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Abstract. The paper is devoted to the study of sharp versions of mixed
Ap − Aq weighted estimates for the dyadic maximal function Md on Rn.
For given parameters 1 < p < ∞ and 1 ≤ q ≤ ∞, if a weight w satis�es
Muckenhoupt's condition Ap, then we have the sharp Ap −Aq bound

‖Md‖Lp(w)→Lp(w) ≤
p1+1/p

p− 1

(
q

q − 1

)(q−1)/p

[w]
1/p
Ap

[w1/(1−p)]
1/p
Aq

(for q ∈ {1,∞}, the constant is understood as an appropriate limit). Actually,
a wider class of related sharp two-weight estimates forMd is established. The
results hold true in a more general context of maximal operators on probability
spaces associated with a tree-like structure.

1. Introduction

The principal goal of this paper is to study Lp-boundedness of the dyadic maxi-
mal operator and to measure the size of the norm in terms of various mixed charac-
teristics of the underlying weight. We start with recalling the necessary background
and notation. The dyadic maximal operatorM on Rn is an operator acting on lo-
cally integrable functions ϕ : Rn → R by the formula

Mϕ(x) = sup

{
1

|Q|

∫
Q

|ϕ(y)|dy : x ∈ Q, Q ⊂ Rn is a dyadic cube

}
.

Here the dyadic cubes are those formed by the grids 2−NZn, N = 0, 1, 2, . . ., and
|Q| denotes the Lebesgue measure of Q. This maximal operator is of fundamental
importance to analysis and PDEs, and in many applications it is of interest to
control it e�ciently, i.e., to have optimal or at least good bounds for its norms. For
instance,M satis�es the weak-type (1, 1) inequality

(1.1) λ
∣∣ {x ∈ Rn :Mϕ(x) ≥ λ}

∣∣ ≤ ∫
{Mϕ≥λ}

|φ(u)|du, φ ∈ L1(Rn),

which, after integration, yields the corresponding Lp estimate

(1.2) ||Mϕ||Lp(Rn) ≤
p

p− 1
||ϕ||Lp(Rn), 1 < p ≤ ∞.

Both estimates are sharp: the constant 1 in (1.1) and the constant p/(p − 1) in
(1.2) cannot be decreased. These two results have been successfully extended in
numerous directions and applied in various contexts of harmonic analysis. See e.g.
[5, 6, 7, 8, 9, 14, 15] and the monograph [3], consult also references therein.
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As we have already mentioned above, we will be interested in certain mixed
weighted versions of (1.2). In what follows, the word `weight' will refer to a nonneg-
ative, integrable function on the underlying measure space. The following statement
is a consequence of the classical work of Muckenhoupt [10]. Suppose that 1 < p <∞
is given and �xed, and let w be a weight on Rn. ThenM is bounded as an operator
on the weighted space

Lp(w) =

{
f : Rn → R : ||f ||Lp(w) =

(∫
Rn

|f |pwdx
)1/p

<∞

}
if and only if w belongs to the dyadic Ap class, i.e.,

[w]Ap
:= sup

(
1

|Q|

∫
Q

wdx

)(
1

|Q|

∫
Q

w−1/(p−1)dx

)p−1
<∞,

where the supremum is taken over all dyadic cubes Q in Rn. The classes Ap can
be extended to the cases p = 1 and p =∞ by a straightforward limiting procedure.
A weight w satis�es Muckenhoupt's condition A1, if

[w]A1
:= sup essup

x∈Q

Mw(x)

w(x)
<∞.

Furthermore, w is an A∞ weight if

[w]A∞ := sup

(
1

|Q|

∫
Q

wdx

)
exp

(
1

|Q|

∫
Q

logw−1dx

)
<∞.

Both suprema above are taken over all dyadic cubes Q in Rn.
The above result of Muckenhoupt is a starting point for many interesting further

questions. For example, one can ask about the dependence of ||M||Lp(w)→Lp(w) on
the size of the characteristic [w]Ap

. More precisely, for a given 1 < p < ∞, the
problem is to �nd the least number α = α(p) such that

||M||Lp(w)→Lp(w) ≤ Cp[w]
α(p)
Ap

for some Cp depending only on p. This problem was solved in the nineties by
Buckley [1], who showed that the optimal exponent α(p) is equal to 1/(p − 1).
This result has been recently strengthened signi�cantly by Os¦kowski in [13]. That
paper contains, for a given 1 < p < ∞ and c ∈ [1,∞), the identi�cation of the
smallest constant Cp,c such that the following holds: if w is an Ap weight satisfying
[w]Ap

= c, then
||M||Lp(w)→Lp(w) ≤ Cp,c.

