1)|Fn) ≤ u(f ′n, g′n) + ux(f ′n, g′n)E(df ′n+1|Fn) + uy(f ′n, g′n)E(dg′n+1|Fn)

≤ u(f ′n, g′n) + ux(f ′n, g′n)E(df ′n+1|Fn) + |uy(f ′n, g′n)| · |E(dg′n+1|Fn)|.
By α-subordination, this can be further bounded from above by

u(f ′n, g′n) + (ux(f ′n, g′n) + α|uy(f ′n, g′n)|)E(df ′n+1|Fn) ≤ u(f ′n, g′n),

the latter inequality being a consequence of (2.1). Thus, taking expectation, we
obtain

(3.2) Eu(f ′n+1, g
′
n+1) ≤ Eu(f ′n, g′n).

Combining this with (2.3), we get

E|g′n| ≤ Eu(f ′n, g′n) ≤ Eu(f ′0, g
′
0).

But |g′0| ≤ f ′0 by (1.1); hence (2.4) implies

βE|gn| = E|g′n| ≤
(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
.

Since n and β ∈ (0, 1) were arbitrary, the proof is complete. �

Proof of the inequality (1.6): This follows by approximation argument. See Sec-
tion 16 of [2], where it is shown how similar inequalities for stochastic integrals
are implied by their discrete-time analogues combined with the result of Bichteler
[1]. �

4. Sharpness

We start with the inequality (1.5). For α = 0 simply take constant processes
f = g = (1, 1, 1, . . .) and note that both sides are equal in (1.5). Suppose then,
that α is a positive number. We will construct an appropriate example; this will
be done in a few steps. Denote γ = α/(2α + 1) and fix ε > 0.

Step 1. Using the ideas of Choi [6] (which go back to Burkholder’s examples
from [4]), one can show that there exists a pair (F,G) of processes starting from
(0, 0) such that F is a nonnegative submartingale, G is α-subordinate to F and, for
some N , (F3N , G3N ), takes values in the set {(γ, 0), (0,±γ)} with∣∣∣P((F3N , G3N ) = (γ, 0))− 1

α + 2

∣∣∣ ≤ ε,
∣∣∣P((F3N , G3N ) = (0, γ))− α + 1

2(α + 2)

∣∣∣ ≤ ε

and P((F3N , G3N ) = (0, γ)) = P((F3N , G3N ) = (0,−γ)). Furthermore, if α = 1,
then G can be taken to be a ±1 transform of F , that is, dFn = ±dGn for any
nonnegative integer n.

Step 2. Consider the following two-dimensional Markov process (f, g), with a
certain initial distribution concentrated on the set {(γ, 0), (0, γ), (0,−γ)}. To
describe the transity function, let M be a (large) nonnegative integer and δ ∈
(0, γ/3); both numbers will be specified later. Assume for k = 0, 1, 2, . . . , M − 1
and any ε̂ ∈ {−1, 1}, the conditions below are satisfied.

• The state (0, ε̂(γ + k(α + 1)δ)) leads to (δ, ε̂(γ + k(α + 1)δ + αδ)) with
probability 1.

• The state (δ, ε̂(γ + k(α+1)δ +αδ)) leads to (0, ε̂(γ +(k +1)(α+1)δ)) with
probability 1− δ/γ and to (γ, ε̂(k + 1)(α + 1)δ) with probability δ/γ.
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• The state (γ, ε̂(k + 1)(α + 1)δ) leads to (1, ε̂((k + 1)(α + 1)δ + 1− γ)) with
probability

(α + 1)δ
2− 2γ + (α + 1)δ

and to (γ − (α + 1)δ/2, ε̂(k + 1/2)(α + 1)δ) with probability

1− (α + 1)δ
2− 2γ + (α + 1)δ

.

• The state (γ− (α + 1)δ/2, ε̂(k + 1/2)(α + 1)δ) leads to (0, ε̂(γ + k(α + 1)δ))
with probability (α + 1)δ/(2γ) and to (γ, ε̂k(α + 1)δ) with probability 1−
(α + 1)δ/(2γ).

• The state (γ, 0) leads to (1, 1 − γ) with probability γ and to (0,−γ) with
probability 1− γ.

• The state (0, ε̂(γ + M(α + 1)δ)) is absorbing.
• The states lying on the line x = 1 are absorbing.

It is easy to check that f is a nonnegative submartingale bounded by 1 and g
satisfies

|dgn| ≤ |dfn| and |E(dgn|Fn−1)| ≤ αE(dfn|Fn−1), n = 1, 2, . . .

almost surely. Furthermore, if α = 1, then g is a ±1 transform of f : dfn = ±dgn

for n ≥ 1 (note that this fails for n = 0).
Step 3. Let (Gn) be the natural filtration generated by the process (f, g) and set

K = γ + M(1 + α)δ. Introduce the stopping time

τ = inf{k : fk = 1 or gk = ±K}.
The purpose of this step is to establish a bound for the first moment of τ .

Let n be a nonnegative integer and set κ = 4−3δM/(2γ). We will prove that

(4.1) P(τ ≤ n + 2M + 1|Gn) ≥ κγ.

We will need the following estimate

(4.2)
(

1− 3δ

2γ

)M

≥ κ,

which immediately follows from the facts that the function h : (0, 1/2] → R+ given
by h(x) = (1− x)1/x is decreasing and δ < γ/3.

Let A 6= ∅ be an atom of Gn. We will consider three cases.
1◦. If we have fn = 0 or fn = δ on A, consider the event

A′ = A ∩ {|gn+k+1| ≥ |gn+k|, k = 0, 1, . . . , 2M − 1}.
Clearly, in view of the transity function described above, we have A′ ⊆ {|gn+2M | =
K} ⊆ {τ ≤ n + 2M} and

P(τ ≤ n+2M+1|Gn) ≥ P(τ ≤ n+2M |Gn) ≥ P(A′)
P(A)

≥ (1−δ/γ)M > κ > κγ on A,

in view of (4.2).
2◦. If we have fn = γ or fn = γ − (α + 1)δ/2 on A, consider the event

A′ = A ∩ {|gn+k+1| < |gn+k| or (fn+k+1, gn+k+1) = (1, 1− γ), k = 0, 1, . . .}.
In other words, A′ contains those paths of (fn+k, gn+k)k≥0, for which |g| decreases to
0 and then, in the next step, (f, g) moves to (1, 1−γ). It follows from the definition
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of the transity function, that, on A, it is impossible for |g| to be decreasing 2M +1
times in a row; that is to say, we have fn+2M+1 = 1 on A′ and hence

P(τ ≤ n + 2M + 1|Gn) ≥ P(A′)
P(A)

≥
[(

1− (α + 1)δ
2γ

) (
1− (α + 1)δ

2− 2γ + (α + 1)δ

)]M

γ

=
(

1− (2α + 1)δ
(2 + (2α + 1)δ)γ

)M

γ ≥
(

1− 3δ

2γ

)M

γ ≥ κγ,

by (4.2).
3◦. Finally, if fn = 1 on A, we have

P(τ ≤ n + 2M + 1|Gn) = 1 ≥ κγ.

Therefore the inequality (4.1) is established. It implies that

P(τ > n + 2M + 1) ≤ (1− κγ)P(τ > n),

which leads to

(4.3) Eτ ≤ 2M + 1
κγ

<
2K

κγδ
=

2K

γδ
· 43(K−γ)/2γ(1+α).

This implies that τ < ∞ with probability 1 and the pointwise limits f∞, g∞
exist almost surely.

Step 4. Let us establish an exponential bound for P(f∞ = 0). We have {f∞ =
0} ⊆ {g∞ ≥ K} and g is clearly 1-subordinate to f (as it is α-subordinate to f).
Therefore, we may use Hammack’s result (1.4): we have

(4.4) P(f∞ = 0) ≤ (8 +
√

2)e
12

exp(−K/4)

provided K ≥ 4.
Step 5. Consider a process (u(fn, gn))n and observe the following.
• For y ≥ γ, the function G(t) = u(t, y − t), t ∈ [0, 1], is continuously differ-

entiable and linear on [0, γ].
• For y ≥ −γ, the function G(t) = u(t, y + t), t ∈ [0, 1], is continuously

differentiable and linear on [γ, 1].
• For y ≥ γ, the function G(t) = u(t, y + αt), t ∈ [0, 1], satisfies G′(0+) = 0.
• The function u is locally bounded on D1 ∪D2 and its partial derivatives

are bounded on this set.
These four facts, together with symmetry of u, imply that there exists a constant

η(δ,K) such that η(δ,K)/δ → 0 as δ → 0 and, for any n,

u(fn+1, gn+1) ≥ u(fn, gn) + ux(fn, gn)dfn+1 + uy(fn, gn)dgn+1 − η(δ,K)χ{τ>n}.

Both sides of this inequality are integrable: indeed, it suffices to use the fourth
property above and the fact that (fn, gn) is bounded and belongs to D1 ∪D2.
Therefore, we may take expectation to obtain

Eu(fn+1, gn+1) ≥ Eu(fn, gn)− η(δ,K)P(τ > n).

This implies
Eu(f∞, g∞) ≥ Eu(f0, g0)− η(δ,K)Eτ,

or

E|g∞|+
{

α + exp
[
− 2α + 1

α + 1
(
K − α

2α + 1
)]
· 1
2α + 1

}
P(f∞ = 0)

≥ Eu(f0, g0)− η(δ,K)Eτ.
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By (4.4), we may fix K ≥ 4 such that{
α + exp

[
− 2α + 1

α + 1
(
K +

α

2α + 1
)]
· 1
2α + 1

}
P(f∞ = 0) ≤ ε.

Now we specify the numbers δ and M , as promised at the beginning of Step 2.
By (4.3), we may choose δ > 0 such that η(δ,K)Eτ ≤ ε and, clearly, we may also
ensure that M = (K − γ)/(1 + α)δ is an integer. Thus we obtain

(4.5) E|g∞| ≥ Eu(f0, g0)− 2ε.

Step 6. Now we put all the things together. Let (f, g) = ((fn, gn))n≥0 be a
process which coincides with (F,G) from Step 1 for n ≤ 3N and which, for n > 3N ,
conditionally on F3N , moves according to the transities described in Step 2. We
have, by (4.5),

E|g∞| ≥ Eu(F3N , G3N )− 2ε.

But, since u is nonnegative (due to (2.3)),

Eu(F3N , G3N ) ≥ u(γ, 0)
( 1
α + 2

− ε
)

+ u(0, γ)
(α + 1
α + 2

− ε
)

=
(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
− (u(γ, 0) + u(0, γ))ε.

Since ε was arbitrary, this implies that the constant in (1.5) is the best possible.
This also establishes the sharpness of the estimate (1.6), even in the special case
H ∈ {−1, 1}: if α = 1, then the processes f , g constructed above satisfy |dfk| = |dgk|
for all k. The proofs of Theorems 1.1 and 1.2 are complete.
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[9] A. Osȩkowski, Sharp inequality for bounded submartingales and their differential subordinates,
submitted.



10 ADAM OSȨKOWSKI
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