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Abstract. Let X be a continuous-time martingale and H be a predictable

process taking values in [−1, 1]. Let Y denote the stochastic integral of H

with respect to X. The paper contains the proof of sharp bound for one-sided
maximal function of Y by the p-th moment of X. A discrete-time version of

this inequality is also established.

1. Introduction

Suppose that (Ω,F ,P) is a complete probability space, equipped with a nonde-
creasing right-continuous family (Ft)t≥0 of sub-σ-fields of F . In addition, assume
that F0 contains all the events of probability 0. Let X = (Xt)t≥0 be an adapted
real-valued right-continuous semimartingale with left limits. Let Y be the Itô inte-
gral of H with respect to X, that is,

Yt = H0X0 +
∫

(0,t]

HsdXs, t ≥ 0.

Here H is a predictable process with values in [−1, 1]. For p ∈ [1,∞], let ||X||p =
supt≥0 ||Xt||p. Furthermore, let X∗ = supt≥0Xt and |X|∗ = supt≥0 |Xt|.

The purpose of this paper is to compare the sizes of X and Y ∗. Let us describe
some related results from the literature. In [3], Burkholder invented a method of
proving maximal inequalities for martingales and used it to obtain the following
sharp estimate.

Theorem 1.1. If X is a martingale and Y is as above, then

(1.1) ||Y ||1 ≤ γ|| |X|∗ ||1,

where γ = 2, 536 . . . is the unique solution of the equation

γ − 3 = − exp
(1− γ

2
)
.

The constant is the best possible.

Then it was shown by the author in [4], then if X is assumed to be a nonnega-
tive supermartingale, then the optimal constant in (1.1) decreases to 2 + (3e)−1 =
2, 1226 . . .. The paper [5] contains the further study in this direction and, in par-
ticular, the proof of the following fact.
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Theorem 1.2. If X is a martingale and Y is as above, then

(1.2) ||Y ∗||1 ≤ β|| |X|∗ ||1,
where β = 2, 0856 . . . is the positive solution to the equation

2 log
(

8
3
− β0

)
= 1− β0.

Furthermore, if X is assumed to be nonnegative, then the optimal constant in (1.2)
decreases to 14/9 = 1, 5555 . . ..

In the present paper we continue this line of research and provide new sharp
bounds for the first moment of Y ∗. Let

Cp =



Γ
(

2p− 1
p− 1

)1−1/p

if 1 < p ≤ 2,(
2p/(p−1) − p

p− 1

∫ 2

1

s1/(p−1)es−2ds

)1−1/p

if 2 < p <∞,

1 + e−1 if p =∞.
Here is our main result.

Theorem 1.3. Suppose X is a martingale and Y is as above. If 1 < p ≤ ∞, then

(1.3) ||Y ∗||1 ≤ Cp||X||p.
The constant Cp is the best possible. Furthermore, for p ≤ 1 the inequality does not
hold in general with any finite Cp.

In fact, the emphasis is put on the discrete-time version of the theorem above.
Suppose (Ω,F ,P) is a probability space, filtered by (Fn)n≥0. Let f = (fn)n≥0 be
an adapted martingale and g = (gn)n≥0 be its transform by a predictable sequence
v = (vn)n≥0 bounded in absolute value by 1. That is, we have

fn =
n∑
k=0

dfk, gn =
n∑
k=0

vkdfk, n = 0, 1, 2, . . . ,

and by predictability of v we mean that v0 is F0-measurable and for any k ≥ 1,
vk is measurable with respect to Fk−1. In the particular case when each vk is
deterministic and takes values in the set {−1, 1}, we will say that g is a±1 transform
of f .

Denote f∗n = maxk≤n fk and f∗ = supk fk. Here is a discrete-time version of
Theorem 1.3.

Theorem 1.4. Suppose f , g are martingales such that g is a transform of f by a
predictable sequence bounded in absolute value by 1. If 1 < p ≤ ∞, then

(1.4) ||g∗||1 ≤ Cp||f ||p.
For p ≤ 1, the inequality does not hold in general with any finite Cp.

A few words about the organization of the paper. The proof of our result is based
on Burkholder’s technique, which exploits properties of certain special functions;
the method is described in the next section. Section 3 contains the proof of (1.3)
and (1.4) for p ∈ (1, 2], while the case p ∈ (2,∞] is postponed to Section 4. The
final part of the paper concerns the optimality of the constant Cp.
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2. Some reductions and on the method of proof

Using approximation arguments of Bichteler [1], it suffices to focus on the discrete-
time setting. Now, with no loss of generality, we may assume that in (1.4) we deal
with simple sequences f and g. By simplicity of f we mean that for any integer
n, the random variable fn takes only a finite number of values and there exists a
deterministic number N such that fN = fN+1 = . . . with probability 1. Clearly, if
f and g are simple, then the almost sure limits f∞ and g∞ exist and are finite.