Another extension of Buckley's result, which also serves as our motivation here,
is the following two-weight estimate obtained by H¸tonen and Pérez in [4]. For any
1 < p <∞ and any pair (w, v) of weights on Rn,

(1.3) ||M||Lp(v)→Lp(w) ≤
4ep

p− 1

(
[w, v1/(1−p)]Ap [v

1/(1−p)]A∞
)1/p

,

where

[w, σ]Ap
= sup

(
1

|Q|

∫
Q

wdx

)(
1

|Q|

∫
Q

σ

)p−1
,

the supremum being taken over all dyadic cubes Q in Rn. To see that this statement
does generalize Buckley's result, apply it to w = v being an Ap weight: then

[w, v1/(1−p)]Ap
= [w]Ap

and [v1/(1−p)]A∞ ≤ [v1/(1−p)]Ap/(p−1)
= [w]

1/(p−1)
Ap

.
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We will be interested in the sharp version of (1.3) in a much wider context.
Let us start with an appropriate de�nition of tree structures on probability spaces,
following [5].

De�nition 1.1. Suppose that (X,µ) is a nonatomic probability space. A set T of
measurable subsets of X will be called a tree if the following conditions are satis�ed:

(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a �nite subset C(Q) ⊂ T containing at least two
elements such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q,
(b) Q =

⋃
C(Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
Q∈T m C(Q).

(iv) We have limm→∞ supQ∈T m µ(Q) = 0.

An important example, which links this de�nition with the preceding consider-
ations, is the cube X = [0, 1)n endowed with Lebesgue measure and the tree of
its dyadic subcubes. Any probability space equipped with a tree gives rise to the
corresponding maximal operatorMT , acting on integrable functions f : X → R by
the formula

MT f(x) = sup

{
1

µ(Q)

∫
Q

|f |dµ : x ∈ Q,Q ∈ T
}
.

In analogy to the dyadic setting described above, we say that a weight w on X
satis�es Muckenhoupt's condition Ap (where 1 < p <∞ is a �xed parameter), if

[w]Ap := sup
Q∈T

(
1

µ(Q)

∫
Q

wdµ

)(
1

µ(Q)

∫
Q

w−1/(p−1)dµ

)p−1
<∞.

The characteristics [w]A1
, [w]A∞ and [w, σ]Ap

are de�ned analogously. Furthermore,
the weighted space Lp(w) is given by

Lp(w) =

{
f : X → R : ||f ||Lp(w) =

(∫
X

|f |pwdµ
)1/p

<∞

}
.

Our main result is the following sharp version of (1.3).

Theorem 1.2. Let X be a probability space equipped with a tree T . Suppose
that 1 < p < ∞, 1 ≤ q ≤ ∞. If (w, v) is a pair of weights on X satisfying

[w, v1/(1−p)]Ap
<∞ and [v1/(1−p)]Aq

<∞ (with respect to T ), then we have

(1.4) ||MT ||Lp(v)→Lp(w) ≤
p1+1/p

p− 1

(
q

q − 1

)(q−1)/p

[w, v1/(1−p)]
1/p
Ap

[v1/(1−p)]
1/p
Aq

(for q ∈ {1,∞}, the constant is understood as the appropriate limit). For each p
and q the constant cannot be decreased, even if w = v.

In particular, the estimate (1.4) is valid and sharp also in the classical setting
of [0, 1)n equipped with Lebesgue's measure and the tree of dyadic subcubes; by
straightforward dilation and scaling, this result extends to the whole Rn.

A few words about the proof are in order. Our approach to (1.4) will exploit the
theory of two-weight estimates. A classical result of Sawyer [17] asserts that if w,
v are two weights on Rn, then the (dyadic) maximal operatorM is bounded as an
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operator from Lp(v) to Lp(w) if and only if the weights satisfy the so-called testing
condition ∫

Q

(
M(v−1/(p−1)χQ)

)p
wdx ≤ C

∫
Q

v−1/(p−1)dx

for all dyadic cubes Q, where C depends only on p, w and v. We will study a
sharp version of this testing condition for the weights satisfying the assumptions
of Theorem 1.2 in the above context of probability spaces. Then we will combine
this estimate with the weighted version of Carleson embedding theorem (cf. [12],
[22], [13]) and obtain the desired bound (1.4). We will handle the testing conditions
with the use of the so-called Bellman function method. The technique reduces the
problem of proving a given inequality to the search for a certain special function,
enjoying appropriate size conditions and concavity. The literature on this subject
is extremely large, for more information and the exemplary applications, we refer
the interested reader to the works [11, 12, 16, 18, 19, 20, 21] and the references
therein.

The next section contains the proof of (1.4). Section 3 is devoted to the con-
struction of an example showing that the estimate is sharp.

2. Proof of (1.4)

Our main result will be deduced from a slightly more general estimate formu-
lated in Theorem 2.1 below. For the precise statement, we need to introduce a
technical parameter d, a key object in our further considerations. The geometric
interpretation of this parameter is explained on Figure 1 below. Let c ≥ 1 and

Figure 1. The geometric interpretation of the parameter d = d(q, c)

1 < q < ∞ be �xed. Then the line, tangent to the curve vuq−1 = c at the point
(1, c1/(q−1)), intersects the curve vuq−1 = 1 at one point (if c = 1) or two points
(if c > 1). Take the intersection point with smaller v-coordinate, and denote this
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coordinate by d(q, c). Formally, d = d(q, c) is the unique number in (0, 1] satisfying
the equation

(2.1) cd

(
q − d
q − 1

)q−1
= 1.

