MAXIMAL INEQUALITIES FOR STOCHASTIC INTEGRALS

ADAM OSȨKOWSKI

Abstract

Let X be a continuous-time martingale and H be a predictable process taking values in $[-1,1]$. Let Y denote the stochastic integral of H with respect to X. The paper contains the proof of sharp bound for one-sided maximal function of Y by the p-th moment of X. A discrete-time version of this inequality is also established.

1. Introduction

Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space, equipped with a nondecreasing right-continuous family $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ of sub- σ-fields of \mathcal{F}. In addition, assume that \mathcal{F}_{0} contains all the events of probability 0 . Let $X=\left(X_{t}\right)_{t \geq 0}$ be an adapted real-valued right-continuous semimartingale with left limits. Let Y be the Itô integral of H with respect to X, that is,

$$
Y_{t}=H_{0} X_{0}+\int_{(0, t]} H_{s} d X_{s}, \quad t \geq 0
$$

Here H is a predictable process with values in $[-1,1]$. For $p \in[1, \infty]$, let $\|X\|_{p}=$ $\sup _{t \geq 0}\left\|X_{t}\right\|_{p}$. Furthermore, let $X^{*}=\sup _{t \geq 0} X_{t}$ and $|X|^{*}=\sup _{t \geq 0}\left|X_{t}\right|$.

The purpose of this paper is to compare the sizes of X and Y^{*}. Let us describe some related results from the literature. In [3], Burkholder invented a method of proving maximal inequalities for martingales and used it to obtain the following sharp estimate.

Theorem 1.1. If X is a martingale and Y is as above, then

$$
\begin{equation*}
\|Y\|_{1} \leq\left.\gamma\| \| X\right|^{*} \|_{1} \tag{1.1}
\end{equation*}
$$

where $\gamma=2,536 \ldots$ is the unique solution of the equation

$$
\gamma-3=-\exp \left(\frac{1-\gamma}{2}\right)
$$

The constant is the best possible.
Then it was shown by the author in [4], then if X is assumed to be a nonnegative supermartingale, then the optimal constant in (1.1) decreases to $2+(3 e)^{-1}=$ $2,1226 \ldots$ The paper [5] contains the further study in this direction and, in particular, the proof of the following fact.

2000 Mathematics Subject Classification. Primary: 60G42. Secondary: 60G44.
Key words and phrases. Martingale, maximal function, stochastic integral, martingale transform, norm inequality.

Partially supported by Foundation for Polish Science.

Theorem 1.2. If X is a martingale and Y is as above, then

$$
\begin{equation*}
\left\|Y^{*}\right\|_{1} \leq \beta\left\||X|^{*}\right\|_{1} \tag{1.2}
\end{equation*}
$$

where $\beta=2,0856 \ldots$ is the positive solution to the equation

$$
2 \log \left(\frac{8}{3}-\beta_{0}\right)=1-\beta_{0}
$$

Furthermore, if X is assumed to be nonnegative, then the optimal constant in (1.2) decreases to $14 / 9=1,5555 \ldots$

In the present paper we continue this line of research and provide new sharp bounds for the first moment of Y^{*}. Let

$$
C_{p}= \begin{cases}\Gamma\left(\frac{2 p-1}{p-1}\right)^{1-1 / p} & \text { if } 1<p \leq 2 \\ \left(2^{p /(p-1)}-\frac{p}{p-1} \int_{1}^{2} s^{1 /(p-1)} e^{s-2} d s\right)^{1-1 / p} & \text { if } 2<p<\infty \\ 1+e^{-1} & \text { if } p=\infty\end{cases}
$$

Here is our main result.
Theorem 1.3. Suppose X is a martingale and Y is as above. If $1<p \leq \infty$, then

$$
\begin{equation*}
\left\|Y^{*}\right\|_{1} \leq C_{p}\|X\|_{p} \tag{1.3}
\end{equation*}
$$

The constant C_{p} is the best possible. Furthermore, for $p \leq 1$ the inequality does not hold in general with any finite C_{p}.

In fact, the emphasis is put on the discrete-time version of the theorem above. Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, filtered by $\left(\mathcal{F}_{n}\right)_{n \geq 0}$. Let $f=\left(f_{n}\right)_{n \geq 0}$ be an adapted martingale and $g=\left(g_{n}\right)_{n \geq 0}$ be its transform by a predictable sequence $v=\left(v_{n}\right)_{n \geq 0}$ bounded in absolute value by 1 . That is, we have

$$
f_{n}=\sum_{k=0}^{n} d f_{k}, \quad g_{n}=\sum_{k=0}^{n} v_{k} d f_{k}, \quad n=0,1,2, \ldots,
$$

and by predictability of v we mean that v_{0} is \mathcal{F}_{0}-measurable and for any $k \geq 1$, v_{k} is measurable with respect to \mathcal{F}_{k-1}. In the particular case when each v_{k} is deterministic and takes values in the set $\{-1,1\}$, we will say that g is a ± 1 transform of f.

Denote $f_{n}^{*}=\max _{k \leq n} f_{k}$ and $f^{*}=\sup _{k} f_{k}$. Here is a discrete-time version of Theorem 1.3.

Theorem 1.4. Suppose f, g are martingales such that g is a transform of f by a predictable sequence bounded in absolute value by 1. If $1<p \leq \infty$, then

$$
\begin{equation*}
\left\|g^{*}\right\|_{1} \leq C_{p}\|f\|_{p} \tag{1.4}
\end{equation*}
$$

For $p \leq 1$, the inequality does not hold in general with any finite C_{p}.
A few words about the organization of the paper. The proof of our result is based on Burkholder's technique, which exploits properties of certain special functions; the method is described in the next section. Section 3 contains the proof of (1.3) and (1.4) for $p \in(1,2]$, while the case $p \in(2, \infty]$ is postponed to Section 4. The final part of the paper concerns the optimality of the constant C_{p}.

2. Some reductions and on the method of proof

Using approximation arguments of Bichteler [1], it suffices to focus on the discretetime setting. Now, with no loss of generality, we may assume that in (1.4) we deal with simple sequences f and g. By simplicity of f we mean that for any integer n, the random variable f_{n} takes only a finite number of values and there exists a deterministic number N such that $f_{N}=f_{N+1}=\ldots$ with probability 1. Clearly, if f and g are simple, then the almost sure limits f_{∞} and g_{∞} exist and are finite.

The key reduction is that it suffices to work with ± 1 transforms only. Recall Lemma A. 1 from [2].

