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Abstract. Let w be a dyadic Ap weight (1 ≤ p < ∞) and let MD be the

dyadic Hardy-Littlewood maximal function on Rd. The paper contains the
proof of the estimate

w
({

x ∈ Rd : MDf(x) > w(x)
})
≤ Cp[w]Ap

∫
Rd
|f |dx,

where the constant Cp does not depend on the dimension d. Furthermore, the
linear dependence on [w]Ap is optimal, which is a novel result for 1 < p <∞.
The estimate is shown to hold in a wider context of probability spaces equipped
with an arbitrary tree-like structure. The proof rests on the Bellman function
method: we construct an abstract special function satisfying certain size and
concavity requirements.

1. Introduction

Let M be the Hardy-Littlewood maximal operator, acting on locally integrable
functions on Rd by the formula

(1.1) Mf(x) = sup
{
〈|f |〉QχQ(x)

}
,

where the supremum is taken over all cubes Q ⊂ Rd with sides parallel to the axes,
and 〈f〉Q = 1

|Q|
∫
Q
fdx denotes the average of f over Q. A celebrated result of

Fe�erman and Stein [2] established in 1971 asserts that if w is an arbitrary weight
on Rd, i.e., a nonnegative, locally integrable function, then

(1.2) w
(
{x ∈ Rd :Mf(x) ≥ 1}

)
≤ Cd

∫
Rd

|f |Mwdx.

Here we use the notation w(E) =
∫
E
wdx for the measure associated with w and

the constant Cd depends only on the dimension d. This immediately yields the
corresponding weak-type one-weight bound

(1.3) w
(
{x ∈ Rd :Mf(x) ≥ 1}

)
≤ Cd[w]A1

∫
Rd

|f |wdx,

under the assumption that the weight w satis�es the so-called A1 condition

[w]A1
= esssup

Rd

Mw/w <∞.

The estimates (1.2) and (1.3) play an important role in harmonic analysis, in par-
ticular, they can be used in the study of vector-valued maximal functions (cf. [2]).
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They have also been extended to the setting in which the maximal function M is
replaced by a general Calderón-Zygmund singular integral operator (cf. [3, 4, 5]).

There are dual counterparts of the estimates (1.2) and (1.3), see e.g. the work
of Lerner, Ombrosi and Pérez [4, Proposition 2.1]. For a related statement, consult
Muckenhoupt and Wheeden [6, Theorem 3]. The strong version is

(1.4) w
(
{x ∈ Rd :Mf(x) ≥Mw(x)}

)
≤ Cd

∫
Rd

|f |dx,

where w is an arbitrary weight and Cd depends only on the dimension. The weaker
inequality concerns A1 weights and reads

(1.5) w
(
{x ∈ Rd :Mf(x) ≥ w(x)}

)
≤ Cd[w]A1

∫
Rd

|f |dx.

The primary goal of this paper is to study the version of (1.5) in the less re-
strictive context of Ap weights. Recall that a weight w satis�es Muckenhoupt's
condition Ap (or belongs to the class Ap), if the Ap characteristic of w, given by

(1.6) [w]Ap = sup
Q
〈w〉Q〈w1/(1−p)〉p−1Q ,

is �nite. Actually, we will study the estimate (1.5) in the dyadic context. Recall
that the dyadic maximal function MD is de�ned by the same formula (1.1) as for
the usual maximal operator, but the supremum is taken over all dyadic cubes Q
contained in Rd; similarly, a weight w satis�es the dyadic Ap condition, if its Ap
characteristic [w]Ad

p
, given by (1.6) (with the supremum taken over all dyadic cubes

Q ⊂ Rd), is �nite.
We will prove the following statement.

Theorem 1.1. Let 1 < p <∞. Then for any dyadic Ap weight w on Rd and any

locally integrable function f : Rd → R, we have

(1.7) w
({
x ∈ Rd :MDf(x) > w(x)

})
≤ 2ep[w]Ad

p

∫
Rd

|f |dx.

The linear dependence on the Ap characteristic is optimal.

It should be emphasized that the multiplicative constant 2ep appearing in (1.7)
does not depend on the dimension. Actually, we will prove the above statement in a
much more general setting: we will study the estimate in the context of probability
measures equipped with a tree-like structure. Here is the precise de�nition.

De�nition 1.2. Suppose that (X,µ) is a nonatomic probability space. A set T of
measurable subsets of X will be called a tree if the following conditions are satis�ed:

(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a �nite subset C(Q) ⊂ T containing at least two
elements such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q,
(b) Q =

⋃
C(Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and T m+1 =

⋃
Q∈Tm C(Q).

