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Abstract. We determine the smallest number β for which the following holds.

If X is a continuous-path martingale and [X,X] denotes its square bracket,
then

|| sup
t
Xt||1 ≤ β||[X,X]1/2||1.

Then we extend this inequality to (i) the class of martingales with no positive

jumps and (ii) the class of discrete-time conditionally symmetric martingales.

We also study some generalizations of the inequality involving an extra term
depending on the initial value X0.

1. Introduction

Square function inequalities play an important role in harmonic analysis, poten-
tial theory and both classical and noncommutative probability, see e.g. [5], [10],
[18], [20], [23], . . .. The objective of the present paper is to determine the best
constants in some maximal estimates for the martingale square function, both in
the discrete- and continuous-time setting.

Let (Ω,F ,P) be a probability space, filtered by a nondecreasing family (Fn)∞n=0

of sub-σ fields of F . Assume that f = (fn)∞n=0 is an adapted real-valued martingale
and let df = (dfn)∞n=0 denote its difference sequence, defined by the equations

fn =
n∑
k=0

dfk, n = 0, 1, 2, . . . .

Then S(f), the square function of f , and f∗, the one-sided maximal function of f ,
are given by

S(f) =

( ∞∑
k=0

|dfk|2
)1/2

and f∗ = sup
k
fk.

We will also use the notation

Sn(f) =

(
n∑
k=0

|dfk|2
)1/2

and f∗n = sup
k≤n

fk,

for n = 0, 1, 2, . . ..
In the literature, there has been an interest in comparison of the moments of a

martingale and its square function; see [2]–[9], [19] and references therein. Also,
consult [15], [16] for some more recent progress on the subject. It was shown by
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Burkholder in [2], that there are finite positive cp, Cp, 1 < p <∞, such that if f is
a martingale, then

(1.1) cp||S(f)||p ≤ ||f ||p ≤ Cp||S(f)||p,

where ||f ||p = supn ||fn||p. Then Burkholder refined his proof in [4] and showed
(1.1) with c−1

p = Cp = max{p− 1, (p− 1)−1}. Moreover, this choice of cp the best
possible for 1 < p ≤ 2 and the choice of Cp is optimal for 2 ≤ p <∞. See also [19]
for a different approach. In the remaining cases, the best values of cp and Cp are not
known. Furthermore, in the limit case p = 1, the left inequality does not hold with
any cp > 0 and, as shown by the author in [15], we have that the optimal choice
for C1 is 2. For p < 1, neither of the inequalities holds without extra assumptions
on the martingale f .

Let us now turn to the related maximal estimate

(1.2) c∗p||S(f)||p ≤ || sup
n
|fn| ||p ≤ C∗p ||S(f)||p, 1 ≤ p <∞.

Its validity for p > 1 follows from (1.1) and Doob’s maximal inequality. The case
p = 1 was studied by Davis [8], who established the double estimate using a clever
decomposition of a martingale. What about the optimal values of the constants
c∗p and C∗p? This is easy when p = 2: then ||S(f)||2 = ||f ||2, so (1.2) is sharp
with c∗2 = 1 and C∗2 = 2. If p 6= 2, then, to the best of our knowledge, there are
two results in this direction, both due to Burkholder: if p > 2, then the smallest
possible C∗p equals p (see [5]); furthermore, the optimal value of c∗1 is 1/

√
3 (see [6]).

The inequalities (1.1) and (1.2) have also been studied for some special classes of
martingales. A martingale f is conditionally symmetric, if for any n ≥ 1, the laws
of dfn and −dfn given Fn−1 coincide. For example, this holds for the important
class of dyadic martingales (or Haar martingales, or Paley-Walsh martingales).
Recall that a martingale on the probability space ([0, 1],B([0, 1]), | · |) is dyadic
if for all n ≥ 0 its n-th term and the absolute value of the (n + 1)-st term of
its difference sequence are both constant on [(k − 1)/2n, k/2n), k = 1, 2, . . . , 2n.
Inequalities (1.1) and (1.2) in the dyadic case were investigated by Khintchine [11],
Littlewood [12], Marcinkiewicz [13], Marcinkiewicz and Zygmund [14] and Paley
[17] (without using the concept of a martingale, the results were formulated in
terms of the partial sums of Rademacher and Haar series). Wang [24] studied (1.1)
for conditionally symmetric martingales and showed that the following estimates
are sharp, even in the dyadic case:

||f ||p ≤ νp||S(f)||p, 0 < p ≤ 2,

||f ||p ≤ µp||S(f)||p, p ≥ 3,

νp||S(f)||p ≤ ||f ||p, p ≥ 2.