We extend this de�nition to the boundary cases q ∈ {1,∞} by limiting procedure.
Namely, we set d(1, c) = 1/c and de�ne d(∞, c) to be the unique number d ∈ (0, 1]
satisfying cde1−d = 1.

Theorem 2.1. Let X be a probability space equipped with a tree T . If (w, v) is

a pair of weights on X satisfying [w, v1/(1−p)]Ap
< ∞ and [v1/(1−p)]Aq

< ∞ (with
respect to T ), then we have

(2.2) ||MT ||Lp(v)→Lp(w) ≤
p[w, v1/(1−p)]

1/p
Ap

p− 1

(
1− p+ pd(q, [v1/(1−p)]Aq

)−1
)1/p

.

The proof of the above statement rests on two lemmas.

Lemma 2.2. Suppose that a pair (w, σ) of weights satis�es [w, σ]Ap
≤ c (with

respect to T ). Then for any R ∈ T ,

(2.3)

∫
R

(
MT (σχR)

)p
wdµ ≤ pc

∫
R

MT (σχR)dµ+ (1− p)c
∫
R

σdµ.

Both constants pc and (1− p)c are the best possible.

Proof. We split the reasoning into four parts.

Step 1. An associated Bellman function. For any c ≥ 1, introduce the domain

Dp,c = {(w, v, z) ∈ (0,∞)3 : wvp−1 ≤ c}
and let B : Dp,c → R be given by the formula

B(w, v, z) = zpw− pcz.

Step 2. Auxiliary notation. The set R belongs to some generation of the tree T :
say, R ∈ T m. For any n and any x ∈ X, let Qn(x) be the element of T n which
contains x; such a set is uniquely de�ned for almost all x. Next, introduce the
notation

wn =
1

µ(Qn(x))

∫
Qn(x)

wdµ, vn =
1

µ(Qn(x))

∫
Qn(x)

σdµ, zn = max
m≤k≤n

vk.

In the probabilistic language, the functional sequences (wn)n≥m and (vn)n≥m are
martingales (on the probability space (R,µ(·)/µ(R))) corresponding to the terminal
variables w and σ, while (zn)n≥m is the maximal function of (vn)n≥m. Note that
for any n ≥ m and any Q ∈ T n, the functions wn, vn and zn are constant on Q
and we have

(2.4)

∫
Q

wn+1dµ = µ(Q)wn|Q.

Furthermore, the sequence (zn)n≥m is nondecreasing and satis�es

lim
n→∞

zn(x) = sup
n≥m

1

µ(Qn(x))

∫
Qn(x)

σdµ

= sup
n≥0

1

µ(Qn(x))

∫
Qn(x)

σχRdµ =MT (σχR)(x)
(2.5)
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almost everywhere.

Step 3. Monotonicity property. The main part of the proof is to show that the
sequence

(∫
R
B(wn, vn, zn)dµ

)
n≥m is nonincreasing. Observe that

(2.6) B(wn+1, vn+1, zn+1) = z
p
n+1wn+1 − pczn+1 ≤ zpnwn+1 − pczn.

Indeed, if zn+1 = zn, there is nothing to prove; therefore, assume that zn+1 > zn.
By the mean-value property,

z
p
n+1wn+1 − pczn+1 −

(
zpnwn+1 − pczn

)
= p(zn+1 − zn)

(
ap−1wn+1 − c

)
,

for some a ∈ (zn, zn+1). However, since zn+1 = max{vn+1, zn}, we see that vn+1 =
zn+1 and hence a < vn+1. Therefore, the condition [w, σ]Ap

≤ c implies ap−1wn+1−
c ≤ wn+1v

p−1
n+1 − c ≤ 0 and hence the bound (2.6) follows. Consequently, by (2.4),

we get that for any Q ∈ T n,∫
Q

B(wn+1, vn+1, zn+1)dµ ≤
∫
Q

B(wn, vn, zn)dµ,

and summing over all Q contained in R yields the desired monotonicity.

Step 4. Completion of the proof. By the previous step and the inequality
wmv

p−1
m ≤ c, we get∫

R

(
zpnw − pczn

)
dµ =

∫
R

(
zpnwn − pczn

)
dµ

≤
∫
R

(
zpmwm − pczm

)
dµ

=

∫
R

(
vpmwm − pcvm

)
dµ

≤ (1− p)cvmµ(R) = (1− p)c
∫
R

σdµ.

To deduce (2.3), it su�ces to let n→∞ and combine (2.5) with Lebesgue's mono-
tone convergence theorem. It remains to handle the sharpness of this estimate.
If any of the constants pc or (1 − p)c could be decreased, this would lead to the
improvement of the constant in (2.2) (which is impossible, as we shall see in the
next section). �

The second lemma concerns the following sharp maximal inequality forAq weights.
Recall the de�nition of the parameter d(q, c) given in (2.1) above.