Lemma 2.1. Let g be the transform of a martingale f by a real-valued predictable sequence v uniformly bounded in absolute value by 1. Then there exist martingales $F^{j}=\left(F_{n}^{j}\right)_{n \geq 0}$ and Borel measurable functions $\phi_{j}:[-1,1] \rightarrow\{-1,1\}$ such that, for $j \geq 1$ and $n \geq 0$,

$$
f_{n}=F_{2 n+1}^{j} \text { and } g_{n}=\sum_{j=1}^{\infty} 2^{-j} \phi_{j}\left(v_{0}\right) G_{2 n+1}^{j}
$$

where G^{j} is the transform of F^{j} by $\varepsilon=\left(\varepsilon_{k}\right)_{k \geq 0}$ with $\varepsilon_{k}=(-1)^{k}$.
To see how the lemma works in our setting, suppose we have established (1.4) for ± 1 transforms. Lemma 2.1 gives us the processes F^{j} and the functions $\phi_{j}, j \geq 1$. For any $j \geq 1$, conditionally on \mathcal{F}_{0}, the sequence $\phi_{j}\left(v_{0}\right) G^{j}$ is a ± 1 transform of F^{j} and hence we may write

$$
\begin{aligned}
\left\|g^{*}\right\|_{1} & \leq\left\|\sum_{j=1}^{\infty} 2^{-j} \sup _{n}\left(\phi_{j}\left(v_{0}\right) G_{2 n+1}^{j}\right)\right\|_{1} \\
& \leq \sum_{j=1}^{\infty} 2^{-j}\left\|\left(\phi_{j}\left(v_{0}\right) G^{j}\right)^{*}\right\|_{1} \\
& \leq C_{p} \sum_{j=1}^{\infty} 2^{-j}\left\|F^{j}\right\|_{p} \\
& =C_{p}\|f\|_{p},
\end{aligned}
$$

as needed.
Now we will describe Burkholder's method, introduced in [3], which will be used to establish our results. Let

$$
\mathcal{A}=\left\{(x, y, z) \in \mathbb{R}^{3}: y \leq z\right\}
$$

fix a real number C and let $V: \mathcal{A} \rightarrow \mathbb{R}$ be a given function (not necessarily measurable). Suppose we want to show that

$$
\begin{equation*}
\mathbb{E} V\left(f_{\infty}, g_{\infty}, g_{\infty}^{*}\right) \leq C \tag{2.1}
\end{equation*}
$$

for all simple martingales f, g such that g is a ± 1 transform of f. The tool to handle this problem is the class $\mathcal{U}(V, C)$, which consists of functions $U: \mathcal{A} \rightarrow \mathbb{R}$ satisfying the following three conditions.
1° For any $\varepsilon \in\{-1,1\}$ and $(x, y, z) \in \mathcal{A}$ there is a number $c=c(\varepsilon, x, y, z)$ such that for all $d \in \mathbb{R}$,

$$
U(x+\varepsilon d, y+d,(y+d) \vee z) \leq U(x, y, z)+c d
$$

$2^{\circ} U(x, y, z) \geq V(x, y, z)$ for all (x, y, z).
$3^{\circ} U(x, y, y) \leq C$ for all x, y such that $x=|y|$.
Sometimes it is convenient to replace 1° with the following equivalent condition (see [3]):
1° For any $\varepsilon \in\{-1,1\},(x, y, z) \in \mathcal{A}$ and any simple centered random variable T, we have

$$
\mathbb{E} U(x+\varepsilon T, y+T,(y+T) \vee z) \leq U(x, y, z) .
$$

The relation between the inequality (2.1) and the class $\mathcal{U}(V, C)$ is described in the following fact.
Theorem 2.2. If the class $\mathcal{U}(V, C)$ is nonempty, then the inequality (2.1) holds for any simple f, g such that g is a ± 1 transform of f.
Proof. Take simple f, g such that g is a ± 1 transform of f. The process $\left(U\left(f_{n}, g_{n}, g_{n}^{*}\right)\right)$ is a supermartingale: the inequality $\mathbb{E}\left[U\left(f_{n}, g_{n}, g_{n}^{*}\right) \mid \mathcal{F}_{n-1}\right] \leq U\left(f_{n-1}, g_{n-1}, g_{n-1}^{*}\right)$, $n \geq 1$, follows from the conditional form of 1°, with $x=f_{n-1}, y=g_{n-1}, z=g_{n-1}^{*}$, $T=d g_{n}$ and $\varepsilon \in\{-1,1\}$ such that $d g_{n}=\varepsilon d f_{n}$. Consequently, using 2° and then 3°, one gets

$$
\mathbb{E} V\left(f_{\infty}, g_{\infty}, g_{\infty}^{*}\right) \leq \mathbb{E} U\left(f_{\infty}, g_{\infty}, g_{\infty}^{*}\right) \leq \mathbb{E} U\left(f_{0}, g_{0}, g_{0}^{*}\right) \leq C .
$$

Thus the problem of proving a given martingale inequality (2.1) is reduced to the problem of a construction of a function satisfying $1^{\circ}, 2^{\circ}$ and 3°.

It turns out that the implication can be reversed. For V as above, consider $U_{0}: \mathcal{A} \rightarrow \mathbb{R}$ given by

$$
U_{0}(x, y, z)=\sup \mathbb{E} V\left(f_{\infty}, g_{\infty}, g_{\infty}^{*} \vee z\right),
$$

where the supremum is taken over the class $M(x, y)$ of all pairs (f, g) of simple martingales such that $\left(f_{0}, g_{0}\right)=(x, y)$ and $d g_{n}= \pm d f_{n}$ for all $n \geq 1$ (that is, there is a deterministic $v=\left(v_{n}\right)_{n \geq 1}$ taking values in $\{-1,1\}$ such that $d g_{n}=v_{n} d f_{n}$, $n \geq 1$).
Theorem 2.3. If (2.1) is valid, then the class $\mathcal{U}(V, C)$ is nonempty and U_{0} is its least element.

For the proof, one needs to modify slightly the argumentation used in [3] (see Theorem 2.2 there). This fact will be quite useful in the proof of the optimality of the constants C_{p}.

$$
\text { 3. The proof of (1.4) For } 1<p \leq 2
$$

We start from defining a function $\gamma_{p}:[0, \infty) \rightarrow(-\infty, 0]$ by

$$
\begin{equation*}
\gamma_{p}(t)=-\exp \left(p t^{p-1}\right) \int_{t}^{\infty} \exp \left(-p s^{p-1}\right) d s \tag{3.1}
\end{equation*}
$$

Lemma 3.1. The function γ_{p} is nonincreasing.
Proof. The inequality $\gamma_{p}^{\prime}(t) \leq 0$ is equivalent to

$$
t^{2-p} \exp \left(-p t^{p-1}\right)-p(p-1) \int_{t}^{\infty} \exp \left(-p s^{p-1}\right) d s \leq 0
$$

It suffices to note that the left-hand side tends to 0 as $t \rightarrow \infty$, and its derivative equals $(2-p) t^{1-p} \exp \left(-p t^{p-1}\right) \geq 0$.