(iv) We have limm→∞ supQ∈Tm µ(Q) = 0.
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All the objects introduced above in the dyadic setting can be generalized to the
probabilistic context, simply by replacing D , the family of dyadic cubes in Rd, with
T and (Rd, | · |) with (X,µ). The associated maximal operator MX,T is given by

MX,T f = sup
Q∈T

(
〈|f |〉Q,µχQ

)
,

where 〈f〉Q,µ = (µ(Q))−1
∫
Q
fdµ is the average of f over Q with respect to the

measure µ. Furthermore, the Ap characteristic of a weight (i.e., a positive and
integrable random variable) w on X is given by

[w]Ap = sup
Q∈T
〈w〉Q,µ〈w1/(1−p)〉p−1Q,µ .

Our main result can be stated as follows.

Theorem 1.3. Let 1 < p < ∞ and let (X,µ) be a probability space with a tree
structure T . Then for any Ap weight w on X and any integrable random variable
f we have the estimate

(1.8) w
({
x ∈ X :MX,T f(x) > w(x)

})
≤ 2ep[w]Ap

∫
X

|f |dµ.

The linear dependence on the Ap characteristic is optimal for each individual triple
(X, T , µ).

Let us stress here that we do not impose any regularity condition on T : for
any element Q of T and any child Q′ of Q, the ratio µ(Q′)/µ(Q) need not be
bounded away from 0 or 1. It is easy to see that the above result is an extension
of Theorem 1.1. Indeed, given a dyadic lattice D , we pick an arbitrary base cube
Q ∈ D and consider the probability space (Q, | · |/|Q|) equipped with the dyadic
tree. Now, any dyadic Ap weight w on Rd, when restricted to Q, becomes the
probabilistic weight with the characteristic less or equal to [w]Ap and hence (1.8)
holds true. Multiplying both sides by |Q| and letting |Q| → ∞ gives (1.7).

A few words about the proof of the inequality (1.8) are in order. Our approach
will make use of a certain novel aspect of the Bellman function method, a powerful
tool used widely in harmonic analysis and probability theory. This technique has
its origins in the theory of optimal stochastic control, and its connections with other
areas of mathematics were �rstly observed by Burkholder, who used it to identify
the unconditional constants of the Haar system. Soon after the appearance of [1],
Burkholder's arguments were extended by a number of mathematicians to investi-
gate numerous estimates for semimartingales: see e.g. [9, 10] for an overview. In
the nineties, the seminal paper [7] by Nazarov and Treil (inspired by the preprint
version of [8]) pushed the technique towards applications in harmonic analysis;
since then, the method has been used in many contexts, including BMO inequali-
ties, weighted estimates and many more. Roughly speaking, the Bellman function
method relates the validity of a given estimate to the existence of a certain special
function which enjoys appropriate size and concavity conditions.

The following important comment is worth emphasizing. Typically, the Bellman
function is quite complicated and its discovery, as well as the veri�cation of the
required properties, is quite an elaborate issue. Our approach will enable us to
overcome this di�culty: we will obtain an abstract, non-explicit formula for the
Bellman function corresponding to (1.8). This argument was motivated by a sim-
ilar phenomenon which occurs in the classical, well-understood context of Haar
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multipliers on the interval [0, 1]. We strongly believe that this novel argument is
applicable in a number of related results in the area.

The next section is devoted to the explanation of the above idea of obtaining
abstract Bellman functions for weak-type estimates from the corresponding objects
coming from Lp estimates. Section 3 contains the detailed exposition of the Bellman
function method in the context of maximal operators MX,T . In the �nal part
we provide the proof of Theorem 1.3. In particular, the optimality of the linear
dependence on [w]Ap in (1.8) will be handled at the very end of the paper, by
providing appropriate examples.

2. A motivating example

Let (hn)n≥0 be the standard Haar system on [0, 1), i.e., the collection of functions
given by h0 = χ[0,1), h1 = χ[0,1/2) − χ[1/2,1), h2 = χ[0,1/4) − χ[1/4,1/2), h3 =

χ[0,1/2) − χ[1/2,1), and so on. Suppose further that V : R2 → R is a �xed function
and assume that we want to establish the inequality

(2.1)

∫
[0,1)

V

(
n∑
k=0

akhk,

n∑
k=0

εkakhk

)
dx ≤ 0 n = 0, 1, 2, . . . ,

for any sequence (ak)k≥0 of integers and any sequence (εk)k≥0 of signs. For ex-
ample, the choice V (x, y) = |y|p − Cpp |x|p (where 1 < p < ∞) is related to the
unconditionality of the Haar system; the choice V (x, y) = λχ|y|≥1 − C|x| leads to
weak-type estimates for Haar multipliers.