Here νp is the smallest positive zero of the confluent hypergeometric function and
µp is the largest positive zero of the parabolic cylinder function of parameter p.
For the remaining values of parameter p, the best constants in (1.1) are not known.
The problem of determining optimal c∗p and C∗p in (1.2) for conditionally symmetric
martingales is also open (except for the trivial case p = 2).

One of the main results of the present paper concerns the inequality for one-sided
maximal function of a conditionally symmetric martingale f . Let s0 = −0.8745 . . .
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be the unique negative solution to the equation

(1.3)
∫ s0

0

exp
(
u2

2

)
du+ 1 = 0

and set

β = exp
(
s2

0

2

)
= 1.4658 . . . .

We will prove the following fact.

Theorem 1.1. If f is a conditionally symmetric martingale, then

(1.4) ||f∗||1 ≤ β||S(f)||1.

The constant is the best possible. It is already the best possible for dyadic martin-
gales.

The inequalities (1.1) and (1.2) have been also been investigated for continuous-
time martingales. Assume that the probability space is complete and suppose it is
equipped with a continuous-time filtration (Ft)t∈[0,∞) such that F0 contains all the
events of probability 0. Let X be a right-continuous martingale with limits from
the left and let [X,X] stand for its square bracket (which is continuous analogue
of the square function. See [10] for details). Finally, denote X∗ = supsXs and
X∗t = sups≤tXs.

The optimal constants in (1.1) for continuous-path martingales were found by
Davis [9]: he showed that the best choice for cp is µp for 1 < p ≤ 2 and νp when
2 ≤ p <∞; on the other hand, the best possible value of Cp is νp if 0 < p ≤ 2 and
µp for 2 ≤ p < ∞. However, the optimal constants in (1.2) are not known (again,
except for the trivial case p = 2).

Our contribution in this direction is described in the theorem below.

Theorem 1.2. If X has no positive jumps, then

(1.5) ||X∗||1 ≤ β||[X,X]1/2||1

and the constant is the best possible. It is already the best possible if X is assumed
to have continuous paths.

The inequalities (1.4) and (1.5) can be strengthened if one allows an extra term
Ef0 or EX0 on the right (see Section 4 below). In particular, it will be shown that
if the martingales are assumed to start from 0, then the best constant in (1.4) and
(1.5) decreases to ν1 = 1, 30693 . . ..

The paper is organized as follows. The proof of the announced results exploits
some properties of the confluent hypergeometric function of parameter 1. In the
next section we introduce this function and establish some technical estimates to
be needed later. Then in Section 3 we provide the proofs of Theorems 1.1 and
1.2. The final part of the paper is devoted to the extensions of the inequalities
(1.4) and (1.5) mentioned above. Furthermore, as an application, we present
there some inequalities for a stopped local time of Brownian motion and
three-dimensional Bessel process.
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2. Auxiliary technical facts

The central role in the paper is played by the function φ : R→ R given by

φ(s) = − exp
(
s2

2

)
+ s

∫ s

0

exp
(
u2

2

)
du.

We have that −φ is a confluent hypergeometric function of parameter 1, see [1].
We easily check that φ satisfies

(2.1) φ′(s) =
∫ s

0

exp
(
u2

2

)
du, φ′′(s) = exp

(
s2

2

)
and the differential equation

(2.2) φ′′(s)− sφ′(s) + φ(s) = 0.

Throughout the paper, the number ν1 = 1, 30693 . . . will stand for the unique
positive root of φ.

In the two lemmas below we establish key inequalities for the function φ.

Lemma 2.1. Let x > 0, d ≥ 0 and y ≤ 0. Then

(2.3)
√
x2 + d2

[
φ

(
y + d√
x2 + d2

∧ 0
)

+ φ

(
y − d√
x2 + d2

)]
≤ 2xφ

(y
x

)
.

Proof. We will show that

(2.4)
√
x2 + d2

[
φ

(
y + d√
x2 + d2

)
+ φ

(
y − d√
x2 + d2

)]
≤ 2xφ

(y
x

)
,

which is stronger than (2.3), since φ(s) ≥ φ(0) for s ≥ 0 (see (2.1)). If d = 0, then
both sides of (2.4) are equal; hence it suffices to prove that the left-hand side, as a
function of d, has nonpositive derivative. This is equivalent to

d√
x2 + d2

[φ(s1) + φ(s2)] + φ′(s1)
x2 − yd
x2 + d2

− φ′(s2)
x2 + yd

x2 + d2
≤ 0,

where

s1 =
y + d√
x2 + d2

and s2 =
y − d√
x2 + d2

.