Let $G_{p}:\left(-\infty, \gamma_{p}(0)\right] \rightarrow[0, \infty)$ denote the inverse to the function $t \mapsto \gamma_{p}(t)-t$, $t \geq 0$ (by the previous lemma, the function is invertible). We will need the following estimate.
Lemma 3.2. We have $G_{p} G_{p}^{\prime \prime}+(p-2)\left(G_{p}^{\prime}\right)^{2} \leq 0$.
Proof. An easy computation shows that

$$
G_{p}^{\prime}(x)=\left(\gamma_{p}^{\prime}\left(G_{p}(x)\right)-1\right)^{-1}=\left[p(p-1) G_{p}(x)^{p-2}\left(x+G_{p}(x)\right)\right]^{-1}
$$

and

$$
G_{p}^{\prime \prime}(x)=-\left(G_{p}^{\prime}(x)\right)^{2}\left[\frac{p-2}{G_{p}(x)}+p(p-1) G_{p}(x)^{p-2}+\frac{1}{G_{p}(x)+x}\right]
$$

Therefore the desired inequality reads, after some manipulations,

$$
\begin{equation*}
G_{p}(x) G_{p}^{\prime \prime}(x)+(p-2)\left(G_{p}^{\prime}(x)\right)^{2}=-\frac{G_{p}(x) G_{p}^{\prime}(x)\left(G_{p}^{\prime}(x)+1\right)}{G_{p}(x)+x} \leq 0 \tag{3.2}
\end{equation*}
$$

We have $G_{p}(x) \geq 0$. Furthermore, as proved in the previous lemma, we have $\gamma_{p}^{\prime} \leq 0$. This implies $G_{p}^{\prime}(x) \leq 0, G_{p}^{\prime}(x) \geq-1$ and $G_{p}(x)+x \leq 0$, see the formula for G_{p}^{\prime} above. This establishes (3.2).

Now we are ready to introduce the main object in this section. Let $U_{p}: \mathcal{A} \rightarrow \mathbb{R}$ be given by

$$
U_{p}(x, y, z)=-\frac{(y-z)^{2}-x^{2}}{2 \gamma_{p}(0)}-\frac{\gamma_{p}(0)}{2}+y
$$

if $(x, y, z) \in D_{1}=\left\{(x, y, z) \in \mathcal{A}: y-z-|x| \geq \gamma_{p}(0)\right\}$,

$$
U_{p}(x, y, z)=z+(p-1) G_{p}(y-z-|x|)^{p}-p|x| G_{p}(y-z-|x|)^{p-1}
$$

if $(x, y, z) \in D_{2}=\left\{(x, y, z) \in \mathcal{A}: y-z-|x|<\gamma_{p}(0)\right.$ and $\left.|x| \geq G_{p}(y-z-|x|)\right\}$, and

$$
U_{p}(x, y, z)=z-|x|^{p}
$$

for $(x, y, z) \in D_{0}=\mathcal{A} \backslash\left(D_{1} \cup D_{2}\right)$.
We will now study the properties of the function U_{p}. They will be needed to establish the validity of the conditions $1^{\circ}, 2^{\circ}$ and 3°.

Lemma 3.3. (i) The function U_{p} is of class C^{1} in the interior of \mathcal{A}.
(ii) For any $\varepsilon \in\{-1,1\}$ and $(x, y, z) \in \mathcal{A}$, the function $F=F_{\varepsilon, x, y, z}:(-\infty, z-$ $y] \rightarrow \mathbb{R}$, given by $F(t)=U_{p}(x+\varepsilon t, y+t, z)$, is concave.
(iii) For any $\varepsilon \in\{-1,1\}$ and $x, y, h \in \mathbb{R}$,

$$
\begin{equation*}
U_{p}(x+\varepsilon t, y+t,(y+t) \vee y) \leq U_{p}(x, y, y)+\varepsilon U_{p x}(x, y, y) t+t \tag{3.3}
\end{equation*}
$$

(iv) We have

$$
\begin{equation*}
U_{p}(x, y, z) \geq z-|x|^{p} \quad \text { for }(x, y, z) \in \mathcal{A} \tag{3.4}
\end{equation*}
$$

(v) We have

$$
\begin{equation*}
\sup U_{p}(x, y, y)=-\gamma_{p}(0) \tag{3.5}
\end{equation*}
$$

where the supremum is taken over all x, y satisfying $|x|=|y|$.

Proof. (i) This is straightforward: U_{p} is of class C^{1} in the interior of D_{0}, D_{1} and D_{2}, so the claim reduces to tedious verification that the partial derivatives $U_{p x}$, $U_{p y}$ and $U_{p z}$ match at the common boundaries of D_{0}, D_{1} and D_{2}.
(ii) In view of (i), it suffices to show that $F^{\prime \prime}(t) \leq 0$ for those t, for which the second derivative exists. In virtue of the translation property $F_{\varepsilon, x, y, z}(u)=$ $F_{\varepsilon, x+\varepsilon s, y+s, z}(u-s)$, valid for all u and s, it suffices to check $F^{\prime \prime}(t) \leq 0$ only for $t=0$. Furthermore, since $U_{p x}(0, y, z)=0$ and $U_{p}(x, y, z)=U_{p}(-x, y, z)$, we may restrict ourselves to $x>0$.