The key to handle (2.1) is to consider the class of all functions B : R2 → R which
enjoy the following conditions:

1◦ (Initial condition) B(x,±x) ≤ 0 for all x ∈ R;
2◦ (Majorization) B ≥ V on R2;
3◦ (Concavity-type property) B is concave along any line of slope ±1.

The existence of a function B with the above properties implies the validity of (2.1).
Indeed, by Jensen's inequality, the concavity 3◦ gives that for any n ≥ 0 we have∫ 1

0

B

(
n+1∑
k=0

akhk,

n+1∑
k=0

εkakhk

)
dx ≤

∫ 1

0

B

(
n∑
k=0

akhk,

n∑
k=0

εkakhk

)
dx.

Combining this with 2◦ and �nally 1◦, we get∫ 1

0

V

(
n∑
k=0

akhk,

n∑
k=0

εkakhk

)
dx ≤

∫ 1

0

B

(
n∑
k=0

akhk,

n∑
k=0

εkakhk

)
dx

≤
∫ 1

0

B(a0, εa0)dx ≤ 0.

The important feature of the approach is that the implication can be reversed: if we
know a priori that the estimate (2.1) holds, then the corresponding special function
B exists (one can actually write an abstract formula for it).

For example, consider the L2 bound∥∥∥∥∥
n∑
k=0

εkakhk

∥∥∥∥∥
2

L2

≤

∥∥∥∥∥
n∑
k=0

akhk

∥∥∥∥∥
2

L2

, n = 0, 1, 2, . . . .
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This follows at once from the orthogonality of the Haar system, but let us apply
the above approach. The corresponding function V , i.e., the one which transforms
the L2 bound into (2.1), is given by V (x, y) = y2−x2, and it turns out that B = V
is the corresponding special function. Let us see what happens for the weak-type
(1, 1) estimate∣∣∣∣∣

{
x ∈ [0, 1) :

∣∣∣∣∣
n∑
k=0

εkakhk(x)

∣∣∣∣∣ ≥ 1

}∣∣∣∣∣ ≤ C
∥∥∥∥∥
n∑
k=0

akhk

∥∥∥∥∥
L1

,

for n = 0, 1, 2, . . .. This inequality is of the form (2.1), with V (x, y) = χ{|y|≥1} −
C|x|, and using the above approach, Burkholder showed the estimate with the
optimal constant C = 2. The special function B is slightly more complicated:

B(x, y) =

{
y2 − x2 if |x|+ |y| ≤ 1,

1− 2|x| if |x|+ |y| > 1.

For some more or less formal arguments which lead to the discovery of this function,
see e.g. [9, 10]. For our further considerations concerning the estimate (1.8), let us
make here some important observations. We see that B is built of two components:
if (x, y) is close to (0, 0), then it coincides with the special function corresponding
to the L2 estimate; for remaining (x, y), it is an a�ne expression (in |x|), which
is almost equal to V . One easily checks 1◦ and 2◦; to verify 3◦, one rewrites the
above formula as

(2.2) B(x, y) =

{
min

{
y2 − x2, 1− 2|x|

}
if |x| ≤ 1,

1− 2|x| if |x| > 1,

from which it is clear that the concavity holds: both (x, y) 7→ y2 − x2 and (x, y) 7→
1−2|x| are concave along the lines of slope ±1, and hence so is B, being essentially
the minimum of the two.

As we will see in Section 4, the inequality (1.8) can be e�ciently studied in a
similar manner: it will be handled with a certain Bellman function given as the
minimum of special functions associated with Lp estimates and the appropriate
a�ne expressions. More precisely, we will proceed as follows: �rst we will recall a
certain weighted Lp estimate for maximal operators; this will give us the existence of
the associated Bellman function B. Then we will take an appropriate modi�cation
of the formula (2.2), with the term y2−x2 replaced with B, to obtain the function
for the weak-type estimate.

3. Bellman function method for maximal operators

We return to the context of arbitrary probability space (X,µ) equipped with
a tree-like structure T . Let c ∈ [1,∞), p ∈ (1,∞) be given parameters and let
V : [0,∞)3 → R be a �xed function. Suppose further that we are interested in
showing the estimate

(3.1)

∫
X

V

(
f,MX,T f, w

)
dµ ≤ 0

for any integrable function f : X → [0,∞) and any Ap weight w on X satisfying
[w]Ap

≤ c. Here the probability space (X,µ) and a tree structure T are also allowed
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to vary. To handle this problem, consider the four-dimensional domain

D = Dp,c =

{
(x, y, u, v) ∈ [0,∞)4 : x ≤ y, 1 ≤ uvp−1 ≤ c

}
and consider the class of special functions B : D → R which enjoy the following
structural properties.