The key reduction is that it suffices to work with ±1 transforms only. Recall
Lemma A.1 from [2].

Lemma 2.1. Let g be the transform of a martingale f by a real-valued predictable
sequence v uniformly bounded in absolute value by 1. Then there exist martingales
F j = (F jn)n≥0 and Borel measurable functions φj : [−1, 1]→ {−1, 1} such that, for
j ≥ 1 and n ≥ 0,

fn = F j2n+1 and gn =
∞∑
j=1

2−jφj(v0)Gj2n+1,

where Gj is the transform of F j by ε = (εk)k≥0 with εk = (−1)k.

To see how the lemma works in our setting, suppose we have established (1.4) for
±1 transforms. Lemma 2.1 gives us the processes F j and the functions φj , j ≥ 1.
For any j ≥ 1, conditionally on F0, the sequence φj(v0)Gj is a ±1 transform of F j

and hence we may write

||g∗||1 ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
j=1

2−j sup
n

(
φj(v0)Gj2n+1

)∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤
∞∑
j=1

2−j
∣∣∣∣∣∣(φj(v0)Gj

)∗∣∣∣∣∣∣
1

≤ Cp
∞∑
j=1

2−j ||F j ||p

= Cp||f ||p,
as needed.

Now we will describe Burkholder’s method, introduced in [3], which will be used
to establish our results. Let

A = {(x, y, z) ∈ R3 : y ≤ z},
fix a real number C and let V : A → R be a given function (not necessarily
measurable). Suppose we want to show that

(2.1) EV (f∞, g∞, g∗∞) ≤ C
for all simple martingales f , g such that g is a ±1 transform of f . The tool to
handle this problem is the class U(V,C), which consists of functions U : A → R
satisfying the following three conditions.

1◦ For any ε ∈ {−1, 1} and (x, y, z) ∈ A there is a number c = c(ε, x, y, z) such
that for all d ∈ R,

U(x+ εd, y + d, (y + d) ∨ z) ≤ U(x, y, z) + cd.
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2◦ U(x, y, z) ≥ V (x, y, z) for all (x, y, z).
3◦ U(x, y, y) ≤ C for all x, y such that x = |y|.
Sometimes it is convenient to replace 1◦ with the following equivalent condition

(see [3]):
1◦’ For any ε ∈ {−1, 1}, (x, y, z) ∈ A and any simple centered random variable

T , we have
EU(x+ εT, y + T, (y + T ) ∨ z) ≤ U(x, y, z).

The relation between the inequality (2.1) and the class U(V,C) is described in
the following fact.

Theorem 2.2. If the class U(V,C) is nonempty, then the inequality (2.1) holds
for any simple f , g such that g is a ±1 transform of f .

Proof. Take simple f , g such that g is a±1 transform of f . The process (U(fn, gn, g∗n))
is a supermartingale: the inequality E

[
U(fn, gn, g∗n)|Fn−1

]
≤ U(fn−1, gn−1, g

∗
n−1),

n ≥ 1, follows from the conditional form of 1◦’, with x = fn−1, y = gn−1, z = g∗n−1,
T = dgn and ε ∈ {−1, 1} such that dgn = εdfn. Consequently, using 2◦ and then
3◦, one gets

EV (f∞, g∞, g∗∞) ≤ EU(f∞, g∞, g∗∞) ≤ EU(f0, g0, g
∗
0) ≤ C. �

Thus the problem of proving a given martingale inequality (2.1) is reduced to
the problem of a construction of a function satisfying 1◦, 2◦ and 3◦.

It turns out that the implication can be reversed. For V as above, consider
U0 : A → R given by

U0(x, y, z) = sup EV (f∞, g∞, g∗∞ ∨ z),
where the supremum is taken over the class M(x, y) of all pairs (f, g) of simple
martingales such that (f0, g0) = (x, y) and dgn = ±dfn for all n ≥ 1 (that is, there
is a deterministic v = (vn)n≥1 taking values in {−1, 1} such that dgn = vndfn,
n ≥ 1).

Theorem 2.3. If (2.1) is valid, then the class U(V,C) is nonempty and U0 is its
least element.