Lemma 2.3. For any Aq weight σ on X and any R ∈ T we have the inequality

(2.7)

∫
R

MT (σχR)dµ ≤ d(q, [σ]Aq
)−1

∫
R

σdµ.

Proof of Lemma 2.3 for q = 1. For this particular value of q the argument is very
simple. Fix an A1 weight σ. By the very de�nition of the A1 condition, we have∫

R

MT (σχR)dµ ≤
∫
R

MT σdµ ≤ [σ]A1

∫
R

σdµ = d(1, [σ]A1)
−1
∫
R

σdµ,

as desired. �
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Proof of Lemma 2.3 for q ∈ (1,∞). Pick an arbitrary Aq weight σ. For brevity, we
will denote [σ]Aq by c and write d instead of d(q, c). If c = 1, then d = 1, the weight
is constant and the claim is evident; therefore, from now on, we assume that c > 1
(and hence d < 1). Let R be an arbitrary element of the tree T ; it belongs to some
generation T m. As in the proof of Theorem 2.2, the reasoning is split into four
parts.

Step 1. An associated Bellman function and its properties. Consider the domain

Dq = {(u, v, z) ∈ (0,∞)3 : 1 ≤ uq−1v ≤ c, z ≥ v}
and introduce the Bellman function B : Dq → R by

B(u, v, z) = α
[
(q − 1)c−1/(q−1)zq/(q−1)u− qz+ v

]
+ vd−1,

where

α =
d1/(q−1)

c−1/(q−1) − dq/(q−1)
> 0

The latter inequality is equivalent to c < d−q, which follows immediately from the

de�nition of d: indeed, otherwise we would have
(
q−d
qd−d

)q−1
≤ 1, a contradiction.

Let us prove the majorizations

(2.8) B(u, v, v) ≤ vd−1

and

(2.9) B(u, v, z) ≥ z.

The �rst estimate follows at once from the condition c−1/(q−1)vq/(q−1)u ≤ v. To
prove the second bound, note that B increases as v increases and hence it is enough
to establish (2.9) for v = u1−q. A straightforward calculation shows that for a �xed
z, the function

F (u) = α
[
(q − 1)c−1/(q−1)zq/(q−1)u− qz+ u1−q

]
+ u1−qd−1 − z

is convex on (0,∞) and satis�es F ((zd)−1/(q−1)) = F ′((zd)−1/(q−1)) = 0. This
yields (2.9).

Step 2. Monotonicity property. De�ne the functional sequences (vn)n≥m, (zn)n≥m
as in the proof of Theorem 2.2. Furthermore, for n ≥ m let

un(x) =
1

µ(Qn(x))

∫
Qn(x)

σ−1/(q−1)dµ.

By Jensen's inequality and the de�nition of [σ]Aq
, we have 1 ≤ uq−1n vn ≤ c. Let us

show that the sequence
( ∫

R
B(un, vn, zn)dµ

)
n≥m is nonincreasing. Indeed, by the

mean value property,

B(un+1, vn+1, zn+1)− B(un+1, vn+1, zn) = αq(zn+1 − zn)
(
(a/c)1/(q−1)un+1 − 1

)
for some a ∈ [zn, zn+1]. This expression is nonpositive: if zn+1 = zn, then this is
obvious, while for zn < zn+1 we apply the bound

(a/c)1/(q−1)un+1 ≤ (zn+1/c)
1/(q−1)un+1 = (vn+1/c)

1/(q−1)un+1 ≤ 1.

Consequently,∫
R

B(un+1, vn+1, zn+1)dµ ≤
∫
R

B(un+1, vn+1, zn)dµ =

∫
R

B(un, vn, zn)dµ,
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where the latter equality follows from the fact that the dependence of B on the
variables u and v is linear.

Step 3. By the previous step and the estimates (2.8), (2.9), we obtain∫
R

zndµ ≤
∫
R

B(un, vn, zn)dµ =

∫
R

B(um, vm, vm)dµ ≤ d−1
∫
R

σdµ.

Since (zn)n≥m increases almost everywhere to MT (σχR) (see (2.5)), Lebesgue's
monotone convergence theorem implies

1

σ(R)

∫
R

MT (σχR)dµ ≤ d−1,

and the claim follows, since R was taken arbitrarily. �

Proof of Lemma 2.3 for q =∞. The reasoning is essentially the same as previ-
ously; we will present the necessary modi�cations and leave the rigorous veri�cation
to the reader. We need to use a di�erent Bellman function. Introduce the domain

D∞ = {(u, v, z) ∈ (0,∞)3 : 1 ≤ exp(−u)v ≤ c, z ≥ v}
and de�ne B : D∞ → R by

B(u, v, z) = (−zu− z+ z ln z− z ln c+ v)(1− d)−1 + vd−1.

It is easy to check that we have the estimates

(2.10) B(u, v, v) ≤ vd−1, B(u, v, z) ≥ z.

Consider the sequences (vn)n≥m, (zn)n≥m as previously, and set

un(x) =
1

µ(Qn(x))

∫
Qn(x)

log σdµ.