If $\varepsilon=1$, then we easily verify that $F^{\prime \prime}(0)=0$ if (x, y, z) lies in the interior $\left(D_{1} \cup D_{2}\right)^{o}$ of $D_{1} \cup D_{2}$ and $F^{\prime \prime}(0)=-p(p-1) x^{p-2} \leq 0$ if $(x, y, z) \in D_{0}^{o}$. Thus it remains to check the case $\varepsilon=-1$. We start from the observation that $F^{\prime \prime}(0)=0$ if (x, y, z) belongs to D_{1}^{o}. If $(x, y, z) \in D_{2}^{o}$, then

$$
F^{\prime \prime}(0)=4 p(p-1) G_{p}^{p-3}\left[G_{p} G_{p}^{\prime}\left(G_{p}^{\prime}+1\right)+\left(G_{p}-x\right)\left((p-2)\left(G_{p}^{\prime}\right)^{2}+G_{p} G_{p}^{\prime \prime}\right)\right]
$$

where all the functions on the right are evaluated at $x_{0}=y-z-x$. Since $y \leq z$, we have $x \leq-x_{0}$ and, in view of Lemma 3.2,

$$
\begin{align*}
F^{\prime \prime}(0) \leq & 4 p(p-1) G_{p}^{p-3}\left(x_{0}\right)\left[G_{p}\left(x_{0}\right) G_{p}^{\prime}\left(x_{0}\right)\left(G_{p}^{\prime}\left(x_{0}\right)+1\right)\right. \\
& \left.+\left(G_{p}\left(x_{0}\right)+x_{0}\right)\left((p-2)\left(G_{p}^{\prime}\left(x_{0}\right)\right)^{2}+G_{p}\left(x_{0}\right) G_{p}^{\prime \prime}\left(x_{0}\right)\right)\right] \tag{3.6}\\
= & 0
\end{align*}
$$

where in the latter passage we have used the equality from (3.2). Thus we are done with D_{2}^{o}. Finally, if (x, y, z) belongs to the interior of D_{0}, then $F^{\prime \prime}(0)=$ $-p(p-1) x^{p-2} \leq 0$.
(iii) We may assume that $x \geq 0$, due to the symmetry of the function U_{p}. Note that $U_{p y}(x, y-, y)=1$; therefore, if $t \leq 0$, then the estimate follows from the concavity of U_{p} along the lines of slope ± 1, established in the previous part. If $t>0$, then

$$
U_{p}(x+\varepsilon t, y+t,(y+t) \vee y)=U_{p}(x, y+t, y+t)=y+t+U_{p}(x+\varepsilon t, 0,0),
$$

and hence we will be done if we show that the function $s \mapsto U_{p}(s, 0,0)$ is concave on $[0, \infty)$. However, its second derivative equals $1 / \gamma_{p}(0)<0$ for $s<\gamma_{p}(0)$ and

$$
\begin{aligned}
p(p-1) G_{p}^{p-3}(-s) & {\left[\left(G_{p}(-s)-s\right)\left((p-2)\left(G_{p}^{\prime}(-s)\right)^{2}+G_{p}(-s)^{p-2} G_{p}^{\prime \prime}(-s)\right)\right.} \\
& \left.+G_{p}(-s) G_{p}^{\prime}(-s)\left(G_{p}^{\prime}(-s)+2\right)\right] \\
= & p(p-1) G_{p}(-s)^{p-2} G_{p}^{\prime}(-s) \leq 0
\end{aligned}
$$

for $s>\gamma_{p}(0)$. Here we have used the equality from (3.6), with $x_{0}=-s$.
(iv) Again, it suffices to deal only with nonnegative x. On the set D_{0} both sides of (3.4) are equal. To prove the majorization on D_{2}, let $\Phi(s)=-s^{p}$ for $s \geq 0$. Observe that

$$
U_{p}(x, y, z)=z+\Phi\left(G_{p}(y-z-x)\right)+\Phi^{\prime}\left(G_{p}(y-z-x)\right)\left(x-G_{p}(y-z-x)\right)
$$

which, by concavity of Φ, is not smaller than $z+\Phi(x)$. Finally, the estimate for $(x, y, z) \in D_{1}$ is a consequence of the fact that

$$
U_{p y}(x, y-, z)=\frac{\gamma_{p}(0)-(y-z)}{\gamma_{p}(0)} \geq 0
$$

so

$$
U_{p}(x, y, z)-\left(z-x^{p}\right) \geq U_{p}\left(x, y_{0}, z\right)-\left(z-x^{p}\right) \geq 0
$$

Here $\left(x, y_{0}, z\right) \in \partial D_{2}$ and the latter bound follows from the majorization on D_{2}, which we have just established.
(v) We have

$$
U_{p}(x, y, y)=U_{p}(|x|, 0,0)+y \leq U_{p}(|x|, 0,0)+|x| .
$$

As shown in the proof of (iii), $s \mapsto U_{p}(s, 0,0), s \geq 0$, is concave, hence so is the function $s \mapsto U_{p}(s, 0,0)+s, s \geq 0$. It suffices to note that its derivative vanishes at $-\gamma_{p}(0)$, so the value at this point (which is equal to $-\gamma_{p}(0)$), is the supremum we are searching for.

Now we are ready to prove the inequality (1.4).
Proof of (1.4). Let f, g be as in the statement. Using standard approximation argument, we may assume that both martingales are simple and that $\|f\|_{p}>0$. Let $V_{p}: \mathcal{A} \rightarrow \mathbb{R}$ be given by $V_{p}(x, y, z)=z-|x|^{p}$. We shall show that U_{p} belongs to the class $\mathcal{U}\left(V_{p},-\gamma_{p}(0)\right)$. By Lemma 3.3 (ii) and (iii), U_{p} has the property 1°. The parts (iv) and (v) of this lemma imply the validity of the conditions 2° and 3°, respectively. Thus, applying Theorem 2.2 to the martingales $f / \lambda, g / \lambda$, where $\lambda>0$ is fixed, yields

$$
\mathbb{E} g_{\infty}^{*} \leq \lambda^{1-p} \mathbb{E}\left|f_{\infty}\right|^{p}-\lambda \gamma_{p}(0)
$$

Now the choice

$$
\lambda=\left(-\frac{p-1}{\gamma_{p}(0)}\right)^{1 / p}\|f\|_{p}
$$

gives (1.4).
Sharpness. As shown by Peskir [6], the following Doob-type bound

$$
\left\|B_{\tau}^{*}\right\|_{1} \leq \Gamma\left(\frac{2 p-1}{p-1}\right)^{1-1 / p}\left\|B_{\tau}\right\|_{p}, \quad 1<p \leq 2
$$

is sharp. Here B is a Brownian motion (not necessarily starting from 0) and τ is a stopping time of B satisfying $\tau \in L^{p / 2}$. In consequence, the estimate (1.4) is also sharp, even if $X=Y$.

It remains to show that the inequality (1.4) fails to hold for $p \leq 1$. This is due to the fact that $C_{p} \rightarrow \infty$ as $p \rightarrow 1+$. Indeed, if the estimate was valid for some $p \leq 1$ and $C_{p}<\infty$, then for any $p^{\prime}>1$ we would have $\left\|g^{*}\right\|_{1} \leq C_{p}\|f\|_{p^{\prime}}$; this cannot be true if p^{\prime} is sufficiently close to 1 .