For the proof, one needs to modify slightly the argumentation used in [3] (see
Theorem 2.2 there). This fact will be quite useful in the proof of the optimality of
the constants Cp.

3. The proof of (1.4) for 1 < p ≤ 2

We start from defining a function γp : [0,∞)→ (−∞, 0] by

(3.1) γp(t) = − exp(ptp−1)
∫ ∞
t

exp(−psp−1)ds.

Lemma 3.1. The function γp is nonincreasing.

Proof. The inequality γ′p(t) ≤ 0 is equivalent to

t2−p exp(−ptp−1)− p(p− 1)
∫ ∞
t

exp(−psp−1)ds ≤ 0.

It suffices to note that the left-hand side tends to 0 as t → ∞, and its derivative
equals (2− p)t1−p exp(−ptp−1) ≥ 0. �
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Let Gp : (−∞, γp(0)] → [0,∞) denote the inverse to the function t 7→ γp(t)− t,
t ≥ 0 (by the previous lemma, the function is invertible). We will need the following
estimate.

Lemma 3.2. We have GpG′′p + (p− 2)(G′p)
2 ≤ 0.

Proof. An easy computation shows that

G′p(x) = (γ′p(Gp(x))− 1)−1 =
[
p(p− 1)Gp(x)p−2(x+Gp(x))

]−1

and

G′′p(x) = −(G′p(x))2

[
p− 2
Gp(x)

+ p(p− 1)Gp(x)p−2 +
1

Gp(x) + x

]
.

Therefore the desired inequality reads, after some manipulations,

(3.2) Gp(x)G′′p(x) + (p− 2)(G′p(x))2 = −
Gp(x)G′p(x)(G′p(x) + 1)

Gp(x) + x
≤ 0.

We have Gp(x) ≥ 0. Furthermore, as proved in the previous lemma, we have γ′p ≤ 0.
This implies G′p(x) ≤ 0, G′p(x) ≥ −1 and Gp(x) + x ≤ 0, see the formula for G′p
above. This establishes (3.2). �

Now we are ready to introduce the main object in this section. Let Up : A → R
be given by

Up(x, y, z) = − (y − z)2 − x2

2γp(0)
− γp(0)

2
+ y

if (x, y, z) ∈ D1 = {(x, y, z) ∈ A : y − z − |x| ≥ γp(0)},

Up(x, y, z) = z + (p− 1)Gp(y − z − |x|)p − p|x|Gp(y − z − |x|)p−1

if (x, y, z) ∈ D2 = {(x, y, z) ∈ A : y − z − |x| < γp(0) and |x| ≥ Gp(y − z − |x|)},
and

Up(x, y, z) = z − |x|p,
for (x, y, z) ∈ D0 = A \ (D1 ∪D2).

We will now study the properties of the function Up. They will be needed to
establish the validity of the conditions 1◦, 2◦ and 3◦.

Lemma 3.3. (i) The function Up is of class C1 in the interior of A.
(ii) For any ε ∈ {−1, 1} and (x, y, z) ∈ A, the function F = Fε,x,y,z : (−∞, z −

y]→ R, given by F (t) = Up(x+ εt, y + t, z), is concave.
(iii) For any ε ∈ {−1, 1} and x, y, h ∈ R,

(3.3) Up(x+ εt, y + t, (y + t) ∨ y) ≤ Up(x, y, y) + εUpx(x, y, y)t+ t.

(iv) We have

(3.4) Up(x, y, z) ≥ z − |x|p for (x, y, z) ∈ A.

(v) We have

(3.5) supUp(x, y, y) = −γp(0),

where the supremum is taken over all x, y satisfying |x| = |y|.
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Proof. (i) This is straightforward: Up is of class C1 in the interior of D0, D1 and
D2, so the claim reduces to tedious verification that the partial derivatives Upx,
Upy and Upz match at the common boundaries of D0, D1 and D2.

(ii) In view of (i), it suffices to show that F ′′(t) ≤ 0 for those t, for which
the second derivative exists. In virtue of the translation property Fε,x,y,z(u) =
Fε,x+εs,y+s,z(u − s), valid for all u and s, it suffices to check F ′′(t) ≤ 0 only for
t = 0. Furthermore, since Upx(0, y, z) = 0 and Up(x, y, z) = Up(−x, y, z), we may
restrict ourselves to x > 0.