1◦ (Initial condition) We have

(3.2) B(x, x, u, v) ≤ 0 if (x, x, u, v) ∈ D.

2◦ (Majorization) If 0 ≤ x ≤ y, then

(3.3) B(x, y, u, u1/(1−p)) ≥ V (x, y, u).

3◦ (Concavity-type property) Let λ1, λ2, . . ., λm ≥ 0 be nonnegative numbers
summing up to 1 and let (x, y, u, v), (x1, y1, u1, v1), . . . , (xm, ym, um, vm) be el-
ements of D enjoying the following conditions: we have yj = max{xj , y} for all
j = 1, 2, . . . , m and

x =

m∑
k=1

λkxk, u =

m∑
k=1

λkuk, v =

m∑
k=1

λkvk.

Then we have

(3.4) B (x, y, u, v) ≥
m∑
k=1

λkB(xk, yk, uk, vk).

In what follows, we say that a function f on X is T -simple, if it is measurable
with respect to the σ-algebra generated by T N for some integer N .

Theorem 3.1. Let 1 < p < ∞ be �xed. If there is a function B satisfying 1◦, 2◦

and 3◦, then (3.1) holds true for any probability space (X,µ) with a tree T , any
T -simple function f : X → [0,∞) and any T -simple weight w ∈ Ap satisfying
[w]Ap

≤ c.

Proof. Fix (X,µ), T and any f , w as in the statement. We split the reasoning into
three intermediate parts.

Step 1. Auxiliary notation. For any n ≥ 0, de�ne the functions fn, gn, wn and
zn on X as follows: if ω ∈ X and Q = Qn(ω) denotes the unique element of T n
which contains ω, then

fn(ω) = 〈f〉Q,µ, gn(ω) = max
k≤n

fk(ω), wn(ω) = 〈w〉Q,µ, zn(ω) = 〈w1/(1−p)〉Q,µ.

It is easy to see that (fn, gn, wn, zn) takes values in the setD: this is the consequence
of the inequality [w]Ap

≤ c.
Step 2. Monotonicity. Now we will prove that

(3.5) the sequence

(∫
X

B(fn, gn, wn, zn)dµ
)
n≥0

is nonincreasing.

This is a simple combination of the inequality (3.4) and the evolution rules of
(f, g, w, z). Namely, �x n ≥ 0, an element Q ∈ T n and denote the children of
Q in T n+1 by Q1, Q2, . . ., Qm. The functions fn, gn, wn and zn are constant
on Q: denote the corresponding values by x, y, u and v. Similarly, fn+1, gn+1,
wn+1 and zn+1 are constant on each Qj : denote the values by xj , yj , uj and vj ,
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respectively. Let us check that the conditions listed below (3.4) are satis�ed, with
λj = µ(Qj)/µ(Q). The numbers λj sum up to 1 and

x =
1

µ(Q)

∫
Q

fdµ =

m∑
k=1

µ(Qk)

µ(Q)
· 1

µ(Qk)

∫
Qk

fdµ =

m∑
k=1

λkxk.

The identities u =
∑m
k=1 λkuk and v =

∑m
k=1 λkvk are veri�ed analogously. More-

over, for each j we obviously have

yj = max
k≤n+1

fk|Qj = max

{
fn+1|Qj ,max

k≤n
fk|Qj

}
= max{xj , y}.

Consequently, we may apply (3.4), and this estimate is equivalent to∫
Q

B(fn, gn, wn, zn)dµ ≥
∫
Q

B(fn+1, gn+1, wn+1, zn+1)dµ.

Summing over all Q ∈ T n, we get the desired monotonicity.

Step 3. Completion of the proof. Fix a large integer N such that f , w are
σ(T N )-measurable. By the previous step, we get∫

X

B(fN , gN , wN , zN )dµ ≤
∫
X

B(f0, g0, w0, z0)dµ.

But f0 ≡ g0, so by (3.2), the right-hand side is nonpositive. Furthermore, we have

fN = f , gN = MX,T f , wN = w and zN = w1/(1−p) = w
1/(1−p)
N , so applying (3.3)

to the left-hand side, we get the claim. �

Now we will handle the implication in the reverse direction.

Theorem 3.2. The reverse to Theorem 3.1 holds true.

Proof. Introduce the abstract function B : D → R by the formula

(3.6) B(x, y, u, v) = sup

{∫
X

V

(
f,max

{
MX,T f, y

}
, w

)
dµ

}
.

Here the supremum is taken over all probability spaces X with a tree T , all T -
simple functions f : X → [0,∞) satisfying

∫
X
fdµ = x, all T -simple Ap weights w

on X satisfying [w]Ap
≤ c,

∫
X
wdµ = u and

∫
X
w1/(1−p)dµ = v.