4. The proof of (1.4) for $p>2$

Suppose that p is finite. Let $\gamma_{p}:[0, \infty) \rightarrow(-\infty, 0)$ be given by

$$
\begin{aligned}
\gamma_{p}(t) & =\exp \left(-p t^{p-1}\right)\left[-\int_{p^{-1 /(p-1)}}^{t} \exp \left(p s^{p-1}\right) d s-p^{-1 /(p-1)} e\right] \\
& =-t+p(p-1) \exp \left(-p t^{p-1}\right) \int_{p^{-1 /(p-1)}}^{t} s^{p-1} \exp \left(p s^{p-1}\right) d s
\end{aligned}
$$

if $t>p^{-1 /(p-1)}$, and

$$
\gamma_{p}(t)=(p-2)\left(t-p^{-1 /(p-1)}\right)-p^{-1 /(p-1)}
$$

if $t \in\left[0, p^{-1 /(p-1)}\right]$. We start with the following straightforward fact.
Lemma 4.1. The function γ_{p} is of class C^{1} and nondecreasing.

Proof. The first assertion can be verified easily. To prove the second one, note that it suffices to show $\gamma_{p}^{\prime}(t) \geq 0$ for $t \geq p^{-1 /(p-1)}$. Equivalently, $\gamma_{p}^{\prime}(t) \geq 0$ reads

$$
t^{2-p} \exp \left(p t^{p-1}\right)-p(p-1) \int_{p^{-1 /(p-1)}}^{t} \exp \left(p s^{p-1}\right) d s-p^{(p-2) /(p-1)}(p-1) e \leq 0
$$

However, the inequality is true for $t=p^{-1 /(p-1)}$ and the derivative of the left-hand side equals $(2-p) t^{1-p} \exp \left(p t^{p-1}\right) \leq 0$. This completes the proof.

Let $G_{p}:[0, \infty) \rightarrow\left[p^{-1 /(p-1)}, \infty\right)$ be the inverse to the function $t \mapsto \gamma_{p}(t)+t, t \geq$ $p^{-1 /(p-1)}$ (the function is invertible, by the previous fact). We have the following version of Lemma 3.2.

Lemma 4.2. We have $G_{p} G_{p}^{\prime \prime}+(p-2)\left(G_{p}^{\prime}\right)^{2} \geq 0$.
Proof. It can be verified that

$$
\begin{equation*}
G_{p}(x) G_{p}^{\prime \prime}(x)+(p-2)\left(G_{p}^{\prime}(x)\right)^{2}=\frac{G_{p}(x) G_{p}^{\prime}(x)\left(G_{p}^{\prime}(x)-1\right)}{x-G_{p}(x)} \tag{4.1}
\end{equation*}
$$

and this is nonnegative: it follows from the very definition of G_{p} that $G_{p}(x) \geq 0$, $G_{p}^{\prime}(x) \geq 0$ and $G_{p}^{\prime}(x) \leq 1, x-G_{p}(x)<0$.

Let $H_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
H_{p}(x, y)=(p-1)^{1-p}(-(p-1)|x|+|y|)(|x|+|y|)^{p-1}
$$

and introduce $U_{p}: \mathcal{A} \rightarrow \mathbb{R}$ by

$$
U_{p}(x, y, z)=z+H\left(x, y-z+(p-1) p^{-1 /(p-1)}\right)
$$

if $(x, y, z) \in D_{1}=\left\{(x, y, z) \in \mathcal{A}: y-z \geq \gamma_{p}(x), x+y-z \leq 0\right\}$,

$$
U_{p}(x, y, z)=z+(p-1) G_{p}(|x|+y-z)^{p}-p|x| G_{p}(|x|+y-z)^{p-1}
$$

if $(x, y, z) \in D_{2}=\left\{(x, y, z) \in \mathcal{A}: y-z \geq \gamma_{p}(x), x+y-z>0\right\}$, and

$$
U_{p}(x, y, z)=z-|x|^{p}
$$

if $(x, y, z) \in D_{0}=\mathcal{A} \backslash\left(D_{1} \cup D_{2}\right)$.
Here is the analogue of Lemma 3.3.
Lemma 4.3. (i) The function U_{p} is of class C^{1}.
(ii) For any $\varepsilon \in\{-1,1\}$ and $(x, y, z) \in \mathcal{A}$, the function $F=F_{\varepsilon, x, y, z}:(-\infty, z-$ $y] \rightarrow \mathbb{R}$, given by $F(t)=U_{p}(x+\varepsilon t, y+t, z)$, is concave .
(iii) For any $\varepsilon \in\{-1,1\}$ and $x, y, h \in \mathbb{R}$,

$$
\begin{equation*}
U_{p}(x+\varepsilon t, y+t,(y+t) \vee y) \leq U_{p}(x, y, y)+\varepsilon U_{p x}(x, y, y) t+t \tag{4.2}
\end{equation*}
$$

(iv) We have

$$
\begin{equation*}
U_{p}(x, y, z) \geq z-|x|^{p} \quad \text { for }(x, y, z) \in \mathcal{A} \tag{4.3}
\end{equation*}
$$

(v) We have

$$
\begin{equation*}
M_{p}=\sup U_{p}(x, y, y)=\frac{p-1}{p^{p /(p-1)}}\left[2^{p /(p-1)}-\frac{p}{p-1} \int_{1}^{2} s^{1 /(p-1)} e^{s-2} d s\right] \tag{4.4}
\end{equation*}
$$

where the supremum is taken over all x, y satisfying $|x|=|y|$.

Proof. (i) Straightforward.
(ii) We proceed as in the proof of part (ii) in Lemma 3.3 and check $F^{\prime \prime}(0) \leq 0$ for $x>0$ and (x, y, z) lying in the interior of some D_{i}.