Arguing as above, one shows that the sequence
( ∫

R
B(un, vn, zn)dµ

)
n≥m is nonin-

creasing and deduces the claim by Lebesgue's monotone convergence theorem and
the majorizations (2.10). �

Remark 2.4. There is a natural question how the above Bellman functions were
discovered; we will give some informal argumentation about the search for B from
the previous lemma. The desired function should satisfy (2.8) and (2.9), so it cannot
be too big nor too small. The key indication is contained in Step 2 of the above
proof. Since (un)n≥m, (vn)n≥m behave in a martingale manner and (zn)n≥0 is
nondecreasing, the monotonicity of

(∫
R
B(un, vn, zn)dµ

)
n≥m follows if one proves

that Bz(w, z, z) ≤ 0 and B(·, ·, z) is concave. (Just inspect carefully the above
proof). In our search for B, we assumed that B is actually linear with respect to
u and v; in addition, we forced Bz(u, z, z) to vanish for the extremal choice of u,
for which c−1/(q−1)vq/(q−1)u = v. By these two observations, it is not di�cult to
obtain the Bellman function, after some experimentation.

The �nal ingredient of the proof of (2.2) is the following sharp weighted version
of Carleson embedding theorem (see [4, 13, 22]).

Theorem 2.5. Suppose that w is an Ap weight on X. Let K be a positive constant
and assume that nonnegative numbers αQ, Q ∈ T , satisfy

(2.11)
∑
Q⊆R

αQ

(
1

µ(Q)

∫
Q

σdµ

)p
≤ K

∫
R

σdµ
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for all R ∈ T . Then for any integrable and nonnegative function f on X we have

(2.12)
∑
Q∈T

αQ

(
1

µ(Q)

∫
Q

fdµ

)p
≤ K

(
p

p− 1

)p ∫
X

fpσ1−pdµ.

Equipped with the above facts, we are ready for the proof of our main result.

Proof of (2.2) and (1.4). Put σ = v1/(1−p). The combination of Lemmas 2.2 and
2.3 shows that

(2.13)

∫
R

(
MT (σχR)

)p
wdµ ≤ [w, σ]Ap

(
pd(q, [σ]Aq

)−1 + (1− p)
)∫

R

σdµ.

It is well-known (see e.g. [13]) that this inequality implies (2.11) with the constant
K = [w, σ]Ap

(
pd(q, [σ]Aq )

−1 + 1 − p
)
. Consequently the inequality (2.12) is also

true, and this is precisely the desired weighted bound (2.2). To deduce (1.4), we
will assume that q ∈ (1,∞); the proof for q ∈ {1,∞} is similar and left to the
reader. It su�ces to show that

1− p+ pd(p, [σ]Aq )
−1 ≤

(
q

q − 1

)q−1
p[σ]Aq ,

or equivalently, setting c = [σ]Aq and using (2.1),(
(1− p)d(q, c) + p

)(q − d(q, c)
q − 1

)q−1
≤ p

(
q

q − 1

)q−1
.

However, the left-hand side is obviously a decreasing function of d(q, c) and both
sides become equal if we let d(q, c) ↓ 0. This gives the claim. �

3. Sharpness

Now we will show that the constant in (1.4) is optimal for each choice of p and
q. By continuity and the estimate [w1−p]Aq ≥ [w1−p]A∞ , we may restrict ourselves
to the case of �nite q. It is convenient to split the reasoning into a few parts.

Step 1. Auxiliary geometrical facts and parameters. Suppose that 1 < q < ∞
and c > 1 are �xed numbers. Pick c̃ ∈ (1, c). There are two lines passing through
the point K = (1, c̃1/(q−1)) which are tangent to the curve vuq−1 = c; pick the line
` which has bigger slope (equivalently: the v-coordinate of the tangency point is
bigger than 1). This line intersects the curve vuq−1 = 1 at two points: pick the point
L with smaller v-coordinate and denote this coordinate by s(q, c̃). Furthermore,
the line ` intersects the curve vuq−1 = c̃ at two points: one of them is K, while
the second, denoted by M , is of the form

(
1 + δ, (c̃/(1 + δ))1/(q−1)

)
. See Figure 2

below.
Let us record here two important facts. First, the points K, L, M are colinear:

some simple algebra allows to transform this observation into the equality

(3.1)
1− (1 + δ)1/(1−q)

δ
=

(c̃s(q, c̃))1/(1−q) − 1

1− s(q, c̃)
,

which will be useful later. Second, it follows immediately from the geometric inter-
pretation of d(q, c) and s(q, c̃) that

(3.2) d(q, c) < s(q, c̃) < 1,

and s(q, c̃) can be made arbitrarily close to d(q, c) by picking c̃ su�ciently close to
c.
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Figure 2. The crucial parameters and their geometric interpre-
tation: d = d(q, c), K = (1, c̃1/(q−1)), L =

(
s(q, c̃), (s(q, c̃))1/(1−q)

)
and M =

(
1 + δ, (c̃/(1 + δ))1/(q−1)

)
.