We will now verify that B enjoys the properties 1◦, 2◦ and 3◦. The initial
condition follows directly from (3.1): indeed, for any X, T , f and w as in the
de�nition of B(x, x, u, v) we have∫

X

V

(
f,max

{
MX,T f, x

}
, w

)
dµ =

∫
X

V

(
f,MX,T f, w

)
dµ ≤ 0,

and the inequality remains valid if we take the supremum. The majorization is also
very simple: pick arbitrary X, T and consider the constant function f ≡ x and the
constant weight w ≡ u. Then [w]Ap

= 1 ≤ c and
∫
X
w1/(1−p)dµ = u1/(1−p), so by

the very de�nition of B, we may write

B(x, y, u, u1/(1−p)) ≥
∫
X

V

(
f,max

{
MX,T f, x

}
, w

)
dµ = V (x, y, u).

It remains to prove the concavity-type condition 3◦. Fix an auxiliary number ε >
0 and pick parameters λj and points (x, y, u, v), (xj , yj , uj , vj) as in the statement
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of 3◦. By the de�nition of B, there are probability spaces (Xj , µj) with a tree Tj ,
as well as appropriate functions fj and wj on Xj such that

(3.7) B(xj , yj , uj , vj) ≤
∫
Xj

V

(
fj ,max

{
MXj ,Tjfj , yj

}
, wj

)
dµj + ε.

With no loss of generality, we may assume that Xj are pairwise disjoint. We
splice them into one space X =

⋃m
j=1Xj with the probability measure µ given by

µ(A) =
∑m
j=1 λjµj(A ∩ Xj) and the tree structure T such that T 0 = {X} and

T n =
⋃m
j=1 T

n−1
j for n ≥ 1. Next, we �splice� the functions and weights as follows:

f =
∑m
j=1 fjχXj

and w =
∑m
j=1 wjχXj

. Let us check that f and w satisfy all the

requirements in the de�nition of B(x, y, u, v). First, note that∫
X

fdµ =

m∑
j=1

∫
Xj

fdµ =

m∑
j=1

λj

∫
Xj

fdµj =

m∑
j=1

λjxj = x

and similarly,
∫
X
wdµ = u,

∫
X
w1/(1−p)dµ = v, so the averaging conditions are

satis�ed. Now we will verify that [w]Ap
≤ c. By the calculations we have just

carried out, we see that 〈w〉X,µ〈w1/(1−p)〉X,µ = uvp−1 ≤ c, where the latter bound
follows from the inclusion (x, y, u, v) ∈ D. Next, if Q ∈ T is di�erent than X, then
Q belongs to Tj for some j; since [wj ]Ap

≤ c,

〈w〉Q,µ〈w1/(1−p)〉Q,µ = 〈wj〉Q,µ〈w1/(1−p)
j 〉Q,µ ≤ c.

This establishes the desired Muckenhoupt condition and hence, by the very de�ni-
tion of B,

B(x, y, u, v) ≥
∫
X

V

(
f,max

{
MX,T f, y

}
, w

)
dµ.

Now, since x ≤ y, we have max
{
MX,T f, y

}
= max

{
MXj ,Tjfj , y

}
on Xj and hence

B(x, y, u, v) ≥
m∑
j=1

λj

∫
Xj

V

(
fj ,max

{
MXj ,Tjfj , y

}
, wj

)
dµj

≥
m∑
j=1

λjB(xj , yj , uj , vj)− ε,

where in the last passage we have exploited (3.7). Since ε was arbitrary, the con-
cavity condition follows. �

4. Proof of Theorem 1.3

Our starting point is the sharp dimension-free weighted Lp estimate for maximal
operators established in [11]. Namely, for any 1 < p <∞ and any probability space
(X,µ) with the tree structure T and any Ap weight w on X, we have

‖MX,T ‖Lp(w)→Lp(w) ≤
p

p− 1− d(p, [w]Ap
)
.

Here, for a given 1 < p < ∞ and c ≥ 1, the constant d(p, c) is the unique number
in [0, p− 1) satisfying the equation

c(1 + d)(p− 1− d)p−1 = (p− 1)p−1.
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We will need the more explicit bound

‖MX,T ‖Lp(w)→Lp(w) ≤
p

p− 1− d(p, [w]Ap)

=
p

p− 1

(
1 + d(p, [w]Ap

)[w]Ap

)1/(p−1)
≤ p

p− 1
p1/(p−1)[w]

1/(p−1)
Ap

≤ pe

p− 1
[w]

1/(p−1)
Ap

.