If $\varepsilon=1$, there is nothing to check: we have $F^{\prime \prime}(0)=0$ if $(x, y, z) \in\left(D_{1} \cup D_{2}\right)^{o}$ or $F^{\prime \prime}(0)=-p(p-1) x^{p-2} \leq 0$ if $(x, y, z) \in D_{0}^{o}$. It remains to verify the case $\varepsilon=-1$. If (x, y, z) belongs to the interior of D_{1}, then $F^{\prime \prime}(0) \leq 0$; this follows from the fact that for any $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$, the function $t \mapsto H_{p}\left(x^{\prime}+t, y^{\prime}-t\right)$ is concave, see page 17 in [2]. If $(x, y, z) \in D_{2}^{o}$, then

$$
F^{\prime \prime}(0)=4 p(p-1) G_{p}^{p-3}\left[G_{p} G_{p}^{\prime}\left(G_{p}^{\prime}-1\right)+\left(G_{p}-x\right)\left((p-2)\left(G_{p}^{\prime}\right)^{2}+G_{p} G_{p}^{\prime \prime}\right)\right]
$$

where all the functions on the right are evaluated at $x_{0}=x+y-z$. We have $y \leq z$, so $x \leq x_{0}$ and, by Lemma 4.2,

$$
\begin{aligned}
F^{\prime \prime}(0) \leq & 4 p(p-1) G_{p}^{p-3}\left(x_{0}\right)\left[G_{p}\left(x_{0}\right) G_{p}^{\prime}\left(x_{0}\right)\left(G_{p}^{\prime}\left(x_{0}\right)-1\right)\right. \\
& \left.+\left(G_{p}\left(x_{0}\right)-x_{0}\right)\left((p-2)\left(G_{p}^{\prime}\left(x_{0}\right)\right)^{2}+G_{p}\left(x_{0}\right) G_{p}^{\prime \prime}\left(x_{0}\right)\right)\right] \\
= & 0
\end{aligned}
$$

where we have used the equality from (4.1). Finally, if (x, y, z) belongs to the interior of D_{0}, then $F^{\prime \prime}(0)=-p(p-1) x^{p-2} \leq 0$.
(iii) We have $U_{p y}(x, y-, y)=1$ and $U_{p}(x, y, y)=y+U_{p}(x, 0,0)$. Therefore, arguing as in the proof of Lemma 3.3, we see that it suffices to show that the function $s \mapsto U_{p}(s, 0,0), s>0$, is concave. However, its second derivative at s equals

$$
\begin{equation*}
-p(p-1) G_{p}^{p-2}(s) G_{p}^{\prime}(s) \leq 0 \tag{4.5}
\end{equation*}
$$

and we are done.
(iv) The majorization can be proved in the same manner as in the Lemma 3.3, using the concave function $\Phi(s)=-s^{p}, s \geq 0$. The details are left to the reader.
(v) Observe that

$$
U_{p}(x, y, y)=y+U_{p}(|x|, 0,0) \leq|x|+U_{p}(|x|, 0,0)
$$

Denoting the right-hand side by $\Psi(|x|)$, we have that Ψ is concave on $(0, \infty)$ (see the proof of (iii)) and

$$
\Psi^{\prime}(t)=p(p-1) G_{p}^{\prime}(t) G_{p}(t)^{p-2}\left(G_{p}(t)-t\right)-p G_{p}(t)^{p-1}+1=-p G_{p}(t)^{p-1}+2
$$

Therefore Ψ attains its maximum at the point t_{0} satisfying $G_{p}\left(t_{0}\right)=(2 / p)^{1 /(p-1)}$, or

$$
\begin{align*}
t_{0} & =\gamma_{p}\left((2 / p)^{1 /(p-1)}\right)+(2 / p)^{1 /(p-1)} \\
& =p(p-1) e^{-2} \int_{p^{-1 /(p-1)}}^{(p / 2)^{-1 /(p-1)}} s^{p-1} \exp \left(p s^{p-1}\right) d s \tag{4.6}\\
& =p^{-1 /(p-1)} \int_{1}^{2} s^{1 /(p-1)} e^{s-2} d s
\end{align*}
$$

and, as one easily checks, the maximum is equal to M_{p}. This completes the proof.

Proof of the inequality (1.4). It suffices to establish the estimate for finite p, as $\lim _{p \rightarrow \infty} C_{p}=C_{\infty}$. We proceed as in the proof of (1.4). By Lemma 4.3, the
function U_{p} belongs to the class $U_{p} \in \mathcal{U}\left(V_{p}, M_{p}\right)$, where $V_{p}(x, y, z)=z-|x|^{p}$. Therefore, by Theorem 2.2, for any $\lambda>0$,

$$
\left\|g^{*}\right\|_{1} \leq \lambda^{1-p}\|f\|_{p}^{p}+\lambda M_{p}
$$

and taking $\lambda=(p-1)^{1 / p} M_{p}^{-1 / p}\|f\|_{p}$ gives (1.4).

5. Sharpness

The case $p<\infty$. We have, by Young's inequality,

$$
c\|f\|_{p} \leq\|f\|_{p}^{p}+p^{-p /(p-1)}(p-1) c^{p /(p-1)}
$$

so if (1.4) held with some $c<C_{p}$, then we would have

$$
\begin{equation*}
\left\|g^{*}\right\|_{1} \leq\|f\|_{p}^{p}+C \tag{5.1}
\end{equation*}
$$

for some $C<p^{-p /(p-1)}(p-1) C_{p}^{p /(p-1)}=M_{p}$. Therefore it suffices to show that the smallest C, for which (5.1) is valid, equals M_{p}.

Suppose then, that (5.1) holds with some universal C, and let us use Theorem 2.3, with $V=V_{p}$ given by $V_{p}(x, y, z)=z-|x|^{p}$. As a result, we obtain a function U_{0} satisfying $1^{\circ}, 2^{\circ}$ and 3°. Observe that for any $(x, y, z) \in \mathcal{A}$ and $t \in \mathbb{R}$,

$$
\begin{equation*}
U_{0}(x, y, z)=t+U_{0}(x, y-t, z-t) \tag{5.2}
\end{equation*}
$$

This is a consequence of the fact that the function V_{p} also has this property, and the very definition of U_{0}.