Finally, we introduce a parameter r, which is assumed to be a positive number
less than 1+d(q, c)/(p(1−d(q, c))). By the above discussion concerning d(q, c) and
s(q, c̃), we see that if c̃ is su�ciently close to c, then we also have

(3.3) r < 1 +
s(q, c̃)

p(1− s(q, c̃))
≤ 1

1− s(q, c̃)
,

where the latter inequality is equivalent to p ≥ 1.

Step 2. Construction. Now, recall the following technical fact, which can be
found in [5].

Lemma 3.1. For every Q ∈ T and every β ∈ (0, 1) there is a subfamily F (Q) ⊂ T
consisting of pairwise disjoint subsets of Q such that

µ

 ⋃
R∈F (Q)

R

 =
∑

R∈F (Q)

µ(R) = βµ(Q).

We use this fact inductively, to construct an appropriate family A0 ⊃ A1 ⊃
A2 ⊃ . . . of sets. Namely, we start with A0 = X. Suppose we have successfully
constructed An, which is a union of pairwise almost disjoint elements of T , called the
atoms of An (this condition is satis�ed for n = 0: we have A0 = X ∈ T ). Then, for
each atom Q of An, we apply the above lemma with β = (1−s(q, c̃))/(1−s(q, c̃)+δ)
and get a subfamily F (Q). Put An+1 =

⋃
Q

⋃
Q′∈F (Q)Q

′, the �rst union taken over

all atoms Q of An. Directly from the de�nition, this set is a union of the family
{F (Q) : Q an atom of An}, which consists of pairwise disjoint elements of T . We
call these elements the atoms of An+1 and conclude the description of the induction
step. As an immediate consequence of the above construction, we see that if Q is
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an atom of Am, then for any n ≥ m we have

µ(Q ∩An) = µ(Q)

(
1− s(q, c̃)

1− s(q, c̃) + δ

)n−m
and hence

(3.4) µ(Q ∩ (An \An+1)) = µ(Q)

(
1− s(q, c̃)

1− s(q, c̃) + δ

)n−m
δ

1− s(q, c̃) + δ
.

Now, introduce the weights σ and w on X by the formulas

σ = s(q, c̃)

∞∑
n=0

χAn\An+1
(1 + δ)n

and w = σ1−p. In addition, let f : X → R be given by f = σr, where r is the
number �xed at the previous step.

Step 3. Proof of the inequality [w1/(1−p)]Aq = [σ]Aq ≤ c. First observe that each
Q ∈ T enjoys exactly one of the following three properties:

(i) the weight σ is constant on Q;
(ii) Q is an atom or the union of some atoms of some Am;
(iii) there is a nonnegative integer m such that Q ∩Am 6= ∅, Q \Am 6= ∅.

Indeed: if Q satis�es (ii), then it is divided in the inductive procedure described
above and, as a result, some nontrivial part of it goes to Am+1, so σ is not constant
on Q. This proves that the conditions (i) and (ii) are disjoint. Now, suppose that
Q does not satisfy any of these two conditions and let m be the largest integer such
that Q ⊆ Am−1. Then Q \ Am 6= ∅, by the very de�nition of m, and Q ∩ Am 6= ∅,
since otherwise (i) would hold true (see the formula for σ).

Let us now study the product
(

1
µ(Q)

∫
Q
σdµ

)(
1

µ(Q)

∫
Q
σ1/(1−q)dµ

)q−1
under

each assumption (i), (ii) and (iii) separately. If σ is constant on Q, then the above
product is obviously equal to 1. If Q is an atom of Am, then, by (3.4),
(3.5)

1

µ(Q)

∫
Q

σdµ = s(q, c̃)

∞∑
n=m

(
1− s(q, c̃)

1− s(q, c̃) + δ

)n−m
δ

1− s(q, c̃) + δ
·(1+δ)n = (1+δ)m

and similarly,

1

µ(Q)

∫
Q

σ1/(1−q)dµ

= s(q, c̃)1/(1−q)(1 + δ)m/(1−q)
(
(1− s(q, c̃)) · 1− (1 + δ)1/(1−q)

δ
+ 1

)−1
= c̃1/(q−1)(1 + δ)m/(1−q),

(3.6)

where in the last passage we have exploited (3.1). Consequently, we have the
equality

(3.7)

(
1

µ(Q)

∫
Q

σdµ

)(
1

µ(Q)

∫
Q

σ1/(1−q)dµ

)q−1
= c̃.
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Finally, assume that Q satis�es (iii). Pick the largest integer m such that Q ⊆
Am−1. We have

1

µ(Q)

∫
Q

σdµ =
1

µ(Q)

∫
Q\Am

σdµ+
1

µ(Q)

∫
Q∩Am

σdµ

=
1

µ(Q)

∫
Q\Am

s(q, c̃)(1 + δ)m−1dµ+
1

µ(Q)

∫
Q∩Am

σdµ.

By (3.5), applied to each atom R of Am contained in Q, we get∫
Q∩Am

σdµ = µ(Q ∩Am)(1 + δ)m

and hence, setting η := µ(Q ∩Am)/µ(Q), we rewrite the preceding equality in the
form

(3.8)
1

µ(Q)

∫
Q

σdµ = (1− η)s(q, c̃)(1 + δ)m−1 + η(1 + δ)m.