(4.1)

Let q = p/(p−1) be the harmonic conjugate to p and consider the weight w1−q dual

to w. It follows directly from the de�nition of the Ap condition that [w1−q]
1/(q−1)
Aq

=

[w]Ap , and hence the above theorem implies that

‖MX,T ‖Lq(w1−q)→Lq(w1−q) ≤
qe

q − 1
[w]Ap = pe[w]Ap .

Equivalently, for any Ap weight w with [w]Ap
≤ c and any f ∈ Lq(w1−q) we have∫

X

V (f,MX,T f, w)dµ ≤ 0,

for V (x, y, u) = yqu1−q − (pecx)qu1−q. In particular, the above estimate holds for
all T -simple functions f . Therefore, by Theorem 3.2 there exists an associated
function B possessing the properties 1◦, 2◦ and 3◦. We will need the following
enhanced version of the majorization.

Lemma 4.1. For all (x, y, u, v) ∈ D we have

(4.2) B(x, y, u, v) ≥ yqv − (pecx)qu1−q.

Proof. Let us go back to the de�nition (3.6) of B(x, y, u, v) (with V (x, y, u) =
yqu1−q − (pecx)qu1−q). Take there an arbitrary weight w with the appropriate
conditions on characteristic and averages, and put f = xw/u. Since

∫
X
fdµ = x,

we have

B(x, y, u, v) ≥
∫
X

[
max{MX,T f, y}

]q
w1−qdµ− (pec)q

∫
X

fqw1−qdµ

≥
∫
X

yqw1−qdµ− (pecx)qu−q
∫
X

wdµ

= yqv − (pecx)qu1−q. �

Now we will modify B to obtain the Bellman corresponding to the weak-type
estimate (1.8). De�ne B : D → R by

(4.3) B(x, y, u, v) =

{
min

{
B(x, y, u, v), u− 2pecx

}
if pecx < u,

u− 2pecx if pecx ≥ u

and V : [0;∞)3 → R by V (x, y, u) = uχ{y≥u} − 2pecx. Obviously, we have

(4.4) B(x, y, u, v) ≤ u− 2pecx on D.

Furthermore, by (4.2), if pecx = u, then

(4.5) B(x, y, u, v) ≥ yqv − pecx · (pecxu−1)q−1 ≥ −pecx = u− 2pecx,
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so we also have

B(x, y, u, v) =

{
min

{
B(x, y, u, v), u− 2pecx

}
if pecx ≤ u,

u− 2pecx if pecx > u

(in comparison to the formula (4.3), the inequalities pecx < u and pecx ≥ u have
become non-strict and strict, respectively). We will need the following additional
property of B.

Lemma 4.2. For any point (x, y, u, v) ∈ D and any x′ > x we have

B(x′,max{x′, y}, u, v) ≥ B(x, y, u, v)− 2pec(x′ − x).

Proof. We split the reasoning into a few parts.

Step 1. An easy case. If B(x′,max{x′, y}, u, v) = u − 2pecx′, then the claim
follows immediately from (4.4):

B(x′,max{x′, y}, u, v) = u− 2pecx− 2pec(x′ − x) ≥ B(x, y, u, v)− 2pec(x′ − x).
Hence, from now on, we assume that B(x′,max{x′, y}, u, v) < u − 2pecx′; this in
particular implies that B(x′,max{x′, y}, u, v) = B(x′,max{x′, y}, u, v) and pecx′ <
u, by the de�nition of B.

Step 2. Monotonicity of B with respect to y. Fix (x, y, u, v) ∈ D. Observe that
if y′ > y, then

(4.6) B(x, y, u, v) ≤ B(x, y′, u, v),
which follows from the de�nition of B. Indeed, if (X,µ), T is an arbitrary probabil-
ity space with a tree, and f , w are functions on X as in the de�nition of B(x, y, u, v),
then∫

X

[
max

{
MX,T f, y

}]q
w1−qdµ− (pec)q

∫
X

fqw1−qdµ

≤
∫
X

[
max

{
MX,T f, y′

}]q
w1−qdµ− (pec)q

∫
X

fqw1−qdµ ≤ B(x, y′, u, v).

Taking the supremum over all f and w yields (4.6).

Step 3. An additional concavity. We have pecx′ < u (see the end of Step 1
above), so x′ belongs to the interval (x, u/(pec)) and hence there is λ ∈ (0, 1) such
that x′ = λx+ (1− λ)u/(pec). Therefore, an application of the concavity property
of B yields

B(x′,max{x′, y}, u, v)
= B(x′,max{x′, y}, u, v)
≥ λB(x,max{x′, y}, u, v) + (1− λ)B(u/(pec),max{u/(pec), y}, u, v).