Now it is convenient to split the proof into a few intermediate parts.
Step 1. First we will show that for any y,

$$
\begin{equation*}
U_{0}(0, y, y) \geq y+(p-1) p^{-p /(p-1)}=U_{p}(0, y, y) \tag{5.3}
\end{equation*}
$$

In view of (5.2), it suffices to prove this for $y=0$. Let $d=p^{-1 /(p-1)}$ and $\delta>0$. Applying 1° to $\varepsilon=-1, x=y=z=0$ and a mean-zero T taking values δ and $-d$, we obtain

$$
U_{0}(0,0,0) \geq \frac{d}{d+\delta} U_{0}(-\delta, \delta, \delta)+\frac{\delta}{d+\delta} U_{0}(d,-d, 0)
$$

By $(5.2), U_{0}(-\delta, \delta, \delta)=\delta+U_{0}(-\delta, 0,0)$. Furthermore, by $2^{\circ}, U_{0}(d,-d, 0) \geq-d^{p}$, so the above estimate yields

$$
\begin{equation*}
U_{0}(0,0,0) \geq \frac{d}{d+\delta}\left(\delta+U_{0}(-\delta, 0,0)\right)-\frac{\delta}{d+\delta}|d|^{p} \tag{5.4}
\end{equation*}
$$

Similarly, one uses the property 1° and then 2°, and gets

$$
\begin{aligned}
U_{0}(-\delta, 0,0) & \geq \frac{d}{d+\delta} U_{0}(0, \delta, \delta)+\frac{\delta}{d+\delta} U_{0}(-d-\delta,-d, 0) \\
& \geq \frac{d}{d+\delta}\left(\delta+U_{0}(0,0,0)\right)-\frac{\delta}{d+\delta}(d+\delta)^{p}
\end{aligned}
$$

Combining this with (5.4), subtracting $U_{0}(0,0,0)$ from both sides of the obtained estimate, dividing throughout by δ and letting $\delta \rightarrow 0$ leads to $U_{0}(0,0,0) \geq d-d^{p}=$ $U_{p}(0,0,0)$, which is what we need.

In consequence, by the definition of U_{0}, for any $y \in \mathbb{R}$ and $\kappa>0$ there is a pair $\left(f^{\kappa, y}, g^{\kappa, y}\right) \in M(0, y)$ satisfying

$$
\begin{equation*}
U_{p}(0, y, y) \leq V_{p}\left(f_{\infty}^{\kappa, y}, g_{\infty}^{\kappa, y},\left(g_{\infty}^{\kappa, y}\right)^{*}\right)+\kappa \tag{5.5}
\end{equation*}
$$

Step 2. Let N be a positive integer and let $\delta=t_{0} / N$, where t_{0} is given by (4.6). We will need the following auxiliary fact.

Lemma 5.1. There is a universal R such that the following holds. If $x \in\left[\delta, t_{0}\right]$, $y \in \mathbb{R}$ and T is a centered random variable taking values in $\left[\gamma_{p}\left(G_{p}(x)\right), \delta\right]$, then

$$
\begin{equation*}
\mathbb{E} U_{p}(x-T, y+T,(y+T) \vee y) \leq U_{p}(x, y, y)+R \delta^{2} \tag{5.6}
\end{equation*}
$$

Proof. We start from the observation that for any fixed $x \in\left[\delta, t_{0}\right]$ and $y \in \mathbb{R}$, if $t \in\left[-\gamma_{p}\left(G_{p}(x)\right), 0\right]$,

$$
U_{p}(x-t, y+t, y)=U_{p}(x, y, y)-U_{p x}(x, y, y) t+t
$$

For $t \in(0, \delta]$, by the concavity of $s \mapsto U_{p}(s, 0,0)$,

$$
\begin{aligned}
U_{p}(x-t, y+t, y+t) & =y+t+U_{p}(x-t, 0,0) \\
& \geq y+t+U_{p}(x, 0,0)-U_{p x}(x, 0,0) t-R \delta^{2} \\
& =U_{p}(x, y, y)-U_{p x}(x, y, y) t+t-R \delta^{2}
\end{aligned}
$$

Here, for example, one may take $R=-\inf _{x \in\left[0, t_{0}\right]} U_{p x x}(x, 0,0)$, which is finite: see (4.5). The inequality (5.6) follows immediately from the two above estimates.

Now consider a martingale $f=\left(f_{n}\right)_{n=1}^{N}$, starting from t_{0}, which satisfies the following condition: if $0 \leq n \leq N-1$, then on the set $\left\{f_{n}=t-n \delta\right\}$, the difference $d f_{n+1}$ takes values $-\delta$ and $-\gamma_{p}\left(G_{p}\left(f_{n}(\omega)\right)\right)$; on the compliment of this set, $d f_{n+1} \equiv$ 0 . Let g be a ± 1 transform of f, given by $g_{0}=f_{0}$ and $d g_{n}=-d f_{n}, n=1,2, \ldots, N$. The key fact about the pair (f, g) is that

$$
\begin{equation*}
\mathbb{E} U_{p}\left(f_{n}, g_{n}, g_{n}^{*}\right) \leq \mathbb{E} U_{p}\left(f_{n+1}, g_{n+1}, g_{n+1}^{*}\right)+R \delta^{2}, \quad n=0,1,2, \ldots, N-1 \tag{5.7}
\end{equation*}
$$

This is an immediate consequence of Lemma 5.1 (applied conditionally with respect to $\left.\mathcal{F}_{n}\right)$ and the fact that $U_{p}\left(f_{n}, g_{n}, g_{n}^{*}\right) \neq U_{p}\left(f_{n+1}, g_{n+1}, g_{n+1}^{*}\right)$ if and only if $f_{n}=$ $t-n \delta$, or $g_{n}=t+n \delta=g_{n}^{*}$.

The next property of the pair (f, g) is that if $f_{N} \neq 0$, then $U_{p}\left(f_{N}, g_{N}, g_{N}^{*}\right)=$ $V_{p}\left(f_{N}, g_{N}, g_{N}^{*}\right)$. Indeed, $f_{N} \neq 0$ implies $d f_{n}>0$ for some $n \geq 1$ and then, by the construction,

$$
g_{N}^{*}-g_{N}=g_{n}^{*}-g_{n}=-d g_{n}=d f_{n}=\gamma_{p}\left(f_{n}\right)=\gamma_{p}\left(f_{N}\right)
$$

Thus we may write

$$
\begin{align*}
M_{p} & =U_{p}\left(t_{0}, t_{0}, t_{0}\right) \\
& \leq \mathbb{E} U_{p}\left(f_{N}, g_{N}, g_{N}^{*}\right)+R N \delta^{2} \tag{5.8}\\
& =\mathbb{E} V_{p}\left(f_{N}, g_{N}, g_{N}^{*}\right) 1_{\left\{f_{N} \neq 0\right\}}+U_{p}\left(0,2 t_{0}, 2 t_{0}\right) \mathbb{P}\left(f_{N}=0\right)+R N \delta^{2}
\end{align*}
$$

since $g_{N}=g_{N}^{*}=2 t_{0}$ on $\left\{f_{N}=0\right\}$.
Step 3. Now let us extend the pair (f, g) as follows. Fix $\kappa>0$ and put $f_{N}=$ $f_{N+1}=f_{N+2}=\ldots$ and $g_{N}=g_{N+1}=g_{N+2}=\ldots$ on $\left\{f_{N} \neq 0\right\}$, while on $\left\{f_{N}=0\right\}$, let the conditional distribution of $\left(f_{n}, g_{n}\right)_{n \geq N}$ with respect to $\left\{f_{N}=0\right\}$ be that of the pair $\left(f^{\kappa, 2 t_{0}}, g^{\kappa, 2 t_{0}}\right)$, obtained at the end of Step 1. The process (f, g) we get consists of simple martingales and, by (5.5) and (5.8), we have

$$
M_{p} \leq \mathbb{E} V_{p}\left(f_{\infty}, g_{\infty}, g_{\infty}^{*}\right)+R N \delta^{2}+\kappa \mathbb{P}\left(f_{N}=0\right)
$$