A similar calculation, exploiting (3.6) instead of (3.5), shows that

1

µ(Q)

∫
Q

σ1/(1−q)dµ

= (1− η)s(q, c̃)1/(1−q)(1 + δ)(m−1)/(1−q) + η · c̃1/(q−1)(1 + δ)m/(1−q).

and therefore(
1

µ(Q)

∫
Q

σdµ

)(
1

µ(Q)

∫
Q

σ1/(1−q)dµ

)q−1
=

(
(1− η)s(q, c̃) + η(1 + δ)

)(
(1− η)s(q, c̃)1/(1−q) + ηc̃1/(q−1)(1 + δ)1/(1−q)

)q−1
.

This number does not exceed c. To see this, rewrite the right-hand side in the form

(ηMv + (1− η)Lv)(ηMu + (1− η)Lu)q−1,

whereMv, Mu and Lv, Lu are the coordinates of the pointsM and L (see Figure 2).
As η ranges from 0 to 1, the point ηM + (1− η)L runs over the line segment ML
which is entirely contained in {(v, u) : vup−1 ≤ c}. Thus we have established the
desired condition [σ]Aq

≤ c, and combining this with (3.7) yields the two-sided
bound

c̃ ≤ [σ]Aq ≤ c.
Before we proceed, let us record here the information about the A1 characteristic

of σ. Pick any element ω ∈ X and let n be the unique integer such that ω ∈
An \An+1; then σ(ω) = s(q, c̃)(1+δ)n. Let Q be an arbitrary element of the tree T
which contains ω; this set satis�es one of the conditions (i), (ii), (iii) listed above.
If σ is constant on Q, then

1

µ(Q)

∫
Q

σdµ = σ(ω) = s(q, c̃)(1 + δ)n.

If Q satis�es (ii), then m ≤ n and, as proved in (3.5),

1

µ(Q)

∫
Q

σdµ = (1 + δ)m ≤ (1 + δ)n.
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Finally, if Q satis�es (iii), then by (3.8),

1

µ(Q)

∫
Q

σdµ = (1− η)s(q, c̃)(1 + δ)n + η(1 + δ)n+1 ≤ (1 + δ)n+1.

Summarizing, we haveMT σ(ω)/σ(ω) ≤ (1 + δ)/s(q, c̃) and hence

[σ]A1 ≤
1 + δ

s(q, c̃)
.

Furthermore, if q is su�ciently close to 1 and c̃ is made close enough to c, then the
right hand side can be made as close to d(1, c)−1 = c as we wish.

Step 4. On the characteristic [w]Ap
= [w, σ]Ap

. Using arguments similar to those
above, we will show that if δ is su�ciently small, then [w]Ap can be made arbitrarily

close to α = d(q, c)1−p ((1− d(q, c)) · (p− 1) + 1)
−1
.We start from the observation

that any set Q ∈ T satis�es (i), (ii) or (iii) listed in the previous step. If (i) holds,
then obviously (

1

µ(Q)

∫
Q

wdµ

)(
1

µ(Q)

∫
Q

σdµ

)p−1
= 1.

If Q is an atom of Am, then arguing as in (3.6), we get

1

µ(Q)

∫
Q

wdµ = s(q, c̃)1−p(1 + δ)m(1−p)
(
(1− s(q, c̃)) · 1− (1 + δ)1−p

δ
+ 1

)−1
,

so by (3.5),(
1

µ(Q)

∫
Q

wdµ

)(
1

µ(Q)

∫
Q

σdµ

)p−1
= s(q, c̃)1−p

(
(1− s(q, c̃)) · 1− (1 + δ)1−p

δ
+ 1

)−1
.

(Note that if δ → 0 - or rather c̃ → c - then the expression on the right converges
to α). Finally, if Q satis�es (iii), then it �mediates� between the two possibilities
above: more precisely, if Q ⊆ Am−1 and Q 6⊆ Am, then the point(

1

µ(Q)

∫
Q

wdµ,
1

µ(Q)

∫
Q

σdµ

)
is contained in the line segment with endpoints(

s(q, c̃)1−p(1 + δ)(m−1)(1−p), s(q, c̃)(1 + δ)m−1
)

and(
s(q, c̃)1−p(1 + δ)m(1−p)

(
(1− s(q, c̃)) · 1− (1 + δ)1−p

δ
+ 1

)−1
, (1 + δ)m

)
.