(4.7)

However, by (4.6) and the inequality pecx < pecx′ < u we have

(4.8) B(x,max{x′, y}, u, v) ≥ B(x, y, u, v) ≥ B(x, y, u, v).
Furthermore, by (4.5) and the de�nition of B, we see that

B(u/(pec),max{u/(pec), y}, u, v) ≥ B(u/(pec),max{u/(pec), y}, u, v),
so by Step 1 above,

B(u/(pec),max{u/(pec), y}, u, v) ≥ B(x′,max{x′, y}, u, v)− 2pec

(
u

pec
− x′

)
.
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Plugging this and (4.8) into (4.7) yields the claim. �

We are ready for the main ingredient of Theorem 1.3.

Theorem 4.3. The function B satis�es the conditions 1◦, 2◦ and 3◦ (with respect
to V ).

Proof. The property 1◦ is easy to check: by the initial property of B, if pecx ≤
u, then B(x, x, u, v) ≤ B(x, x, u, v) ≤ 0; on the other hand, if pecx ≥ u, then
B(x, x, u, v) = u− 2pecx ≤ −pecx ≤ 0.

We proceed to the majorization condition 2◦. If pecx ≥ u, then there is nothing
to prove, so from now on we may assume that the reverse estimate holds. Suppose
�rst that y ≥ u. Then, by the de�nition of B, the majorization is equivalent
to B(x, y, u, v) ≥ u − 2pecx. However, applying (4.2) (and using the estimate
uq−1v ≥ 1), we get

B(x, y, u, v) ≥ yqv − pecx ·
(
pecxu−1

)q−1 ≥ u− pecx ≥ u− 2pecx.

So, it remains to verify 2◦ for y < u; then the desired bound becomes

B(x, y, u, v) ≥ −2pecx.

This is obvious if B(x, y, u, v) = u− 2pecx; otherwise, again by (4.2),

B(x, y, u, v) = B(x, y, u, v)

≥ yqv − (pecx)qu1−q ≥ −pecx ·
(
pecxu−1

)q−1 ≥ −2pecx. �

It remains to establish 3◦. If B(x, y, u, v) = u−2pecx, then the condition follows
directly from (4.4). So, suppose that B(x, y, u, v) = B(x, y, u, v) < u − 2pecx.
In particular this implies pecx < u and hence we have pecxj ≤ uj for at least
one j; relabelling the points if necessary, we may and do assume that there is an
integer k such that pecx1 ≤ u1, pecx2 ≤ u2, . . ., pecxk ≤ uk and pecxk+1 > uk+1,
pecxk+2 > uk+2, . . ., pecxm > um. Now we will run a backward induction with
respect to k. First, if k = m, then the claim follows from the concavity property
3◦ of B:

B(x, y, u, v) = B(x, y, u, v) ≥
m∑
j=1

λjB(xj , yj , uj , vj) ≥
m∑
j=1

λjB(xj , yj , uj , vj).

We proceed to the induction step. Assume that pecx1 ≤ u1, pecx2 ≤ u2, . . .,
pecxk−1 ≤ uk−1 and pecxk > uk, pecxk+1 > uk+1, . . ., pecxm > um. The idea is to
modify xj , but keeping their average

∑m
j=1 λjxj �xed. More speci�cally, we may

increase x1, x2, . . ., xk−1 a little bit (so that the estimates pecxj ≤ uj remain valid)
and decrease xk to make pecxk > uk into equality; the points xk+1, xk+2, . . ., xm
remain unchanged. For notational convenience, denote these new values by x′1, x

′
2,

. . ., x′m. Then, by the induction assumption, we have

(4.9) B(x, y, u, v) ≥
m∑
j=1

λjB(x′j ,max{x′j , y}, uj , vj).

Now, by the previous lemma and (4.6), for any j ≤ k − 1 we have

B(x′j ,max{x′j , y}, uj , vj) ≥ B(xj ,max{x′j , y}, uj , vj)− 2pec(x′j − xj)
≥ B(xj ,max{xj , y}, uj , vj)− 2pec(x′j − xj).
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Furthermore, by (4.5),

B(x′k,max{x′k, y}, uk, vk) ≥ uk − 2pecx′k = uk − 2pecxk − 2pec(xk − x′k).
Plugging the last two estimates into (4.9), we complete the proof of the induction
step: we obtain

B(x, y, u, v) ≥
m∑
j=1

λjB(xj , yj , uj , vj).

Thus, B has the desired concavity property.

The properties of B immediately yield our main weighted estimate.