If ε = 1, then we easily verify that F ′′(0) = 0 if (x, y, z) lies in the interior
(D1 ∪D2)o of D1 ∪D2 and F ′′(0) = −p(p − 1)xp−2 ≤ 0 if (x, y, z) ∈ Do

0. Thus it
remains to check the case ε = −1. We start from the observation that F ′′(0) = 0 if
(x, y, z) belongs to Do

1. If (x, y, z) ∈ Do
2, then

F ′′(0) = 4p(p− 1)Gp−3
p

[
GpG

′
p(G

′
p + 1) + (Gp − x)((p− 2)(G′p)

2 +GpG
′′
p)
]
,

where all the functions on the right are evaluated at x0 = y − z − x. Since y ≤ z,
we have x ≤ −x0 and, in view of Lemma 3.2,

F ′′(0) ≤ 4p(p− 1)Gp−3
p (x0)[Gp(x0)G′p(x0)(G′p(x0) + 1)

+ (Gp(x0) + x0)((p− 2)(G′p(x0))2 +Gp(x0)G′′p(x0))]
= 0,

(3.6)

where in the latter passage we have used the equality from (3.2). Thus we are
done with Do

2. Finally, if (x, y, z) belongs to the interior of D0, then F ′′(0) =
−p(p− 1)xp−2 ≤ 0.

(iii) We may assume that x ≥ 0, due to the symmetry of the function Up. Note
that Upy(x, y−, y) = 1; therefore, if t ≤ 0, then the estimate follows from the
concavity of Up along the lines of slope ±1, established in the previous part. If
t > 0, then

Up(x+ εt, y + t, (y + t) ∨ y) = Up(x, y + t, y + t) = y + t+ Up(x+ εt, 0, 0),

and hence we will be done if we show that the function s 7→ Up(s, 0, 0) is concave
on [0,∞). However, its second derivative equals 1/γp(0) < 0 for s < γp(0) and

p(p− 1)Gp−3
p (−s)[(Gp(−s)− s)((p− 2)(G′p(−s))2 +Gp(−s)p−2G′′p(−s))

+Gp(−s)G′p(−s)(G′p(−s) + 2)]

= p(p− 1)Gp(−s)p−2G′p(−s) ≤ 0

for s > γp(0). Here we have used the equality from (3.6), with x0 = −s.
(iv) Again, it suffices to deal only with nonnegative x. On the set D0 both sides

of (3.4) are equal. To prove the majorization on D2, let Φ(s) = −sp for s ≥ 0.
Observe that

Up(x, y, z) = z + Φ(Gp(y − z − x)) + Φ′(Gp(y − z − x))(x−Gp(y − z − x)),

which, by concavity of Φ, is not smaller than z + Φ(x). Finally, the estimate for
(x, y, z) ∈ D1 is a consequence of the fact that

Upy(x, y−, z) =
γp(0)− (y − z)

γp(0)
≥ 0,

so
Up(x, y, z)− (z − xp) ≥ Up(x, y0, z)− (z − xp) ≥ 0.



MARTINGALE INEQUALITIES 7

Here (x, y0, z) ∈ ∂D2 and the latter bound follows from the majorization on D2,
which we have just established.

(v) We have

Up(x, y, y) = Up(|x|, 0, 0) + y ≤ Up(|x|, 0, 0) + |x|.
As shown in the proof of (iii), s 7→ Up(s, 0, 0), s ≥ 0, is concave, hence so is the
function s 7→ Up(s, 0, 0) + s, s ≥ 0. It suffices to note that its derivative vanishes
at −γp(0), so the value at this point (which is equal to −γp(0)), is the supremum
we are searching for. �

Now we are ready to prove the inequality (1.4).

Proof of (1.4). Let f , g be as in the statement. Using standard approximation
argument, we may assume that both martingales are simple and that ||f ||p > 0.
Let Vp : A → R be given by Vp(x, y, z) = z − |x|p. We shall show that Up belongs
to the class U(Vp,−γp(0)). By Lemma 3.3 (ii) and (iii), Up has the property 1◦.
The parts (iv) and (v) of this lemma imply the validity of the conditions 2◦ and
3◦, respectively. Thus, applying Theorem 2.2 to the martingales f/λ, g/λ, where
λ > 0 is fixed, yields

Eg∗∞ ≤ λ1−pE|f∞|p − λγp(0).
Now the choice

λ =
(
−p− 1
γp(0)

)1/p

||f ||p

gives (1.4). �

Sharpness. As shown by Peskir [6], the following Doob-type bound

||B∗τ ||1 ≤ Γ
(

2p− 1
p− 1

)1−1/p

||Bτ ||p, 1 < p ≤ 2,

is sharp. Here B is a Brownian motion (not necessarily starting from 0) and τ is a
stopping time of B satisfying τ ∈ Lp/2. In consequence, the estimate (1.4) is also
sharp, even if X = Y .

It remains to show that the inequality (1.4) fails to hold for p ≤ 1. This is due to
the fact that Cp →∞ as p→ 1+. Indeed, if the estimate was valid for some p ≤ 1
and Cp <∞, then for any p′ > 1 we would have ||g∗||1 ≤ Cp||f ||p′ ; this cannot be
true if p′ is sufficiently close to 1. �

4. The proof of (1.4) for p > 2

Suppose that p is finite. Let γp : [0,∞)→ (−∞, 0) be given by

γp(t) = exp(−ptp−1)
[
−
∫ t

p−1/(p−1)
exp(psp−1)ds− p−1/(p−1)e

]
= −t+ p(p− 1) exp(−ptp−1)

∫ t

p−1/(p−1)
sp−1 exp(psp−1)ds

if t > p−1/(p−1), and

γp(t) = (p− 2)(t− p−1/(p−1))− p−1/(p−1)

if t ∈ [0, p−1/(p−1)]. We start with the following straightforward fact.

Lemma 4.1. The function γp is of class C1 and nondecreasing.
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Proof. The first assertion can be verified easily. To prove the second one, note that
it suffices to show γ′p(t) ≥ 0 for t ≥ p−1/(p−1). Equivalently, γ′p(t) ≥ 0 reads

t2−p exp(ptp−1)− p(p− 1)
∫ t

p−1/(p−1)
exp(psp−1)ds− p(p−2)/(p−1)(p− 1)e ≤ 0.

However, the inequality is true for t = p−1/(p−1) and the derivative of the left-hand
side equals (2− p)t1−p exp(ptp−1) ≤ 0. This completes the proof. �

Let Gp : [0,∞)→ [p−1/(p−1),∞) be the inverse to the function t 7→ γp(t)+ t, t ≥
p−1/(p−1) (the function is invertible, by the previous fact). We have the following
version of Lemma 3.2.

Lemma 4.2. We have GpG′′p + (p− 2)(G′p)
2 ≥ 0.

Proof. It can be verified that

(4.1) Gp(x)G′′p(x) + (p− 2)(G′p(x))2 =
Gp(x)G′p(x)(G′p(x)− 1)

x−Gp(x)
,

and this is nonnegative: it follows from the very definition of Gp that Gp(x) ≥ 0,
G′p(x) ≥ 0 and G′p(x) ≤ 1, x−Gp(x) < 0. �

Let Hp : R2 → R be given by

Hp(x, y) = (p− 1)1−p(−(p− 1)|x|+ |y|)(|x|+ |y|)p−1

and introduce Up : A → R by

Up(x, y, z) = z +H(x, y − z + (p− 1)p−1/(p−1))

if (x, y, z) ∈ D1 = {(x, y, z) ∈ A : y − z ≥ γp(x), x+ y − z ≤ 0},

Up(x, y, z) = z + (p− 1)Gp(|x|+ y − z)p − p|x|Gp(|x|+ y − z)p−1

if (x, y, z) ∈ D2 = {(x, y, z) ∈ A : y − z ≥ γp(x), x+ y − z > 0}, and

Up(x, y, z) = z − |x|p

if (x, y, z) ∈ D0 = A \ (D1 ∪D2).
Here is the analogue of Lemma 3.3.

Lemma 4.3. (i) The function Up is of class C1.
(ii) For any ε ∈ {−1, 1} and (x, y, z) ∈ A, the function F = Fε,x,y,z : (−∞, z −

y]→ R, given by F (t) = Up(x+ εt, y + t, z), is concave.
(iii) For any ε ∈ {−1, 1} and x, y, h ∈ R,

(4.2) Up(x+ εt, y + t, (y + t) ∨ y) ≤ Up(x, y, y) + εUpx(x, y, y)t+ t.

(iv) We have

(4.3) Up(x, y, z) ≥ z − |x|p for (x, y, z) ∈ A.

(v) We have

(4.4) Mp = supUp(x, y, y) =
p− 1
pp/(p−1)

[
2p/(p−1) − p

p− 1

∫ 2

1

s1/(p−1)es−2ds

]
,

where the supremum is taken over all x, y satisfying |x| = |y|.
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Proof. (i) Straightforward.
(ii) We proceed as in the proof of part (ii) in Lemma 3.3 and check F ′′(0) ≤ 0

for x > 0 and (x, y, z) lying in the interior of some Di.
If ε = 1, there is nothing to check: we have F ′′(0) = 0 if (x, y, z) ∈ (D1∪D2)o or

F ′′(0) = −p(p− 1)xp−2 ≤ 0 if (x, y, z) ∈ Do
0. It remains to verify the case ε = −1.

If (x, y, z) belongs to the interior of D1, then F ′′(0) ≤ 0; this follows from the fact
that for any (x′, y′) ∈ R2, the function t 7→ Hp(x′ + t, y′ − t) is concave, see page
17 in [2]. If (x, y, z) ∈ Do

2, then

F ′′(0) = 4p(p− 1)Gp−3
p

[
GpG

′
p(G

′
p − 1) + (Gp − x)((p− 2)(G′p)

2 +GpG
′′
p)
]
,

where all the functions on the right are evaluated at x0 = x+y−z. We have y ≤ z,
so x ≤ x0 and, by Lemma 4.2,

F ′′(0) ≤ 4p(p− 1)Gp−3
p (x0)[Gp(x0)G′p(x0)(G′p(x0)− 1)

+ (Gp(x0)− x0)((p− 2)(G′p(x0))2 +Gp(x0)G′′p(x0))]
= 0,

where we have used the equality from (4.1). Finally, if (x, y, z) belongs to the
interior of D0, then F ′′(0) = −p(p− 1)xp−2 ≤ 0.

(iii) We have Upy(x, y−, y) = 1 and Up(x, y, y) = y + Up(x, 0, 0). Therefore,
arguing as in the proof of Lemma 3.3, we see that it suffices to show that the
function s 7→ Up(s, 0, 0), s > 0, is concave. However, its second derivative at s
equals

−p(p− 1)Gp−2
p (s)G′p(s) ≤ 0(4.5)

and we are done.
(iv) The majorization can be proved in the same manner as in the Lemma 3.3,

using the concave function Φ(s) = −sp, s ≥ 0. The details are left to the reader.
(v) Observe that

Up(x, y, y) = y + Up(|x|, 0, 0) ≤ |x|+ Up(|x|, 0, 0).

Denoting the right-hand side by Ψ(|x|), we have that Ψ is concave on (0,∞) (see
the proof of (iii)) and

Ψ′(t) = p(p− 1)G′p(t)Gp(t)
p−2(Gp(t)− t)− pGp(t)p−1 + 1 = −pGp(t)p−1 + 2.

Therefore Ψ attains its maximum at the point t0 satisfying Gp(t0) = (2/p)1/(p−1),
or

t0 = γp((2/p)1/(p−1)) + (2/p)1/(p−1)

= p(p− 1)e−2

∫ (p/2)−1/(p−1)

p−1/(p−1)
sp−1 exp(psp−1)ds

= p−1/(p−1)

∫ 2

1

s1/(p−1)es−2ds

(4.6)

and, as one easily checks, the maximum is equal to Mp. This completes the proof.
�

Proof of the inequality (1.4). It suffices to establish the estimate for finite p, as
limp→∞ Cp = C∞. We proceed as in the proof of (1.4). By Lemma 4.3, the
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function Up belongs to the class Up ∈ U(Vp,Mp), where Vp(x, y, z) = z − |x|p.
Therefore, by Theorem 2.2, for any λ > 0,

||g∗||1 ≤ λ1−p||f ||pp + λMp,

and taking λ = (p− 1)1/pM
−1/p
p ||f ||p gives (1.4). �

5. Sharpness

The case p <∞. We have, by Young’s inequality,

c||f ||p ≤ ||f ||pp + p−p/(p−1)(p− 1)cp/(p−1),

so if (1.4) held with some c < Cp, then we would have

(5.1) ||g∗||1 ≤ ||f ||pp + C

for some C < p−p/(p−1)(p−1)Cp/(p−1)
p = Mp. Therefore it suffices to show that the

smallest C, for which (5.1) is valid, equals Mp.
Suppose then, that (5.1) holds with some universal C, and let us use Theorem

2.3, with V = Vp given by Vp(x, y, z) = z − |x|p. As a result, we obtain a function
U0 satisfying 1◦, 2◦ and 3◦. Observe that for any (x, y, z) ∈ A and t ∈ R,

(5.2) U0(x, y, z) = t+ U0(x, y − t, z − t).
This is a consequence of the fact that the function Vp also has this property, and
the very definition of U0.

Now it is convenient to split the proof into a few intermediate parts.
Step 1. First we will show that for any y,

(5.3) U0(0, y, y) ≥ y + (p− 1)p−p/(p−1) = Up(0, y, y).

In view of (5.2), it suffices to prove this for y = 0. Let d = p−1/(p−1) and δ > 0.
Applying 1◦’ to ε = −1, x = y = z = 0 and a mean-zero T taking values δ and −d,
we obtain

U0(0, 0, 0) ≥ d

d+ δ
U0(−δ, δ, δ) +

δ

d+ δ
U0(d,−d, 0).

By (5.2), U0(−δ, δ, δ) = δ + U0(−δ, 0, 0). Furthermore, by 2◦, U0(d,−d, 0) ≥ −dp,
so the above estimate yields

(5.4) U0(0, 0, 0) ≥ d

d+ δ
(δ + U0(−δ, 0, 0))− δ

d+ δ
|d|p.

Similarly, one uses the property 1◦’ and then 2◦, and gets

U0(−δ, 0, 0) ≥ d

d+ δ
U0(0, δ, δ) +

δ

d+ δ
U0(−d− δ,−d, 0)

≥ d

d+ δ
(δ + U0(0, 0, 0))− δ

d+ δ
(d+ δ)p.

Combining this with (5.4), subtracting U0(0, 0, 0) from both sides of the obtained
estimate, dividing throughout by δ and letting δ → 0 leads to U0(0, 0, 0) ≥ d−dp =
Up(0, 0, 0), which is what we need.

In consequence, by the definition of U0, for any y ∈ R and κ > 0 there is a pair
(fκ,y, gκ,y) ∈M(0, y) satisfying

(5.5) Up(0, y, y) ≤ Vp(fκ,y∞ , gκ,y∞ , (gκ,y∞ )∗) + κ.

Step 2. Let N be a positive integer and let δ = t0/N , where t0 is given by (4.6).
We will need the following auxiliary fact.
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Lemma 5.1. There is a universal R such that the following holds. If x ∈ [δ, t0],
y ∈ R and T is a centered random variable taking values in [γp(Gp(x)), δ], then

(5.6) EUp(x− T, y + T, (y + T ) ∨ y) ≤ Up(x, y, y) +Rδ2.

Proof. We start from the observation that for any fixed x ∈ [δ, t0] and y ∈ R, if
t ∈ [−γp(Gp(x)), 0],

Up(x− t, y + t, y) = Up(x, y, y)− Upx(x, y, y)t+ t.

For t ∈ (0, δ], by the concavity of s 7→ Up(s, 0, 0),

Up(x− t, y + t, y + t) = y + t+ Up(x− t, 0, 0)

≥ y + t+ Up(x, 0, 0)− Upx(x, 0, 0)t−Rδ2

= Up(x, y, y)− Upx(x, y, y)t+ t−Rδ2.

Here, for example, one may take R = − infx∈[0,t0] Upxx(x, 0, 0), which is finite: see
(4.5). The inequality (5.6) follows immediately from the two above estimates. �

Now consider a martingale f = (fn)Nn=1, starting from t0, which satisfies the
following condition: if 0 ≤ n ≤ N − 1, then on the set {fn = t−nδ}, the difference
dfn+1 takes values −δ and −γp(Gp(fn(ω))); on the compliment of this set, dfn+1 ≡
0. Let g be a ±1 transform of f , given by g0 = f0 and dgn = −dfn, n = 1, 2, . . . , N .
The key fact about the pair (f, g) is that

(5.7) EUp(fn, gn, g∗n) ≤ EUp(fn+1, gn+1, g
∗
n+1) +Rδ2, n = 0, 1, 2, . . . , N − 1.

This is an immediate consequence of Lemma 5.1 (applied conditionally with respect
to Fn) and the fact that Up(fn, gn, g∗n) 6= Up(fn+1, gn+1, g

∗
n+1) if and only if fn =

t− nδ, or gn = t+ nδ = g∗n.
The next property of the pair (f, g) is that if fN 6= 0, then Up(fN , gN , g∗N ) =

Vp(fN , gN , g∗N ). Indeed, fN 6= 0 implies dfn > 0 for some n ≥ 1 and then, by the
construction,

g∗N − gN = g∗n − gn = −dgn = dfn = γp(fn) = γp(fN ).

Thus we may write
Mp = Up(t0, t0, t0)

≤ EUp(fN , gN , g∗N ) +RNδ2

= EVp(fN , gN , g∗N )1{fN 6=0} + Up(0, 2t0, 2t0)P(fN = 0) +RNδ2,

(5.8)

since gN = g∗N = 2t0 on {fN = 0}.
Step 3. Now let us extend the pair (f, g) as follows. Fix κ > 0 and put fN =

fN+1 = fN+2 = . . . and gN = gN+1 = gN+2 = . . . on {fN 6= 0}, while on {fN = 0},
let the conditional distribution of (fn, gn)n≥N with respect to {fN = 0} be that of
the pair (fκ,2t0 , gκ,2t0), obtained at the end of Step 1. The process (f, g) we get
consists of simple martingales and, by (5.5) and (5.8), we have

Mp ≤ EVp(f∞, g∞, g∗∞) +RNδ2 + κP(fN = 0).

Now it suffices to note that choosing N sufficiently large and κ sufficiently small,
we can make the expression RNδ2 +κP(fN = 0) arbitrarily small. This shows that
Mp is indeed the smallest C which is allowed in (5.1). �

The case p =∞. We may assume that ||X||∞ = 1. The proof will be entirely based
on the following version of Theorem 2.3.
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Theorem 5.2. Let U0 : {(x, y, z) : |x| ≤ 1, y ≤ z} → R be given by

U0(x, y, z) = Eg∗∞ ∨ z,
where the supremum is taken over the class of all pairs (f, g) ∈ M(x, y) such that
||f ||∞ ≤ 1. Then U0 enjoys the following properties.

1◦ For any ε ∈ {−1, 1}, x ∈ [−1, 1], y ≤ z and any simple centered random
variable T satisfying |x+ εT | ≤ 1, we have

EU0(x+ εT, y + T, (y + T ) ∨ z) ≤ U0(x, y, z).

2◦ U0(x, y, z) ≥ z for all (x, y, z) from the domain of U0.
3◦ U0(x, y, y) ≤ C∞ for all x, y such that |x| = |y| ∈ [−1, 1].

For the proof, modify the argumentation from [3]. Note that the function U0

satisfies (5.2) (with obvious restriction to x lying in [−1, 1]).
Now we turn to the optimality of the constant C∞. First we will show that

(5.9) U0(0, 0, 0) ≥ 1.

To prove this, take δ ∈ (0, 1) and use 1◦ to obtain

U0(0, 0, 0) ≥ 1
1 + δ

U0(δ, δ, δ) +
δ

1 + δ
U0(−1,−1, 0).

We have U0(−1,−1, 0) ≥ 0 by 2◦, and U0(δ, δ, δ) = δ+U(δ, 0, 0) by (5.2). Thus we
have

(5.10) U0(0, 0, 0) ≥ δ + U0(δ, 0, 0)
1 + δ

.

Similarly, using 1◦ and then 2◦,

U(δ, 0, 0) ≥ (1− δ)U0(0, δ, δ) + δU0(1, δ − 1, 0) ≥ (1− δ)
[
δ + U0(0, 0, 0)

]
.

Plug this into (5.10), subtract U0(0, 0, 0) from both sides, divide throughout by δ
and let δ → 0. As a result, one gets (5.9).

Now fix a positive integer N and set δ = (1− e−1)/N . For any k = 1, 2, . . . , N ,
we have, by 1◦, 2◦ and (5.2),

U0(kδ, 0, 0) ≥ δ

1− kδ + δ
U0(1, kδ − 1, 0) +

1− kδ
1− kδ + δ

U0((k − 1)δ, δ, δ)

≥ 1− kδ
1− kδ + δ

[
δ + U0((k − 1)δ, 0, 0)

]
,

or, equivalently,
U0(kδ, 0, 0)

1− kδ
≥ U0((k − 1)δ, 0, 0)

1− (k − 1)δ
+

δ

1− (k − 1)δ
.

It follows by induction that

eU0(1− e−1, 0, 0) =
U0(Nδ, 0, 0)

1−Nδ
≥ U0(0, 0, 0) +

N∑
k=1

δ

1− (k − 1)δ
.

Letting N →∞ and using (5.9), we arrive at

eU0(1− e−1, 0, 0) ≥ 1 +
∫ 1−e−1

0

dx

1− x
= 2,

and hence, by (5.2),

U0(1− e−1, 1− e−1, 1− e−1) = 1− e−1 + U0(1− e−1, 0, 0) ≥ 1 + e−1.
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It suffices to apply 3◦ to complete the proof. �
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