In view of (2.2), φ(s1) = s1φ
′(s1)−φ′′(s1) and φ(s2) = s2φ

′(s2)−φ′′(s2). Therefore
the inequality can be written in the form

φ′(s1)− φ′(s2)− s1 − s2

2
(φ′′(s1) + φ′′(s2)) ≤ 0,

or ∫ s1

s2

φ′′(u)du ≤ s1 − s2

2
(φ′′(s1) + φ′′(s2)).

It suffices to use the fact that φ′′(s) = exp(s2/2) is positive and convex. �

Lemma 2.2. Let x > 0 and y, d ≤ 0. Then

(2.5)
√
x2 + d2φ

(
y + d√
x2 + d2

)
≤ xφ

(y
x

)
+ φ′

(y
x

)
d.
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Proof. If d = 0, then both sides are equal; hence we may assume that d < 0. The
inequality (2.5) is equivalent to

−
√
x2 + d2 exp

(
(y + d)2

2(x2 + d2)

)
+x exp

(
y2

2x2

)
≤ (y+d)

∫ y/x

(y+d)/
√
x2+d2

exp
(
u2

2

)
du

and after substitution X = x/
√
x2 + d2, Y = y/

√
x2 + d2, D = d/

√
x2 + d2 (note

that X2 +D2 = 1 and Y +D < 0) becomes

(2.6)
1

Y +D

[
− exp

(
(Y +D)2

2

)
+X exp

(
Y 2

2X2

)]
−
∫ Y/X

Y+D

exp
(
u2

2

)
du ≥ 0.

Fix D and denote the left-hand side by F (Y ). We have

F ′(Y ) =
1

(Y +D)2

[
−Y D + 1

X
exp

(
Y 2

2X2

)
+ exp

(
(Y +D)2

2

)]
,

which, as we will prove now, is nonpositive. This is equivalent to (recall that
X =

√
1−D2)

(2.7) G(Y ) = log
(
Y D + 1√

1−D2

)
− (Y +D)2

2
+

Y 2

2(1−D2)
≥ 0.

But, since log(1− x) + x ≤ 0 for all x < 1, we have

G(0) = −1
2

(log(1−D2) +D2) ≥ 0

and, furthermore,

G′(Y ) = −D2Y

(
1

Y D + 1
− 1

1−D2

)
≤ 0.

Thus (2.7) follows and F is nonincreasing. In consequence, to establish (2.6), we
need to show that F (0) ≥ 0. That is,

H(D) = D−1

[
− exp

(
D2

2

)
+
√

1−D2

]
+
∫ D

0

exp
(
u2

2

)
du ≥ 0.

However, we have limD→0−H(D) = 0 and

H ′(D) =
1
D2

[
− 1√

1−D2
+ exp

(
D2

2

)]
≤ 0,

where the latter estimate follows from the elementary bound es ≤ (1−s)−1, applied
to s = D2. Thus H ≥ 0, and the proof is complete. �

3. Proofs of Theorems 1.1 and 1.2

Introduce the function U : (0,∞)× R2 → R by

(3.1) U(x, y, z) = y +
√
xφ

(
y − z√
x

)
.

Let us list some of the properties of U , which will be used later.
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Lemma 3.1. (i) The function U satisfies the partial differential equations

(3.2) Ux +
1
2
Uyy = 0 on (0,∞)× R2,

and

(3.3) Uz(x, y, y) = 0 for all x > 0, y ∈ R.
(ii) For any x > 0 and y ≤ z, d ≤ 0 we have

(3.4) U(x2 + d2, y + d, z) + U(x2 + d2, y − d, z) ≤ 2U(x2, y, z)

and

(3.5) U(x2 + d2, y + d, z) ≤ U(x2, y, z) + Uy(x2, y, z)d.

(iii) For any x > 0 and y ≤ z we have

(3.6) U(x, y, z) ≥ z − β
√
x.

Proof. (i) The equation (3.2) follows from (2.2), while (3.3) is a consequence of
φ′(0) = 0.

(ii) A direct computation shows that (3.4) reduces to (2.3) and that (3.5) follows
from (2.5).

(iii) Divide throughout by
√
x and substitute s = (y−z)/

√
x ≤ 0. The inequality

becomes
φ(s) + s ≥ −β.

The derivative of the left-hand side is equal to∫ s

0

exp
(
u2

2

)
du+ 1,

and hence the function s 7→ φ(s) + s, s ≤ 0, attains its minimum at s0 given by
(1.3). As one easily checks, the minimum equals −β. �

Now we shall provide the proofs of the announced estimates.

Proof of (1.4). We may and do assume that ||S(f)||1 < ∞. Let ε > 0 be fixed
and set hn = (ε + S2

n(f), fn, f∗n), n = 0, 1, 2, . . .. We will show that the sequence
(U(hn)) is an (Fn)-supermartingale. To this end, note that for any n,

f∗n − fn√
ε+ S2

n(f)
≤

2
∑n
k=0 |dfk|√

ε+ maxk≤n |dfk|
≤ 2n+ 2,

so U(hn) ≤ |fn| +
√
ε+ S2

n(f) · φ(2n + 2) and, in particular, U(hn) is integrable.
By the conditional symmetry of f and (3.4) we have, for any n ≥ 1,

E[U(hn)|Fn−1] = E[U(ε+ S2
n−1(f) + df2

n, fn−1 + dfn, f
∗
n−1 ∨ (fn−1 + dfn)|Fn−1]

=
1
2

E[U(ε+ S2
n−1(f) + df2

n, fn−1 + dfn, f
∗
n−1 ∨ (fn−1 + dfn)|Fn−1]

+
1
2

E[U(ε+ S2
n−1(f) + df2

n, fn−1 − dfn, f∗n−1 ∨ (fn−1 − dfn)|Fn−1]

≤ U(hn−1).

Therefore, using (3.6), we have that for any n,

||f∗n||1 − β||
√
ε+ S2

n(f)||1 ≤ EU(hn) ≤ EU(h0) = EU(ε+ f2
0 , f0, f0)

= f0 −
√
ε+ f2

0 ≤ 0.
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It suffices to let ε → 0 and then n → ∞ to obtain (1.4), in view of Lebesgue’s
dominated and monotone convergence theorems. �

Now we turn to the continuous-time setting. For any martingale X there exists
a unique continuous part Xc of X satisfying

(3.7) [X,X]t = |X0|2 + [Xc, Xc]t +
∑

0<s≤t

|4Xs|2

for all t ≥ 0. Here 4Xs = Xs −Xs− is the jump of X at time s. Furthermore, we
have that [Xc, Xc] = [X,X]c, the pathwise continuous part of [X,X].

Proof of (1.5). With no loss of generality we may assume that ||[X,X]1/2||1 <∞.
Fix ε > 0 and a positive integer N . Consider a stopping time

σN = inf{t > 0 : X∗t −Xt ≥ N
√
ε+ [X,X]t}

and a martingale

(3.8) XN = (XσN∧t).

Clearly, it suffices to show (1.5) for XN ; then the passage N → ∞ together with
Lebesgue’s monotone convergence theorem yield the estimate for the initial process
X. Therefore, from now on, we may and do assume that X = XN . The advantage
is that the process

(3.9) Zt = (ε+ [X,X]t, Xt, X
∗
t ), t ≥ 0,

satisfies EU(Zt) <∞ for all t. Indeed, we have that

(3.10)
X∗t −Xt√
ε+ [X,X]t

≤
X∗t− −Xt−√
ε+ [X,X]t−

+
|∆Xt|√
ε+ [X,X]t

≤ N + 1,

so U(Zt) ≤ Xt +
√
ε+ [X,X]tφ(N + 1) and the integrability follows.

The function U is of class C2, so we may apply Itô’s formula to (Zt) and obtain

U(Zt) = U(Z0) + I1 + I2 + I3 + I4,

where

I1 =
∫ t

0+

Ux(Zs−)d[X,X]s +
1
2

∫ t

0

Uyy(Zs−)d[Xc, Xc]s,

I2 =
∫ t

0+

Uy(Zs−)dXs,

I3 =
∫ t

0+

Uz(Zs−)dX∗s ,

I4 =
∑

0<s≤t

[
U(Zs)− U(Zs−)− Ux(Zs−)|∆Xs|2 − Uy(Zs−)∆Xs − Uz(Zs−)∆X∗s

]
.

As we have already seen in the previous proof, U(Z0) ≤ 0. Furthermore, using
(3.7) and then (3.2), we may write

I1 =
∫ t

0

(Ux(Zs−) +
1
2
Uyy(Zs−))d[Xc, Xc]s +

∑
0<s≤t

Ux(Zs−)|4Xs|2

=
∑

0<s≤t

Ux(Zs−)|4Xs|2.
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The assumption that X does not have positive jumps, has two consequences. First,
the process X∗ has continuous paths. Second, the inequality (3.5) implies that for
any s ∈ (0, t],

U(Zs)− U(Zs−)− Uy(Zs−)∆Xs ≤ 0.
This gives I1 + I4 ≤ 0. Furthermore, I2 has zero expectation, by the properties of
stochastic integrals. Finally, we have I3 = 0, due to (3.3): indeed, since X∗ has
continuous trajectories, dX∗ is supported on the set {s : Xs = X∗s }, and we have
Uz(Zs−) = 0 there. Thus we have established the inequality EU(Zt) ≤ 0, so, in
virtue of (3.6),

(3.11) EX∗t ≤ βE
√
ε+ [X,X]t.