Proof of (1.8). Fix 1 < p < ∞. Let (X,µ) be a probability space with a tree
structure T and assume that f : X → [0,∞) is an arbitrary integrable function,
w is an Ap weight on X. Set c := [w]Ap

. Let us approximate f and w by simple
functions: given a large positive integer N , we let fN , wN be the conditional
expectations of f and w with respect to T N (see the proof of Theorem 3.1, Step
1). Then fN and wN are T -simple and [wN ]Ap

≤ [w]Ap
. To see the latter estimate,

simply note that

〈wN 〉Q,µ〈w1/(1−p)
N 〉p−1Q,µ = 1

for Q ∈ T N ∪ T N+1 ∪ T N+2 ∪ . . ., while for remaining Q ∈ T we have

〈wN 〉Q,µ〈w1/(1−p)
N 〉p−1Q,µ ≤ 〈w〉Q,µ〈w

1/(1−p)〉p−1Q,µ

by Jensen's inequality. Therefore, by Theorem 3.1 applied to B and V , we get∫
X

wN (MX,T fN ≥ wN )dµ ≤ 2pe[w]Ap

∫
X

fNdµ = 2pe[w]Ap

∫
X

fdµ.

However,
∫
X
wN (MX,T fN ≥ wN )dµ =

∫
X
w(MX,T fN ≥ wN )dµ and MX,T fN ↑

MX,T f , wN → w µ-almost surely as N → ∞. Therefore, the previous estimate
yields ∫

X

w(MX,T f > w)dµ ≤ 2pe[w]Ap

∫
X

fdµ.

To obtain the non-strict inequality on the left, consider an auxiliary parameter
θ ∈ (0, 1) and apply the above bound to the Ap weight θw:∫

X

w(MX,T f ≥ w)dµ ≤
∫
X

w(MX,T f > θw)dµ ≤ 2peθ−1[θw]Ap

∫
X

fdµ.

Since [θw]Ap = [w]Ap , letting θ → 1 completes the proof. �

It remains to show that the linear dependence on the Ap characteristic in (1.8)
is optimal. Fix 1 < p < ∞ and pick an arbitrary probability space (X,µ) with a
tree T . Let Q0 = X. By a simple induction and the property (ii) in the de�nition
of a tree, for each n ≥ 1 there exists Qn ∈ T n such that µ(Qn) ≤ µ(Qn−1)/2. Fix
a huge positive integer N and take f = χQN

/µ(QN ). Then obviously
∫
X
fdµ = 1,

and the maximal function of f is given by

(4.10) MX,T f =
χQN

µ(QN )
+

N∑
n=1

χQn−1\Qn

µ(Qn−1)
.

Indeed, we verify the latter identity by the very de�nition of the maximal operator.
Given x ∈ X, we have two possibilities: either x ∈ QN , or x ∈ Qn−1 \Qn for some
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n = 1, 2, . . . , N . In the �rst case, the maximal average of f is that over QN (and
it equals 1/µ(QN )). If x ∈ Qn−1 \ Qn, then the maximal average corresponds to
the choice Qn−1 and is equal to 1/µ(Qn−1).

Let w =Mf . Then the above considerations yield

w(Mf ≥ w) = w(X) = 1 +

N∑
n=1

µ(Qn−1 \Qn)
µ(Qn−1)

≥ 1 +
N

2
,

where the latter estimate follows from the estimate µ(Qn) ≤ µ(Qn−1)/2 we assumed
at the beginning. It remains to analyze the Ap characteristic of w. Let Q ∈ T .
If Q ⊆ QN or Q ⊆ Qn−1 \ Qn for some n, then w is constant on Q and hence

〈w〉Q,µ〈w1/(1−p)〉p−1Q = 1. If Q does not satisfy any of the two above conditions,

then Q = Qk for some k = 0, 1, 2, . . . , N − 1. Then by (4.10) we have

〈w〉Q,µ =
1

µ(Qk)

N∑
n=k+1

µ(Qn−1 \Qn)
µ(Qn−1)

≤ N − k
µ(Qk)

≤ N

µ(Qk)

and

〈w1/(1−p)〉Q,µ =
1

µ(Qk)

N∑
n=k+1

µ(Qn−1)
1/(p−1)µ(Qn−1 \Qn)

≤ 1

µ(Qk)

N∑
n=k+1

[
µ(Qn−1)

p/(p−1) − µ(Qn)p/(p−1)
]
≤ µ(Qk)1/(p−1).

Therefore 〈w〉Q,µ〈w1/(1−p)〉p−1Q ≤ N and hence [w]Ap ≤ N . Putting all the above
facts together, we see that the inequality

w(Mf ≥ w) ≤ Cp[w]κAp

∫
X

fdµ

cannot hold with any exponent κ < 1.
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