Thus, it is enough to show that for any ε > 0, this line segment is entirely con-
tained in the hyperbolic region {(w, v) ∈ (0,∞)2 : wvp−1 ≤ α + ε}, provided
δ is su�ciently small. We may assume that m = 0, since the linear mapping
(w, v) 7→ (w(1 + δ)m(p−1), v/(1 + δ)m) preserves this hyperbolic region. To show
the claim, we pass to the limit δ → 0 (or rather c̃ → c). Then the endpoints of
the segment become

(
d(q, c)1−p, d(q, c)

)
and (α, 1); as one easily veri�es, this lim-

iting line segment becomes tangent to the curve wvp−1 = α (and hence lies below
it). Putting all the above observations together, we get the aforementioned claim
concerning [w]Ap

.
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Step 5. Optimality of the constant in (1.4). Suppose �rst that q > 1. Repeating
the calculations from (3.6), we check that if Q is an atom of Am, then

1

w(Q)

∫
Q

fdµ = s(q, c̃)r
∞∑
n=m

(
1− s(q, c̃)

1− s(q, c̃) + δ

)n−m
δ

1− s(q, c̃) + δ
· (1 + δ)rn

= s(q, c̃)r(1 + δ)mr
(
(1− s(q, c̃)) · 1− (1 + δ)r

δ
+ 1

)−1
(the ratio of the above geometric series, equal to

1− s(q, c̃)
1− s(q, c̃) + δ

· (1 + δ)r = 1 + δ

(
− 1

1− s(q, c̃)
+ r

)
+ o(δ),

is less than 1, at least for su�ciently small δ: this is due to (3.3)). Consequently,
we see that

MT f ≥ s(q, c̃)r(1 + δ)mr
(
(1− s(q, c̃)) · 1− (1 + δ)r

δ
+ 1

)−1
on Am and hence, by the de�nition of f , we obtain

MT f ≥
(
(1− s(q, c̃)) · 1− (1 + δ)r

δ
+ 1

)−1
f ≥

(
(1− s(q, c̃))(−r) + 1

)−1
f

on Am \ Am+1. The latter bound does not depend on m, so we can rewrite it
uniformly as

(3.9) MT f ≥
(
(1− s(q, c̃))(−r) + 1

)−1
f on X.

Note that f ∈ Lp(w). Indeed, we compute that

‖f‖pLp(w) =

∫
X

σ(r−1)p+1dµ

= s(q, c̃)(r−1)p+1
∞∑
n=0

(
1− s(q, c̃)

1− s(q, c̃) + δ

)n
δ

1− s(q, c̃) + δ
· (1 + δ)((r−1)p+1)n

and the ratio of this geometric series is equal to

1− s(q, c̃)
1− s(q, c̃) + δ

(1 + δ)(r−1)p+1 = 1 + δ

[
− 1

1− s(q, c̃)
+ (r − 1)p+ 1

]
+ o(δ).

Now recall that we take r close to (but smaller than) 1 + d(q, c)/(p(1 − d(q, c)));
hence (r − 1)p + 1 < 1/(1 − d(q, c)). If we make c̃ su�ciently close to c, then the
expression in the square brackets above becomes negative. This proves f ∈ Lp(w)
and hence, by (3.9), we conclude that

‖MT ‖Lp(w)→Lp(w) ≥
(
(1− s(q, c̃))(−r) + 1

)−1
.

Now if we choose r su�ciently close to 1 + d(q, c)/(p(1− d(q, c))) and then c̃ su�-

ciently close to c, then the number

(
(1−s(q, c̃))(−r)+1

)−1
can be made arbitrarily

close to p/((p − 1)d(q, c)). On the other hand, by the arguments presented in the

previous two steps, if c̃ is su�ciently close to c, then
(
[w]Ap

[w1/(1−p)]Ap

)1/p
can be
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made arbitrarily close to d(q, c)1/p−1 ((1− d(q, c)) · (p− 1) + 1)
−1/p ·c1/p and hence

the ratio ‖MT ‖Lp(w)→Lp(w)

(
[w]Ap

[w1/(1−p)]Aq

)−1/p
is as close to

(3.10)
p

p− 1

(
(1− d(q, c))(p− 1) + 1

cd(q, c)

)1/p

as we wish. Now let c→∞: it follows directly from (2.1) that then d(q, c)→ 0 and

cd(q, c)→
(

q
q−1

)1−q
. Consequently, the expression (3.10) converges to the constant

in (1.4), and this establishes the desired sharpness. It remains to handle the A1

case. Let f , w be the function and the weight constructed above (they correspond
to given parameters q > 1, c > c̃ > 1 and 0 < r < 1 + d(q, c)/(p(1− d(q, c)))). We
know that if r is su�ciently close to 1 + d(q̃, c)/(p(1− d(q̃, c))) and c̃ is su�ciently
close to c, then the ratio ‖MT f‖Lp(w)/‖f‖Lp(w) can be made arbitrarily close to
p/((p− 1)d(q, c)). The latter expression tends to pc/(p− 1) if we let q → 1. On the
other hand, by the arguments in Steps 3 and 4, if we perform the above limiting
procedure for r, c̃ and q, we have

[w]Ap [w
1/(1−p)]A1 = [w]Ap [σ]A1 →

cp

p− (p− 1)/c
.

This implies

‖MT ‖Lp(w)→Lp(w)

([w]Ap [w
1/(1−p)]A1)

1/p
≥ p

p− 1

(
p− p− 1

c

)1/p

,

and letting c→∞ we get the desired lower bound.
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