It suffices to let ε→ 0 and then t→∞ to obtain (1.5). �

Now we will show that the constant β is optimal in (1.4) and (1.5). First let us
deal with the continuous-time setting.

Sharpness of (1.5) for continuous-path martingales. We will provide an appropri-
ate example. First let us recall the result of Shepp [22]. Suppose that B0 = (B0

t )
is a Brownian motion starting from 0 and consider a stopping time T = Ta defined
by

Ta = inf{t > 0 : |B0
t | = a

√
1 + t}.

The result of Shepp we will need is that if a < ν1, then the stopping time Ta belongs
to L1/2.

Now let B1 = (B1
t ) be a Brownian motion starting from 1 and let

(3.12) τ = inf{t > 0 : (B1
t )∗ −B1

t = −s0

√
1 + t}.

In view of Levy’s theorem, the distributions of τ and T−s0 coincide, so in particular
we have Eτ1/2 < ∞ (since −s0 < ν1). Let X = (B1

τ∧t) and consider the process
Y = (U([X,X]t, Xt, X

∗
t )). By (3.2), (3.3) and Itô’s formula, Y is a martingale

which converges in L1: indeed, arguing as in (3.10), we can show that

|Yt| ≤ X∗ − φ(s0)
√

[X,X], t ≥ 0,

and the variable on the right is integrable by (1.5) and the equality [X,X] = 1 + τ .
It suffices to note that EY0 = 0 and Yt → X∗−β[X,X]1/2 almost surely as t→∞.
This shows that

(3.13) ||X∗||1 = β||[X,X]1/2||1
and we are done. �

Sharpness of (1.4). We will prove that the optimal constant in (1.4) for the dyadic
case is not smaller than the one in (1.5) for continuous-path martingales. This
will be done using an extension of Burkholder’s argument (see Chapter 10 in [5]).
Suppose that for any dyadic martingale f we have ||f∗||1 ≤ γ||S(f)||1. Introduce
the function W : [0,∞)× R2 → R by

W (x2, y, z) = sup
{
E(f∗ ∨ z)− γE

√
x2 − y2 + S2(f)

}
,

where the supremum is taken over the class of all simple dyadic martingales f
starting from y (recall that a martingale f is called simple if for any n the random
variable fn takes only a finite number of values and there is deterministic N such
that fN = fN+1 = fN+2 = . . . with probability 1). Arguing as in [5], one can prove
that W satisfies the following three conditions:
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1◦ For any x ∈ R, we have W (x2, x, x) ≤ 0.
2◦ For any x, y, z ∈ R we have W (x2, y, z) ≥ V (x2, y, z) = y ∨ z − γ|x|.
3◦ For any x, d ≥ 0, and y, z ∈ R, we have

W (x2 + d2, y + d, (y + d) ∨ y ∨ z) +W (x2 + d2, y − d, y ∨ z) ≤ 2W (x2, y, y ∨ z).
For a fixed δ ∈ (0, 1), let gδ : R3 → [0,∞) be a function of class C∞, supported
on the ball of center 0 and radius δ, and satisfying

∫
R3 g

δ = 1. Introduce W δ, V δ :
[δ,∞)× R2 → R by the convolutions

W δ(x, y, z) =
∫

[−δ,δ]3
W (x− u, y − v, z − w)gδ(u, v, w)dxdydw

and
V δ(x, y, z) =

∫
[−δ,δ]3

V (x− u, y − v, z − w)gδ(u, v, w)dxdydw.

Clearly, the condition 3◦ is still valid for the function W δ (provided x2 ≥ δ);
moreover, since W δ is of class C∞, we see that letting d→ 0 yields

(3.14) W δ
x (x, y, z) +

1
2
W δ
yy(x, y, z) ≤ 0 if x > δ and y < z,

and, if one takes y = z,

(3.15) W δ
z (x, y, y) ≤ 0 for x > δ and any y.

Let B = B1 be a Brownian motion starting from 1 and suppose that τ is a stopping
time defined by (3.12). Fix ε ≥ 2δ, an integer N ≥ 2 and let ηN = τ ∧ inf{t > 0 :
|Bt| ≥ N}. By Itô’s formula, the inequalities (3.14) and (3.15) guarantee that the
process (W δ(1 + ε+ ηN ∧ t, BηN∧t, B

∗
ηN∧t)) is a supermartingale. Furthermore, by

2◦, we have V δ ≤W δ, so for any t ≥ 0,

EV δ(1 + ε+ ηN ∧ t, BηN∧t, B
∗
ηN∧t) ≤ EW δ(1 + ε+ ηN ∧ t, BηN∧t, B

∗
ηN∧t)

≤ EW δ(1 + ε,B0, B0) = W δ(1 + ε, 1, 1).

Now it is clear from the definition of W and 1◦ that for (u, v, w) ∈ [−δ, δ]3,

W (1 + ε− u, 1− v, 1− w) ≤W (
√

1− v, 1− v, 1− w)

≤W (
√

1− v, 1− v, 1− v) + |w − v|
≤ 2δ,

so W δ(1+ε, 1, 1) ≤ 2δ. Thus, letting δ → 0 and using the fact that V is a continuous
function (so V δ → V ), yields

EB∗ηN∧t − γE
√

1 + ε+ ηN ∧ t ≤ 0.

It suffices to let ε→ 0 and t→∞, N →∞ to obtain, by Lebesgue’s theorems,

||B∗τ ||1 ≤ γ||
√

1 + τ ||1,
which implies γ ≥ β, in view of (3.13). �

Remark: In fact, the above argumentation can be used to provide an
alternative proof of the inequality (1.5) for continuous-path martingales.
Indeed, the validity of (1.4) implies the existence of the special function
W , defined as above (with γ replaced by β), and an application of the
smoothing argument and Itô’s formula yields (1.5). It is evident that this
method can be used as a general tool to transfer the inequalities from
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the conditionally symmetric (or dyadic) setting to the continuous time
continuous-path case. However, two remarks are in order. First, observe
that the continuous-time versions may, but need not remain sharp: see
the results of Wang [24] and Davis [9] mentioned in the introduction.
Second, the above argumentation does not seem to work if we want to
obtain the estimates for the wider class which consists of martingales
with no positive jumps. This is why we have taken a different approach
and exploited the special function U .

4. A class of stronger estimates and applications

In this section we present certain extensions of the inequalities (1.4) and (1.5).
First we need to introduce some parameters. Let

b∗ = 1− ν1 exp
(
−ν

2
1

2

)
and, for b ≤ b∗, let s0(b) be the unique negative number satisfying

(4.1)
∫ s0(b)

0

exp
(
u2

2

)
du = − 1

1− b
.

Note that

(4.2) s0(·) is continuous, decreasing, lim
b→−∞

s0(b) = 0 and s0(b∗) = −ν1.

Furthermore, for b ∈ R, set

(4.3) C(b) =


(1− b) exp

(
s2

0(b)
2

)
if b < b∗,

ν1 if b ∈ [b∗, 2− b∗],

(b− 1) exp
(
s2

0(2− b)
2

)
if b > 2− b∗.

It can be easily verified that the function C is of class C1. Furthermore, it satisfies
the symmetry condition C(b) = C(2− b) for all b.

The main result in this section can be stated as follows.

Theorem 4.1. Let b ∈ R.
(i) For any conditionally symmetric martingale f we have

(4.4) ||f∗||1 ≤ bEf0 + C(b)||S(f)||1.

The constant C(b) is the best possible. It is already the best possible for dyadic
martingales.

(ii) For any martingale X with no positive jumps we have

(4.5) ||X∗||1 ≤ bEX0 + C(b)||[X,X]1/2||1.

The constant C(b) is the best possible. It is already the best possible for continuous-
path martingales.

Remark 4.2. The result above generalizes Theorems 1.1 and 1.2: they correspond
to the choice b = 0.
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Proof of (4.4) and (4.5). We will only give the detailed argumentation leading to
(4.5); it will be clear how to modify the proof so that it works for (4.4). We will
consider the cases b ≤ b∗, b ∈ (b∗, 2− b∗), b ≥ 2− b∗ separately.

The case b ≤ b∗ Define Ub : (0,∞)× R2 → R by

Ub(x, y, z) = by + (1− b)U(x, y, z),

where U is given by (3.1). First note that we have the majorization

(4.6) Ub(x, y, z) ≥ z − (1− b) exp
(
s2

0(b)
2

)
)√

x

for x > 0 and y ≤ z. Indeed, after substitution s = (y − z)/
√
x ≤ 0, this is

equivalent to
s+ (1− b)φ(s) + C(b) ≥ 0,

and, as one easily verifies, the left-hand side, as a function of s ≤ 0, attains its
minimum 0 at s = s0(b).

Now fix ε > 0, N > 0 and let X be a martingale with no positive jumps. We
may and do assume that X = XN , where XN is given by (3.8). If we define (Zt)
by (3.9), then, as we have shown in the proof of (1.5), we have EU(Zt) ≤ 0 for any
t. Consequently,

(4.7) ||X∗t ||1 − C(b)||
√
ε+ [X,X]t||1 ≤ EUb(Zt) ≤ bEX0

and it suffices to let ε→ 0 and t→∞.
The case b ∈ (b∗, 2 − b∗]. By (4.7), applied to b := b∗ and a trivial bound

EX0 ≤ E|X0|, we get

||X∗t ||1− ν1||
√
ε+ [X,X]t||1 ≤ EUb∗(Zt) = EX0− (1− b∗)E|X0| ≤ b∗EX0 ≤ bEX0.

Since ε and t are arbitrary, the inequality follows.
The case b > 2− b∗. Applying (4.7) to b := 2− b yields

||X∗t ||1 − C(2− b)||
√
ε+ [X,X]t||1 ≤ EU2−b(Zt) = EX0 − (b− 1)E|X0| ≤ bEX0.

Let ε→ 0 and t→∞ to complete the proof. �

Sharpness. First we will show that (4.5) is sharp for continuous-path martingales.
The arguments are essentially the same as in the proof of the sharpness of (1.5),
so we will only sketch the proof. We consider three cases: b < b∗, b ∈ [b∗, 2 − b∗],
b > 2− b∗.

The case b < b∗. Let B = B1 be a Brownian motion starting from 1 and

(4.8) τb = inf{t > 0 : B∗t −Bt = −s0(b)
√

1 + t}.

By (4.2), −s0(b) < ν1, so the result of Shepp [22] gives Eτ1/2
b < ∞. Since Ub

satisfies (3.2) and (3.3), the process (Ub(1 + τb ∧ t, Bτb∧t, B
∗
τb∧t)) is a martingale

convergent in L1 to Ub(1 + τb, Bτb
, B∗τb

) = B∗τb
−C(b)

√
1 + τb. Thus if X = (Bτb∧t),

then

(4.9) bEX0 = EUb([X,X]0, X0, X
∗
0 ) = ||X∗||1 − C(b)||[X,X]1/2||1.

The case b ∈ [b∗, 2− b∗]. Let B = B0 be a Brownian motion starting from 0 and
let b′ < b∗. Repeating the argumentation from the previous case, we have that if
X = (Bτb′∧t), then, by (4.9),

(4.10) 0 = ||X∗||1 − C(b′)||[X,X]1/2||1.
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Now if b′ ↑ b∗, then C(b′)→ ν1 = C(b), so the constant C(b) cannot be replaced in
(4.5) by a smaller one.

The case b > 2 − b∗. Take a Brownian motion B = B−1 starting from −1 and
repeat the argumentation from the case b < b∗, with b replaced by 2 − b. Let
X = (Bτ2−b∧t) and note that since Ub([X,X]0, X0, X

∗
0 ) = (2− b)X0 + (b− 1)(X0 +

X0) = bX0, (4.9) becomes

bEX0 = ||X∗||1 − C(2− b)||[X,X]1/2||1 = ||X∗||1 − C(b)||[X,X]1/2||1.
This establishes the sharpness of (4.5). To show that the constant C(b) is also

optimal in the dyadic case, we repeat the arguments used in the proof of the sharp-
ness of (1.4). One needs to consider a function W : [0,∞)× R2 → R given by

W (x2, y, z) = sup
{
E(f∗ ∨ z)− bEf0 − γE

√
x2 − y2 + S2(f)

}
,

the supremum being taken over all simple dyadic martingales starting from y. Here
γ is the optimal value of the constant C(b) in (4.4). Then one shows the versions
of the conditions 1◦, 2◦ and 3◦, and uses the convolution argument, in order to
transfer the problem to the continuous-time setting. The details are omitted and
left to the reader. �

Remark 4.3. Let b < b∗. Comparing (4.9) and the equality

||(B1
τb

)∗||1 = EB1
0 − s0(b)||

√
1 + τb||1,

which is a direct consequence of (4.8), we derive that

(4.11) ||
√

1 + τb||1 =
1

φ(s0(b))
.

See also [22] for related formulas.

One can try to choose the optimal b in (4.4) and (4.5) to obtain the best upper
bound for ||f∗||1 and ||X∗||1. This will be done below.

Corollary 4.4. (i) Let f be a conditionally symmetric martingale.
If Ef0 ≥ 0, then the optimal choice of b in (4.4) is given by

(4.12) b = 1 +
(∫ s

0

exp
(
u2

2

)
du
)−1

, where s ≤ 0 satisfies φ(s) =
Ef0

||S(f)||1
.

In particular, if Ef0 = 0, then

||f∗||1 ≤ ν1||S(f)||1.
If Ef0 < 0, then the optimal choice of b in (4.4) is given by

(4.13) b = 1−
(∫ s

0

exp
(
u2

2

)
du
)−1

, where s ≤ 0 satisfies φ(s) = − Ef0

||S(f)||1
.

The obtained inequalities are sharp even in the dyadic case.
(ii) Let X be a martingale with no positive jumps.
If EX0 ≥ 0, then the optimal choice of b in (4.4) is given by

(4.14)

b = 1 +
(∫ s

0

exp
(
u2

2

)
du
)−1

, where s ≤ 0 satisfies φ(s) =
EX0

||[X,X]1/2||1
.

In particular, if EX0 = 0, then

||X∗||1 ≤ ν1||[X,X]1/2||1.
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If EX0 < 0, then the optimal choice of b in (4.4) is given by
(4.15)

b = 1−
(∫ s

0

exp
(
u2

2

)
du
)−1

, where s ≤ 0 satisfies φ(s) = − EX0

||[X,X]1/2||1
.

The obtained inequalities are sharp even for continuous-path martingales.

Proof. This follows from a straightforward analysis of the right-hand sides of (4.4)
and (4.5). We will focus only on the continuous-time setting. The right-hand of
(4.5), as a function of b, has derivative EX0 + C ′(b)E[X,X]1/2; furthermore,

C ′(b) =


φ(s0(b)) if b < b∗,

0 if b ∈ [b∗, 2− b∗],
−φ(s0(2− b)) if b > 2− b∗.

Therefore, if EX0 ≥ 0, the right-hand side of (4.4) attatins its minimum for b
satisfying φ(s0(b)) = −EX0/E[X,X]1/2; such b exists, since −EX0/E[X,X]1/2 ∈
[−1, 0], which is precisely the range of b 7→ φ(s0(b)), b ≤ b∗. Using (4.1), we obtain
the formula (4.14) for b. Analogously, if EX0 < 0, then the optimal b is the solution
to the equation φ(s0(2 − b)) = −EX0/E[X,X]1/2, or, in view of (4.1), is given by
(4.15).

The examples showing the optimality of the constants are those used in the
sharpness of (4.5). Indeed, if b < b∗ (respectively, b > 2 − b∗), then we have
equality in (4.5) and in (4.14) (respectively, in (4.5) and in (4.15)), in view of
(4.11). The case EX0 = 0 is covered by (4.10). �

As an application of the results presented above, we will establish the
following two facts.

(i) An inequality for a stopped local time. Suppose that B is a standard
one-dimensional Brownian motion and let L = (Lt) be the local time in
0 of B: that is, for any t ≥ 0,

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt.

It is well-known consequence of Skorokhod’s lemma (see e.g. page 239 in
Revuz and Yor [21]) that L can be written in the form Lt = sups≤tDs∨0 =
sups≤tDs, where D is an adapted standard Brownian motion. Thus, by
Theorem 1.2 and Corollary 4.4, we get the following result.

Theorem 4.5. For any stopping time τ of B, we have

||1 + Lτ ||1 ≤ β||
√

1 + τ ||1
and

||Lτ ||1 ≤ ν1||τ1/2||1.
Both inequalities are sharp.

(ii) An inequality for a stopped three-dimensional Bessel process. Let
ρ = (ρt) be a three-dimensional Bessel process started at 0: for t ≥ 0,
ρt = |Bt|, where B is a Brownian motion in R3 such that B0 = 0. By
Pitman’s theorem, we have ρt = 2 sups≤tDs −Dt, where D is an adapted
standard one-dimensional Brownian motion; therefore, Theorem 1.2 and
Corollary 4.4 yield the following.
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Theorem 4.6. For any stopping time τ of ρ,

||2 + ρτ ||1 ≤ 2β||
√

1 + τ ||1

and

||ρτ ||1 ≤ 2ν1||τ1/2||1.

Both estimates are sharp.
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16 (1937), 84–96.
[14] J. Marcinkiewicz and A. Zygmund, Quelques théorèmes sur les fonctions indépendantes,
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