Now it suffices to note that choosing N sufficiently large and κ sufficiently small, we can make the expression $R N \delta^{2}+\kappa \mathbb{P}\left(f_{N}=0\right)$ arbitrarily small. This shows that M_{p} is indeed the smallest C which is allowed in (5.1).
The case $p=\infty$. We may assume that $\|X\|_{\infty}=1$. The proof will be entirely based on the following version of Theorem 2.3.

Theorem 5.2. Let $U_{0}:\{(x, y, z):|x| \leq 1, y \leq z\} \rightarrow \mathbb{R}$ be given by

$$
U_{0}(x, y, z)=\mathbb{E} g_{\infty}^{*} \vee z
$$

where the supremum is taken over the class of all pairs $(f, g) \in M(x, y)$ such that $\|f\|_{\infty} \leq 1$. Then U_{0} enjoys the following properties.
1° For any $\varepsilon \in\{-1,1\}, x \in[-1,1], y \leq z$ and any simple centered random variable T satisfying $|x+\varepsilon T| \leq 1$, we have

$$
\mathbb{E} U_{0}(x+\varepsilon T, y+T,(y+T) \vee z) \leq U_{0}(x, y, z)
$$

$\mathscr{2}^{\circ} U_{0}(x, y, z) \geq z$ for all (x, y, z) from the domain of U_{0}.
$3^{\circ} U_{0}(x, y, y) \leq C_{\infty}$ for all x, y such that $|x|=|y| \in[-1,1]$.
For the proof, modify the argumentation from [3]. Note that the function U_{0} satisfies (5.2) (with obvious restriction to x lying in $[-1,1]$).

Now we turn to the optimality of the constant C_{∞}. First we will show that

$$
\begin{equation*}
U_{0}(0,0,0) \geq 1 \tag{5.9}
\end{equation*}
$$

To prove this, take $\delta \in(0,1)$ and use 1° to obtain

$$
U_{0}(0,0,0) \geq \frac{1}{1+\delta} U_{0}(\delta, \delta, \delta)+\frac{\delta}{1+\delta} U_{0}(-1,-1,0)
$$

We have $U_{0}(-1,-1,0) \geq 0$ by 2°, and $U_{0}(\delta, \delta, \delta)=\delta+U(\delta, 0,0)$ by (5.2). Thus we have

$$
\begin{equation*}
U_{0}(0,0,0) \geq \frac{\delta+U_{0}(\delta, 0,0)}{1+\delta} \tag{5.10}
\end{equation*}
$$

Similarly, using 1° and then 2°,

$$
U(\delta, 0,0) \geq(1-\delta) U_{0}(0, \delta, \delta)+\delta U_{0}(1, \delta-1,0) \geq(1-\delta)\left[\delta+U_{0}(0,0,0)\right]
$$

Plug this into (5.10), subtract $U_{0}(0,0,0)$ from both sides, divide throughout by δ and let $\delta \rightarrow 0$. As a result, one gets (5.9).

Now fix a positive integer N and set $\delta=\left(1-e^{-1}\right) / N$. For any $k=1,2, \ldots, N$, we have, by $1^{\circ}, 2^{\circ}$ and (5.2),

$$
\begin{aligned}
U_{0}(k \delta, 0,0) & \geq \frac{\delta}{1-k \delta+\delta} U_{0}(1, k \delta-1,0)+\frac{1-k \delta}{1-k \delta+\delta} U_{0}((k-1) \delta, \delta, \delta) \\
& \geq \frac{1-k \delta}{1-k \delta+\delta}\left[\delta+U_{0}((k-1) \delta, 0,0)\right]
\end{aligned}
$$

or, equivalently,

$$
\frac{U_{0}(k \delta, 0,0)}{1-k \delta} \geq \frac{U_{0}((k-1) \delta, 0,0)}{1-(k-1) \delta}+\frac{\delta}{1-(k-1) \delta}
$$

It follows by induction that

$$
e U_{0}\left(1-e^{-1}, 0,0\right)=\frac{U_{0}(N \delta, 0,0)}{1-N \delta} \geq U_{0}(0,0,0)+\sum_{k=1}^{N} \frac{\delta}{1-(k-1) \delta}
$$

Letting $N \rightarrow \infty$ and using (5.9), we arrive at

$$
e U_{0}\left(1-e^{-1}, 0,0\right) \geq 1+\int_{0}^{1-e^{-1}} \frac{d x}{1-x}=2
$$

and hence, by (5.2),

$$
U_{0}\left(1-e^{-1}, 1-e^{-1}, 1-e^{-1}\right)=1-e^{-1}+U_{0}\left(1-e^{-1}, 0,0\right) \geq 1+e^{-1}
$$

It suffices to apply 3° to complete the proof.

References

[1] K. Bichteler, Stochastic integration and L^{p}-theory of semimartingales, Ann. Probab. 9 (1980), pp. 49-89.
[2] D. L. Burkholder, Explorations in martingale theory and its applications, École d'Ete de Probabilités de Saint-Flour XIX—1989, pp. 1-66, Lecture Notes in Math., 1464, Springer, Berlin, 1991.
[3] D. L. Burkholder, Sharp norm comparison of martingale maximal functions and stochastic integrals, Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), pp. 343-358, Proc. Sympos. Appl. Math., 52, Amer. Math. Soc., Providence, RI, 1997.
[4] A. Osȩkowski, Sharp maximal inequality for stochastic integrals, Proc. Amer. Math. Soc. 136 (2008), 2951-2958.
[5] A. Osȩkowski, Sharp maximal inequality for martingales and stochastic integrals, Electr. Comm. in Probab. 14 (2009), 17-30.
[6] G. Peskir, The best Doob-type bounds for the maximum of Brownian paths, Progr. Probab. 43 (1998), 287-296.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl

