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Abstract. For each 1 ≤ q < p < ∞ we study the sharp versions of the

Lp,∞ → Lq estimates for the dyadic maximal operator on Rn. Actually, this
is done in the more general setting of maximal operators associated with a

tree-like structure. The proof rests on a novel combination of the Bellman

function technique and optimization arguments.

1. Introduction

The motivation for the results of this paper comes from a natural question about
sharp versions of certain inequalities for the dyadic maximal operator on Rn. Recall
that this operator is given by the formula

Mdφ(x) = sup

{
1

|Q|

∫
Q

|φ(u)|du : x ∈ Q, Q ⊂ Rn is a dyadic cube

}
,

where φ is a locally integrable function on Rn and the dyadic cubes are those formed
by the grids 2−NZn, N = 0, 1, 2, . . .. The maximal operator plays an important
role in analysis and PDEs, and from the viewpoint of applications it is often of
interest to have optimal, or at least good bounds for its norms. For example, Md

satisfies the weak-type (1, 1) inequality

(1.1) λ
∣∣ {x ∈ Rn :Mdφ(x) ≥ λ}

∣∣ ≤ ∫
{Mdφ≥λ}

|φ(u)|du

for any φ ∈ L1(Rn) and any λ > 0. This bound is sharp: it is easy to construct
an exemplary non-zero φ for which both sides are equal. Integrating the above
estimate, we obtain the Lp estimate

(1.2) ||Mdφ||Lp(Rn) ≤
p

p− 1
||φ||Lp(Rn), 1 < p ≤ ∞,

in which the constant p/(p− 1) is also the best possible. These two statements are
absolutely classical, and form a starting point for various extensions and numerous
applications. It is impossible for us to review all these results here, and we will only
mention some statements which are closely related to the subject of this paper.
First, both (1.1) and (1.2) hold in the more general setting of maximal operators
MT associated with tree-like structure T . To define the necessary notions, assume
that (X,µ) is a nonatomic probability space. Two measurable subsets A, B of X
are said to be almost disjoint if µ(A ∩B) = 0.
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Definition 1.1. A set T of measurable subsets of X will be called a tree if the
following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there is a finite subset C(I) ⊂ T containing at least two
elements such that

(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
I∈Tm C(I).

(iv) We have limm→∞ supI∈Tm µ(I) = 0.

Any probability space equipped with a tree gives rise to the corresponding max-
imal operator MT , given by

MT φ(x) = sup

{
1

µ(I)

∫
I

|φ(u)|dµ(u) : x ∈ I, I ∈ T
}
.

Let us briefly describe the interplay between the tree setting and its dyadic coun-
terpart. Observe that in the dyadic case, it is enough to study (1.1) and (1.2) for
functions supported on [0, 1]n; the passage to general locally integrable φ’s follows
immediately from straightforward dilation arguments. Next, the class of dyadic
cubes contained in [0, 1]n forms a tree, and the associated maximal operator coin-
cides with the dyadic maximal operator (restricted to the functions supported on
[0, 1]n). Thus the setting of trees is indeed more general; it is also closely related
to the theory of martingales (for the explanation, see [6]).

We turn our attention to other estimates for the operatorsMT . It is well-known
that if p = 1, then the inequality

||MT φ||Lp(X) ≤ Cp||φ||Lp(X)

does not hold with any finite constant Cp, even in the dyadic case. This leads
to the question about an appropriate substitute of this bound. Motivated by the
classical results of Zygmund, Melas [7] proposed an answer to this question in terms
of sharp LlogL-type estimates. The subsequent work [8] of Melas concerns another
extension of (1.2): the action of MT , considered as an operator from Lp(X) to
Lq(X) (for 1 ≤ q < p), is studied there. Specifically, among other things, Melas
determined the best constant Cp,q in the following local inequality: for any E ∈ T ,(∫

E

(MT φ)qdµ

)1/q

≤ Cp,q
(∫

X

|φ|pdµ
)1/p

µ(E)1/q−1/p.

The paper [10] by Melas and Nikolidakis continues the research in this direction and
treats the following sharp version of Kolmogorov’s inequality: for any 0 < q < 1
and any E ∈ T ,(∫

E

|MT φ|qdµ
)1/q

≤
(

1

1− q

)1/q (∫
X

|φ|dµ
)
µ(E)1/q−1.

Finally, let us mention here three papers devoted to weak-type estimates. First,
Melas and Nikolidakis [9] investigated various sharp extensions of the inequality

||MT φ||Lp,∞(X) ≤ ||φ||Lp(X), 1 ≤ p <∞,
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where ||φ||Lp,∞(X) = supλ>0 λ [µ({x ∈ X : |φ(x)| ≥ λ})]1/p is the usual weak p-th
norm. Next, the work [12] of Nikolidakis gives the sharp comparison of weak norms:

||MT φ||Lp,∞(X) ≤
p

p− 1
||φ||Lp,∞(X), 1 < p <∞.

Consult also the recent Nikolidakis’ paper [13] for the further development in this
direction.

We should point out here that in the works cited above, much more is proved.
Namely, the papers actually contain the derivation of the so-called Bellman func-
tions associated with the estimates. This provides much more information about
the action of maximal operators on the corresponding spaces: for the necessary
definitions and the explanation of this fact, see Section 2 below.

In this paper, we continue this line of research. We will be interested in the
explicit formula for the norm of MT as an operator from Lp,∞(X) to Lq(X),
1 ≤ q < p <∞. One of our main results can be stated as follows.

Theorem 1.2. Suppose that 1 ≤ q < p < ∞ are fixed parameters. Then for any
locally µ-integrable function φ on X,

(1.3) ||MT φ||Lq(X) ≤
(

p

p− q

)1/q
p

p− 1
||φ||Lp,∞(X)

and the constant on the right-hand side is the best possible.

There is a probabilistic analogue of this result, which can be expressed in the
language of martingales, and which follows from Theorem 1.2 by straightforward
approximation. Though we will not go any further in this direction, we find the
version worth stating as a separate theorem. For the necessary definitions and
related results, we refer the reader to the classical monograph of Doob [5].

Theorem 1.3. Suppose that f = (fn)n≥0 is a martingale on a certain probability
space (with respect to its natural filtration). Then for any 1 ≤ q < p <∞ and any
n ≥ 0 we have ∣∣∣∣∣∣∣∣ sup

0≤k≤n
|fk|
∣∣∣∣∣∣∣∣
q

≤
(

p

p− q

)1/q
p

p− 1
||fn||p,∞

and the constant on the right-hand side is the best possible.

Let us come back to Theorem 1.2. Actually, in analogy with the papers cited
above, we will prove much more: we will identify the explicit formula for the Bell-
man function corresponding to (1.3). It should be pointed out that our proof will
not be just a mere repetition of the arguments appearing in [6]-[13]. More specifi-
cally, the reasoning will be based on a novel unification of Monge-Ampére argument
and combinatorial/optimization techniques. This approach has a lot flexibility and,
as we hope, can be applied in other results of this type.

We have organized the paper as follows. The next section contains the description
of Bellman function technique and explains the methodology which leads to our
main results. In Section 3 we apply the method and, in particular, obtain the
estimate (1.3). Section 4 is devoted to the sharpness: we construct appropriate
extremal examples there. The final part of the paper presents some steps which
have led us to the discovery of special functions of Section 3.
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2. On the method of proof

There are several powerful techniques which can be used to obtain the esti-
mates for maximal operators (covering theorems, Calderón-Zygmund-type decom-
positions, etc.). As we have already mentioned above, in this paper we will be
particularly interested in the so-called Bellman function method. Roughly speak-
ing, this approach relates the problem of proving a given inequality for the maximal
operator to the existence of a special function which possesses certain concavity and
majorization properties. This technique, if used appropriately, allows to determine
optimal constants involved in the estimate under investigation. Furthermore, the
special function often provides some additional insight into the structure and the
behavior of the maximal operator. As an illustration, consider the following func-
tion, introduced by Nazarov and Treil in [11] during the study of (1.2) in the dyadic
setting:

Bp(f, F, L)

= sup

{
1

|Q|

∫
Q

(Mdφ)p :
1

|Q|

∫
Q

φ = f,
1

|Q|

∫
Q

φp = F, sup
R:Q⊆R

1

|R|

∫
R

φ = L

}
.

Here Q is a fixed dyadic cube, the variables f, F, L satisfy 0 ≤ f ≤ L, fp ≤ F and
the supremum is taken over all nonnegative functions φ ∈ Lp(Q) and all dyadic
cubes R containing Q. Alternatively, the formula above can be rewritten as

Bp(f, F, L) = sup

{
1

|Q|

∫
Q

max{Mdφ,L}p :
1

|Q|

∫
Q

φ = f,
1

|Q|

∫
Q

φp = F

}
.

Since max{Mdφ,L} ≥ L, the above definition implies

(2.1) Bp(f, F, L) ≥ Lp.

The interplay between Bp and (1.2) is evident: once one proves the majorization

(2.2) Bp(f, F, L) ≤
(

p

p− 1

)p
F,

the Lp-estimate follows. However, it is clear that the function Bp codifies much
more information on the action of M on Lp than (1.2), and thus it is of interest
to derive its explicit formula. To study the structure of Bp, Nazarov and Treil
established the so-called “main inequality”, which describes the martingale-like
dynamics of this function. Namely, for any f±, F±, L satisfying fp± ≤ F±, we have

Bp

(
f−+f+

2
,
F−+F+

2
, L

)
≥ Bp(f−, F−,max{f−, L}) + Bp(f+, F+,max{f+, L})

2
.

A beautiful observation in [11] is that if one constructs any function which satisfies
(2.1), (2.2) and the above concavity (in the literature, such an object is commonly
called a supersolution), then (1.2) is established. Nazarov and Treil constructed
such a function, thus reproving the maximal Lp-bound.

The discovery of the explicit formula for Bp is due to Melas [6], actually in the
above more general setting of trees. Namely, the function

Bp(f, F, L) = sup

{∫
X

max{Mφ,L}pdµ :

∫
X

φ dµ = f,

∫
X

φpdµ = F

}
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satisfies

(2.3) Bp(f, F, L) =

Fwp
(
pLp−1f−(p−1)Lp

F

)p
if L < p

p−1f,

Lp +
(

p
p−1

)p
(F − fp) if L ≥ p

p−1f.

Here wp : [0, 1] → [1, p/(p− 1)] is the inverse function of z 7→ −(p− 1)zp + pzp−1.
Melas’ approach is combinatorial in nature; the key step is to narrow down the class
of functions among which the optimizers of the underlying extremal problem are
found. Roughly speaking, in this line of reasoning one finds the Bellman function
as the appropriate integral of the optimizer. This approach does not use the mar-
tingale dynamics of the problem (i.e., the “main inequality”) and is specific to the
discrete maximal operator. In particular, it does not directly apply to other dyadic
operators, nor does it seem to work for other maximal functions. This technique
should be contrasted with a general PDE- and geometry-based method first used
by Slavin, Stokolos and Vasyunin [15]. There, the “main inequality” of Nazarov
and Treil was turned into a Monge-Ampère PDE on a plane domain, whose solu-
tion turned out to be Melas’ function. The optimizers were then built along the
straight-line characteristics of the PDE. Recently, Monge-Ampère equations have
found many applications in Bellman-function problems [1, 14, 15, 16, 17, 18, 19, 20].
Typically, they arise in settings with integral norms, such as Lp; and those where
the main inequality can be interpreted as a convexity/concavity statement. How-
ever, one can also get a differential equation in other cases, as long as the main
inequality is infinitesimally non-trivial. This approach has its roots in the works of
Burkholder [2, 3, 4].

Coming back to the results of this paper, our main contribution is the identifi-
cation of the explicit formula for the Bellman function

Bp,q(f, F, L) = sup

{∫
X

max{MT φ,L}q dµ :

∫
X

φ dµ = f, ||φ||pLp,∞(X) ≤ F
}
,

with the methods developed in [6] and [15]. The natural domain of this function
consists of all (f, F, L) satisfying f ≤ L and f ≤ p

p−1F
1/p. Indeed, we haveMT φ ≥∫

X
φ dµ = f , so there is no point in considering L < f (the above formula gives

Bp,q(f, F, L) = Bp,q(f, F, f) for such L). Furthermore, integrating by parts we get

f =

∫ ∞
0

µ(φ ≥ t)dt =

∫ ||φ||Lp,∞(X)

0

µ(φ ≥ t)dt+

∫ ∞
||φ||Lp,∞(X)

µ(φ ≥ t)dt

≤ ||φ||Lp,∞(X) +

∫ ∞
||φ||Lp,∞(X)

||φ||pLp,∞(X)t
−pdt

=
p

p− 1
||φ||Lp,∞(X) =

p

p− 1
F 1/p,

(2.4)

and actually, one easily shows that for f ≤ p
p−1F

1/p, the class of all functions

φ : X → [0,∞) satisfying
∫
X
φdµ = f , ||φ||pLp,∞(X) = F is nonempty (see e.g. [9]).

How can we find the formula for Bp,q (where p, q are fixed parameters as above)?
At the first glance, the Monge-Ampére approach is not applicable, since the weak
norms are not integral. In other words, the function Bp,q is not governed by any
version of “main inequality” of Nazarov and Treil. To overcome this difficulty, we
propose the following novel two step procedure. Fix a function Φ : [0,∞)→ [0,∞)
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and consider

(2.5) BΦ(f, F, L) = sup

{∫
X

max{Mφ,L}q dµ :

∫
X

φdµ = f,

∫
X

Φ(φ) dµ ≤ F
}
.

Of course, the Monge-Ampére approach works here, at least if Φ is sufficiently
regular (e.g., convex, nondecreasing and of class C1). Observe that if Φ satisfies
the additional condition

(2.6)

∫
X

Φ(φ)dµ ≤ ||φ||pLp,∞(X)

for any φ ≥ 0, then we have Bp,q ≤ BΦ. The key point is the following: if there is
a function φ for which both sides of (2.6) are equal and which is an optimizer in
(2.5), then in fact we have Bp,q = BΦ and we are done. Thus, we have reduced the
problem to that of finding an appropriate Φ (and then identifying the corresponding
BΦ). As we shall see in Section 5 below, the first step of the above procedure
exploits certain optimization arguments, while the second part involves the methods
of [15].

Now it is high time to formulate the solution to the above problem. For any
1 < q < p <∞, consider the function Bp,q, defined for all (f, F, L) satisfying f ≤ L

and f ≤ p
p−1F

1/p, given by the following formula: if L ≤
[
F
(

p
p−1

)p
/f
]1/(p−1)

,

then

Bp,q(f, F, L)

=
(p− 1)q

(p− q)(q − 1)

(
F

(
p

p− 1

)p)(q−1)/(p−1)

f (p−q)/(p−1) + Lq − q

q − 1
fLq−1.

On the other hand, if L >
[
F
(

p
p−1

)p
/f
]1/(p−1)

, then let

Bp,q(f, F, L) =
q

p− q

(
p

p− 1

)p
FLq−p + Lq.

Furthermore, let Bp,1(f, F, L) = limq↓1Bp,q(f, F, L) for any p > 1 and any (f, F, L)
as above. That is,

Bp,1(f, F, L) =
f

p− 1

{
1 + ln

[
F

(
p

p− 1

)p
/(fLp−1)

]}
+ L

if L ≤
[
F
(

p
p−1

)p
/f
]1/(p−1)

, and

Bp,1(f, F, L) =
1

p− 1

(
p

p− 1

)p
FL1−p + L

otherwise. Here is the main result of this paper.

Theorem 2.1. For 1 ≤ q < p <∞, the functions Bp,q and Bp,q coincide.

We will establish this statement in the next two sections.
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3. Proof of the inequality Bp,q ≤ Bp,q
Let c be a fixed positive parameter and let 1 < q < p <∞. Define the function

Φc : [0,∞)→ [0,∞) by

(3.1) Φc(x) =


0 if x ≤ p− 1

p
c,

p

q − 1

(
p

p− 1

)q−1

xq − pq

q − 1
cq−1x+ (p− 1)cq if x >

p− 1

p
c.

It is easy to check that the function Φc is convex and of class C1 on (0,∞). Next,
introduce special functions Bc : {(x, y) : 0 ≤ x ≤ y} → R by the formula
(3.2)

Bc(x, y) =


yq +

q

q − 1
(cq−1 − yq−1)x if y < c,

yq − Φc(x) if y ≥ c, x ≤ p−1
p y,

p

(
yq − q

q − 1
yq−1x+

q

q − 1
cq−1x

)
− (p− 1)cq if y ≥ c, x ≥ p−1

p y.

It the lemma below, we study two properties of Bc which, in a sense, can be
regarded as appropriate versions of (2.2) and the “main inequality”.

Lemma 3.1. (i) For any c > 0 and 0 ≤ x ≤ y we have the majorization

(3.3) Bc(x, y) ≥ yq − Φc(x).

(ii) For any 0 ≤ x ≤ y and any d ≥ −x we have

(3.4) Bc(x+ d, y ∨ (x+ d)) ≤ Bc(x, y) +Bcx(x, y)d.

Proof. (i) Fix y ≥ 0 and consider the function ξ(x) = Bc(x, y) − yq + Φc(x),
x ∈ [0, y]. If y < c, then we have ξ(0) = 0 and the function ξ is increasing (since
both x 7→ Bc(x, y) and x 7→ Φc(x) have this property). This implies (3.3). On the
other hand, if y ≥ c, we easily verify that ξ is convex and vanishes, along with its
derivative, at the point x = (p− 1)y/p. This establishes the majorization.

(ii) The inequality is clear when x + d ≤ y, since the function x 7→ Bc(x, y) is
concave on [0, y]. Suppose then that x + d > y and consider the function ζ(s) =
Bc(s, s). We have ζ ′(s) = Bcx(s, s) + Bcy(s, s) = Bcx(s, s), which combined with
the aforementioned concavity of x 7→ Bc(x, y) gives

Bc(x, y) +Bcx(x, y)d ≥ Bc(y, y) +Bcx(x, y)(d− x)

≥ Bc(y, y) +Bcx(y, y)(d− x)

= ζ(y) + ζ ′(y).

Thus, we will be done if we show that ζ is concave. But this is evident: ζ is of class
C1 on (0,∞) and admits the formula

ζ(y) =


− yq

q − 1
+

q

q − 1
cq−1y if y < c,

− p

q − 1
yq +

pq

q − 1
cq−1y − (p− 1)cq if y ≥ c.

The proof is complete. �

We are ready to establish the first half of Theorem 2.1.

Theorem 3.2. For any 1 ≤ q < p <∞ we have Bp,q ≤ Bp,q.
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Proof. Clearly, it suffices to establish the inequality for q strictly larger than 1; the
case q = 1 follows immediately by passing to the limit. It is convenient to split the
reasoning into two parts.

Step 1. First we will use Bc to establish the estimate

(3.5)

∫
X

max{MT φ,L}qdµ ≤
∫
X

Φc(φ)dµ+ Bc

(∫
X

φ dµ,max

{∫
X

φdµ,L

})
for any nonnegative φ ∈ Lq(X). To this end, fix such a φ and consider the associated
sequence (φn)n≥0 of conditional expectations of φ with respect to (T n)n≥0. That
is, for any x ∈ X and any nonnegative integer n, put

(3.6) φn(x) =
1

µ(E)

∫
E

φ dµ,

where E is the element of T n which contains x (since the elements of T n are
pairwise almost disjoint, such a set E is determined uniquely for µ-almost all x).
We will also use the notation

MT nφ(x) = sup

{
1

µ(I)

∫
I

|φ(u)|dµ(u) : x ∈ I, I ∈ T k for some k ≤ n
}
.

Next, pick an integer n ≥ 0, E ∈ T n and let E1, E2, . . ., Em be the elements of
T n+1 whose union is E. We will prove that

(3.7)

∫
E

Bc (φn+1,max{MT n+1φ,L}) dµ ≤
∫
E

Bc (φn,max{MT nφ,L}) dµ.

To do this, note that both φn and max{MT nφ,L} are constant on E: denote the
values of these functions by x and y, respectively. On the other hand, we have
the equality max{MT n+1φ,L} = max {MT nφ,L, φn+1} and the function φn+1 is
constant on E1, E2, . . ., Em. Letting dj = (φn+1−φn)|Ej

= φn+1|Ej
−x, it follows

directly from (3.6) that

(3.8) dj ≥ x and

m∑
j=1

|Ej |dj = 0.

Now, apply (3.4) to x, y and d = dj , and multiply both sides by |Ej |, j =
1, 2, . . . , m. If we sum up the obtained inequalities, we get

m∑
j=1

|Ej |Bc(φn+1|Ej ,max{MT n+1φ,L}|Ej ) ≤ |E|Bc(x, y),

which is precisely (3.7). Summing these estimates over all E ∈ Tn, we get (3.7) and
hence, by induction, we obtain∫

X

Bc (φn,max{MT nφ,L}) dµ ≤
∫
X

Bc (φ0,max{MT 0φ,L}) dµ.

However, we have φ0 = MT 0φ =
∫
X
φdµ and hence the right hand side is equal

to Bc
(∫
X
φdµ,max

{∫
X
φdµ,L

})
. To deal with the left-hand side, we make use of

the majorization (3.3) and, as the result, obtain the bound∫
X

max{MT nφ,L}qdµ ≤
∫
X

Φc (φn) dµ+Bc

(∫
X

φdµ,max

{∫
X

φdµ,L

})
≤
∫
X

Φc (φ) dµ+Bc

(∫
X

φdµ,max

{∫
X

φdµ,L

})
.
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Here the latter estimate follows from Jensen inequality: Φc is a convex function. It
remains to observe that if we let n→∞, thenMT nφ increases toMT φ; therefore,
(3.5) follows from Lebesgue’s monotone convergence theorem.

Step 2. Now we turn to the bound Bp,q ≤ Bp,q. Let φ ≥ 0 be a µ-integrable
function satisfying

∫
X
φdµ = f and ||φ||pLp,∞(X) ≤ F , and let L ≥ f be a fixed

number. We rewrite (3.5) in the form∫
X

max{MT φ,L}qdµ ≤
∫ ∞

0

Φ′c(t)µ(φ ≥ t)dt+Bc (f,max {f, L})

=

∫ ∞
(p−1)c/p

pq

q − 1

[(
p

p− 1

)q−1

tq−1 − cq−1

]
µ(φ ≥ t)dt

+Bc (f, L) .

The expression in the square brackets above is nonnegative when t ≥ (p − 1)c/p;
furthermore, directly from the definition of weak norm, we have µ(φ ≥ t) ≤
||φ||pLp,∞(X)t

−p ≤ Ft−p for all t ≥ 0. Thus,∫
X

max{MT φ,L}qdµ ≤ F
∫ ∞

(p−1)c/p

pq

q − 1

[(
p

p− 1

)q−1

tq−1 − cq−1

]
t−pdt

+Bc (f, L)

=
qcq−p

p− q

(
p

p− 1

)p
F +Bc (f, L) .

Now it is time to specify c; we consider two cases. If L >
[
F
(

p
p−1

)p
/f
]1/(p−1)

,

then we take c = L. Since BL(f, L) = Lq, we obtain∫
X

max{MT φ,L}qdµ ≤
qF

p− q

(
p

p− 1

)p
Lq−p + Lq,

as claimed. On the other hand, if L ≤
[
F
(

p
p−1

)p
/f
]1/(p−1)

, then we take c equal

to the right-hand side of this estimate. We have

Bc(f, L) = Lq +
q

q − 1
f

([
F

(
p

p− 1

)p
/f

](q−1)/(p−1)

− Lq−1

)
,

and hence, after some manipulations, we get the inequality∫
X

max{MT φ,L}qdµ ≤
(p− 1)q

(p− q)(q − 1)

(
F

(
p

p− 1

)p)(q−1)/(p−1)

f (p−q)/(p−1)

+ Lq − q

q − 1
fLq−1.

This is precisely the desired bound. The proof is complete. �

As an application, we will easily establish the inequality of Theorem 1.2, formu-
lated in the introductory section.

Proof of (1.3). All we need is to show that

(3.9) Bp,q(f, F, f) ≤ p

p− q

(
p

p− 1

)q
F q/p.
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To do this, observe that f ≤
[
F
(

p
p−1

)p
/f
]1/(p−1)

(see (2.4)). Therefore,

Bp,q(f, F, f) =
(p− 1)q

(p− q)(q − 1)

(
F

(
p

p− 1

)p)(q−1)/(p−1)

f (p−q)/(p−1) − fq

q − 1
.

Now we optimize over f . It is easy to see, using the direct differentiation, that the
right-hand side above attains its maximal value for f = pF 1/p/(p − 1). Plugging
this extremal f , we obtain (3.9). This finishes the proof. �

4. Proof of the inequality Bp,q ≥ Bp,q
For the sake of clarity, we have decided to split this section into three parts.

First, we deal with the construction of appropriate extremal functions. Then, in
the next two subsections we present the calculations in the case q > 1 and q = 1,
respectively.

4.1. An example. We start with the following lemma, which can be found in [6].

Lemma 4.1. For every I ∈ T and every α ∈ (0, 1) there is a subfamily F (I) ⊂ T
consisting of pairwise almost disjoint subsets of I such that

µ

 ⋃
J∈F (I)

J

 =
∑

J∈F (I)

µ(J) = αµ(I).

Now, let f , F and L be fixed numbers satisfying f ≤ p
p−1F

1/p and f ≤ L. In the

boundary case f = p
p−1F , any function φ satisfying

∫
X
φ dµ = f and ||φ||pLp,∞(X) ≤

F has the distribution µ(φ ≥ λ) = min{Fλ−p, 1} for all λ > 0 (see (2.4)). Now it
is a matter of easy calculations to prove that Bp,q(f, F, L) ≥ Bp,q(f, F, L). Thus,

in our further considerations, we assume that f is strictly smaller than p
p−1F

1/p.

Fix q ∈ [1, p) and let r > p be a fixed parameter (eventually, we will let r go down
to p). Define

(4.1) c =

[
F

(
r

r − 1

)p
/f

]1/(p−1)

.

The next step is to pick a large positive integer N and put δ = (c − f)/N (recall
that f < p

p−1F
1/p, or c > f : hence δ > 0). We have the following fact.

Lemma 4.2. If δ is sufficiently small (that is, N is large enough), then for any
x ≥ 0 we have (

1 +
x

c

)p/r
≤ 1 +

x

c+ rδ
.

Proof. This is straightforward. The function ξ(x) = (1 + x/c)
p/r − 1 − x/(c + rδ)

satisfies ξ(0) = 0 and

ξ′(x) =
p

rc

(
1 +

x

c

)p/r−1

− 1

c+ rδ
≤ p

rc
− 1

c+ rδ

is negative provided δ is small enough. �

We are ready for the construction. By the inductive use of Lemma 4.1, there is
a sequence {X} = A0 ⊃ A1 ⊃ A2 ⊃ . . . which enjoys the following properties.
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(i) For each k, Ak is a union of certain pairwise disjoint subsets from T : we
have Ak =

⋃
Fk for some Fk ⊂ T .

(ii) For each k = 1, 2, . . . , N and any I ∈ Fk−1 we have

µ(Ak ∩ I)

µ(I)
=
f + (k − 1)δ

f + kδ
.

(iii) For each k = N + 1, N + 2, . . . and any I ∈ Fk−1 we have

µ(Ak ∩ I)

µ(I)
=

f + (k − 1)δ

f + (k − 1)δ + rδ
.

Observe that in particular, (ii) and (iii) imply that

(ii’) For each k = 1, 2, . . . , N we have

µ(Ak)

µ(Ak−1)
=
f + (k − 1)δ

f + kδ
.

(iii’) For each k = N + 1, N + 2, . . . and any I ∈ Fk we have

µ(Ak)

µ(Ak−1)
=

f + (k − 1)δ

f + (k − 1)δ + rδ
.

Introduce the function φ by

φ =

{
0 on A0 \AN ,
(f + (k − 1)δ)(r − 1)/r on Ak−1 \Ak, k = N + 1, N + 2, . . . .

We will show below that µ(Ak) → 0 as k → ∞. Thus we can treat φ as a well-
defined function on X (as it is actually given on a subset of full measure).

Let us study the properties of the above objects.

Lemma 4.3. (a) For any k ≥ 0 we have

(4.2) µ(AN+k) ≤
[
(c+ kδ)

r − 1

r

]−p
F.

(b) We have ||φ||pLp,∞(X) ≤ F .

Proof. Write down (ii’) for k = 1, 2, . . . , N and multiply the equations to get

µ(AN ) =
µ(AN )

µ(A0)
=

f

f +Nδ
=
f

c
=

(
r − 1

r
c

)−p
F.
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Consequently, both sides of (4.2) are equal for k = 0. If k ≥ 1, a similar use of (iii’)
gives

µ(AN+k) = µ(AN )

k∏
j=1

f + (N + j − 1)δ

f + (N + j − 1)δ + rδ

=
f

c

k∏
j=1

c+ (j − 1)δ

c+ (j − 1)δ + rδ

=
f

c

k∏
j=1

(
1− rδ

c+ (j − 1)δ + rδ

)

≤ f

c
exp

−rδ k∑
j=1

1

c+ (j − 1)δ + rδ


≤ f

c
exp

(
−rδ

∫ c+kδ+rδ

c+rδ

1

s
ds

)
=
f

c

(
1 +

kδ

c+ rδ

)−r
.

(4.3)

However, by Lemma 4.2, this does not exceed

f

c

(
1 +

kδ

c

)−p
=

[
(c+ kδ)

r − 1

r

]−p
F.

(b) We must prove that µ(φ ≥ λ) ≤ Fλ−p for all λ > 0. The function φ vanishes
on X \ AN and is at least c(r − 1)/r on AN . Therefore, using (a), we see that for
λ ≤ c(r − 1)/r we have

µ(φ ≥ λ) = µ(AN ) ≤
(
c
r − 1

r

)−p
F ≤ Fλ−p.

On the other hand, if λ > c(r − 1)/r, then let k be the unique positive integer
satisfying

(c+ (k − 1)δ)(r − 1)

r
< λ ≤ (c+ kδ)(r − 1)

r
.

Then φ < λ on X \AN+k and φ ≥ λ on AN+k, so by (a),

µ(φ ≥ λ) = µ(AN+k) ≤
[
(c+ kδ)

r − 1

r

]−p
F ≤ Fλ−p.

This completes the proof. �

Lemma 4.4. For any k ≥ 0 we have

1

µ(Ak)

∫
Ak

φ dµ = f + kδ.

In particular,
∫
X
φ dµ = f .

Remark 4.5. This implies a slightly stronger statement. Let k ≥ 0 and let Fk be
the subset of T whose union is Ak. Then for any I ∈ Fk we have

1

µ(I)

∫
I

φdµ = f + kδ.
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Indeed, by (ii), (iii) and the definition of φ, the conditional distribution of φ is the
same on each I ∈ Fk (i.e., µ({x ∈ I : φ(x) ≥ λ})/µ(I) does not depend on I, but
only on the “level” k to which I belongs).

Proof of Lemma 4.4. It is enough to show that the sequence αk =
∫
Ak
φ dµ −

µ(Ak)(f + kδ), k = 0, 1, 2, . . . is constant (indeed, by the preceding lemma, this
sequence converges to 0). Now, if 0 ≤ k ≤ N , we have

∫
Ak
φ dµ =

∫
AN

φ dµ, directly

from the definition of φ; furthermore, by (ii’),

µ(Ak)(f + kδ) = µ(Ak+1)(f + (k + 1)δ) = . . . = µ(AN )(f +Nδ)

and hence αk = αN . Now, if k ≥ N + 1, then

αk − αk−1 = −
∫
Ak−1\Ak

φ dµ− µ(Ak)(f + kδ) + µ(Ak−1)(f + (k − 1)δ)

=
1

r

[
µ(Ak−1)(f + (k − 1)δ)− µ(Ak)(f + (k − 1)δ + δr)

]
= 0,

where the last equality is due to (iii’). �

The final observation of this subsection concerns the function MT φ and follows
directly from Remark 4.5. Namely, for any k ≥ 0 we have

(4.4) MT φ ≥ f + kδ on Ak.

Equipped with the above facts, we are ready to prove the bound Bp,q ≥ Bp,q.

4.2. The case q > 1. Assume first that

L >

[
F

(
p

p− 1

)p
/f

]1/(p−1)

.

Then, for r sufficiently close to p we also have L > c and hence, if M denotes the
unique positive integer satisfying f + (M −1)δ < L ≤ f +Mδ, then M > N . Using
(4.4), we write∫

X

max{MT φ,L}qdµ ≥ Lq(1− µ(AM )) +

∞∑
k=M

(f + kδ)qµ(Ak \Ak+1).

Now we will let δ → 0. Repeating the reasoning from (4.3), we see that for k ≥ N ,

µ(Ak) =
f

c

(
1 +

kδ

c

)−r
+ o(δ).

Since M −N is of order (L− c)/δ, we get µ(AM ) = fcr−1L−r + o(δ) and

lim
δ→0

Lq(1− µ(AM )) = Lq − fcr−1Lq−r.

Furthermore, by (iii’), if k ≥ N , then

µ(Ak \Ak+1) =
rδµ(Ak+1)

f + kδ
,
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and therefore

lim
δ→0

∞∑
k=M

(f + kδ)qµ(Ak \Ak+1) = lim
δ→0

rδ

∞∑
k=M

(f + kδ)q−1µ(Ak+1)

= r

∫ ∞
L

sq−1 · f
c

(s
c

)−r
ds

=
frcr−1Lq−r

r − q
.

Combining the above two facts and the definition (4.1) of c, we obtain

Bp,q(f, F, L) ≥ Lq +
qfLq−r

r − q

[
F

(
r

r − 1

)p
/f

](r−1)/(p−1)

.

However, if r ↓ p, then the right-hand side above converges to Bp,q(f, F, L). This
gives the desired lower bound.

Now we turn our attention to the case when

L <

[
F

(
p

p− 1

)p
/f

]1/(p−1)

.

We define M in the same way as previously: as the unique integer satisfying f +
(M − 1)δ < L ≤ f +Mδ. Then M ≤ N for sufficiently small δ. We have

(4.5)

∫
X

max{MT φ,L}qdµ ≥ Lq(1− µ(AM )) +

∞∑
k=M

(f + kδ)qµ(Ak \Ak+1).

By (ii’), we have µ(Ak) = f/(f + kδ) for k ≤ N , and therefore

(4.6) lim
δ→0

Lq(1− µ(AM )) = Lq − Lq−1f.

Furthermore,

lim
δ→0

N∑
k=M

(f + kδ)qµ(Ak \Ak+1) = lim
δ→0

fδ

N∑
k=M

(f + kδ)q−1(f + (k + 1)δ)−1

= f

∫ c

L

sq−2ds =
f(cq−1 − Lq−1)

q − 1

(4.7)

and, repeating the calculations from the preceding case,

(4.8) lim
δ→0

∞∑
k=N

(f + kδ)qµ(Ak \Ak+1) =
frcq−1

r − q
.

Combining all the above facts and the equation (4.1), we get

Bp,q(f, F, L) ≥ Lq − qfLq−1

q − 1
+

(p− 1)qf

(p− q)(q − 1)

[
F

(
r

r − 1

)p
/f

](q−1)/(p−1)

.

It suffices to let r ↓ p to get the desired bound Bp,q(f, F, L) ≥ Bp,q(f, F, L).
Finally, we deal with the case

L =

[
F

(
p

p− 1

)p
/f

]1/(p−1)

.
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Then f < L, since, as we have assumed, f ≤ p
p−1F

1/p. Pick an arbitrary L′ ∈ (f, L).

Then by the very definition of Bp,q and the above reasoning,

Bp,q(f, F, L) ≥ Bp,q(f, F, L
′) ≥ Bp,q(f, F, L′).

It remains to note that the function Bp,q is continuous. Thus letting L′ ↑ L yields
the claim.

4.3. The case q = 1. Essentially, all the calculations in this case are the same as
previously. Indeed, for

L >

[
F

(
p

p− 1

)p
/f

]1/(p−1)

we repeat the reasoning word-by-word and obtain

Bp,1(f, F, L) ≥ L+
fL1−r

r − 1

[
F

(
r

r − 1

)p
/f

](r−1)/(p−1)

,

and letting r ↓ p gives Bp,q(f, F, L) ≥ Bp,q(f, F, L). If

L <

[
F

(
p

p− 1

)p
/f

]1/(p−1)

,

then we write down (4.5), (4.6) and (4.8) with q = 1; furthermore, letting q → 1 in
(4.7) gives

lim
δ→0

N∑
k=M

(f + kδ)qµ(Ak \Ak+1) = f ln(c/L).

Thus we obtain

Bp,1(f, F, L) ≥ L− f + f ln(c/L) +
fr

r − 1
= L+

f

r − 1
+ f ln(c/L).

It remains to use (4.1) and let r ↓ p to obtain Bp,1(f, F, L) ≥ Bp,1(f, F, L).

5. On the search for special parameters

In the final part of the paper, we sketch some steps which have led us to the
discovery of the functions Φc and Bc defined in (3.1) and (3.2). We would like
to stress that the reasoning presented below is informal and serves as intuitive
guideline in the search for these special objects. In particular, we will feel free
to impose some additional assumptions on Φc and Bc (e.g., smoothness), which
greatly help with the search but do not follow directly from the definitions.

As we have explained in Section 2, we are interested in the Bellman function

(5.1) BΦ(f, F, L) = sup

{∫
X

max{MT φ,L}q dµ :

∫
X

φ dµ = f,

∫
X

Φ(φ) dµ ≤ F
}

for an appropriate Φ (see below). To study this object, let us study a related,
simpler function of two variables:

(5.2) B(f, L) = sup

{∫
X

max{MT φ,L}q − Φ(φ) dµ :

∫
X

φdµ = f

}
,

where 0 ≤ f ≤ L. To put it into a general framework, we rewrite the definition of
B in the form

B(f, L) = sup

{∫
X

G
(
φ,max{MT φ,L}

)
dµ :

∫
X

φdµ = f

}
,
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where the payoff function G is given by G(f, L) = Lq − Φ(f).
The reasoning splits naturally into two parts.

5.1. Looking for optimizers φ. As we have explained in Section 2, we search for
Φ ≥ 0 satisfying

(5.3)

∫
X

Φ(φ)dµ ≤ ||φ||pLp,∞(X) for all φ ≥ 0

and the following further condition: there is a function φ ≥ 0 which realizes equality
in (5.2) and for which both sides of (5.3) are equal to F . Clearly, such a function
is also an optimizer in (5.1) and BΦ(f, F, L) = B(f, L) + F .

First take a look at (5.3). If Φ is continuous and nondecreasing, we rewrite this
condition in the form

(5.4)

∫ ∞
0

Φ′(λ)µ(φ ≥ λ)dλ ≤ ||φ||pLp,∞(X), for all φ ≥ 0.

Let us restrict ourselves to those φ, which have fixed weak norm: ||φ||pLp,∞(X) =

F . Then, at the first glance, there is only one extremal function φ in the above
inequality (i.e., there is only one function for which both sides are equal). Indeed,
if Φ′ > 0 on (0,∞), then the choice µ(φ ≥ λ) = min{Fλ−p, 1} maximizes the
left-hand side, and the use of any other distribution gives a smaller quantity on the
left. But this class of optimizers is not sufficient for our purposes, since such a φ
satisfies

f =

∫
X

φ =
p

p− 1
||φ||Lp,∞(X) =

p

p− 1
F 1/p.

In particular, this class does not contain elements for f , F satisfying f < p
p−1F

1/p.

To overcome this difficulty, we allow Φ to be zero on a certain interval [0, d] (and
assume that Φ is a convex increasing function on (d,∞)). This enlarges the class of
optimizers, since any function which satisfies µ(φ ≥ λ) ≤ min{Fλ−p, 1} for λ ≥ d
gives equality in (5.4) (there are no restrictions on the behavior of µ(φ ≥ λ) for
λ < d, except for those coming from the weak norm condition). Actually, a little
thought and experimentation suggests considering φ’s satisfying µ(φ ≥ λ) = µ(φ ≥
d) for λ ∈ (0, d): in other words, is seems plausible to work with those φ, which do
not take values in the set (0, d). It turns out that this class of functions is large
enough to satisfy the following: for any f and F , there is φ such that

∫
X
φdµ = f

and ||φ||pLp,∞(X) = F . Namely, the distribution of such φ is given by

(5.5) µ(φ ≥ λ) =

{
Fd−p if 0 < λ < d,

Fλ−p if λ ≥ d,

where d =
[
pF/((p− 1)f)

]1/(p−1)
.

5.2. Construction of B and Φ. Now we will use some abstract facts concerning
the function B defined in (5.2). For the detailed explanation, we refer the reader
to [11]; a very interesting discussion about the martingale interpretation of the
subject can be found in Burkholder’s papers [3] and [4]. From now on, we assume
that X = [0, 1], µ is the Lebesgue measure and the tree T consists of dyadic intervals
of X (the functions we will obtain work for other probability spaces and trees as
well). The key fact is the following.

Theorem 5.1. The function B is the least function satisfying the conditions
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1◦ We have B(f, L) ≥ Lq − Φ(f) for all f ≤ L.
2◦ For any f ≤ L and any f± ≥ 0 such that (f− + f+)/2 = f , we have

B(f, L) ≥
[
B
(
f−,max{f−, L}

)
+ B

(
f+,max{f+, L}

)]
/2.

We see that the conditions 1◦ and 2◦ are just the appropriate versions of (2.1)
and the “main inequality” of Nazarov and Treil. From now on, we will work under
additional assumption that B is of class C2. The infinitesimal version of 2◦ reads

(5.6) Bxx(f, L) ≤ 0 and By(f, f) ≤ 0.

Actually, it is not difficult to gather some intuition about B. Since for any fixed L
the function f 7→ Lq −Φ(f) is concave (we have assumed above that Φ is convex),
the first idea is just to put B(f, L) = Lq − Φ(f). However, this function does not
work: the second condition in (5.6) is violated. Therefore, B must be raised a
little bit. But how much? A standard step in the search (cf. [15]) is to assume
that in (5.6) both sides are equal, at least at a large part of the domain. Roughly
speaking, this reflects the general phenomenon that a Bellman function should
realize equality in the underlying PDEs on some open subset C of the domain, and
on the compliment of C, it should be equal to the corresponding payoff function G.
Keeping this fact in mind and working a little bit with the geometry of B, we come
upon the following idea. For each L there should be a “threshold” γ(L) ∈ [0, L]
such that

(5.7) B(f, L) =

{
Lq − Φ(f) for f ∈ [0, γ(L)],

aLf + bL for f ∈ [γ(L), L],

where aL, bL are some coefficients. If γ(L) > 0, then aL and bL can be identified
from the smoothness property of B: aL = Φ′(γ(L)) and bL = Lq − Φ(γ(L)) −
Φ′(γ(L))γ(L). On the other hand, if γ(L) = 0, then we must necessarily have
bL = Lq − Φ(γ(L)) = Lq and aL ≥ 0: the latter inequality follows from the
assumption Φ(t) = 0 for t ∈ (0, d). This condition on Φ implies further that the
function γ(L) can be assumed to take values in {0}∪[d,∞). Indeed, if γ(L) ∈ (0, d),
then automatically B(f, L) = Lq for all f ∈ [0, L]; hence we may change the value of
γ(L) to 0, and this will produce the same formula. Finally, a little experimentation
suggests the existence of L0 ≥ 0 such that γ(L) = 0 for L < L0 and γ(L) ≥ d for
L ≥ L0.

To determine γ (and aL and bL for L < L0), we take a look at the second
condition in (5.6) and assume equality there. Combining this additional condition
with (5.7) and the above facts implies the following: for L < L0 we have αL =
− q
q−1L

q−1 + β for some constant β; furthermore, for L > L0, the threshold γ(L)

satisfies the differential equation

Φ′′(γ(L))γ′(L) = qLq−2.

Thus we obtain that

B(f, L) =


Lq − q

q−1L
q−1f + βf if L < L0,

Lq − Φ(f) if L ≥ L0, f ≤ γ(L),

Lq − Φ(γ(L)) + Φ′(γ(L))(f − γ(L)) if L ≥ L0, f ≥ γ(L).

Since B is of class C1, a look at the partial derivative Bx(0, L) for L < L0 and

L > L0 gives β = q
q−1L

q−1
0 .
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The final part of the analysis is to determine the function Φ. To achieve this, we
take a look at the above explicit formula, and construct optimizers corresponding
to B(f, L). As explained in [15], these extremal functions can be built along the
straight-line characteristics of the PDEs (5.6). Some tedious and lengthy calcula-
tions allow to express the distribution of such φ’s in terms of Φ; on the other hand,
these optimizers have distribution as in (5.5). We will not present the calculations
here, and only say that they lead to γ(L) = (p − 1)L/p, L0 = pd/(p − 1) and the
differential equation

Φ′′(s) = pq

(
p

p− 1

)q−1

sq−2, s > d.

Solving this equation and using the fact that B is smooth, we obtain that

Φ(s) =
p

q − 1

(
p

p− 1

)q−1

sq − pq

q − 1

(
p

p− 1

)q−1

dq−1s+ p

(
p

p− 1

)q−1

dq

for s ≥ d. Thus, we get the functions Φ, B which coincide with those given by (3.1)
and (3.2), with c = pd/(p− 1).
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[18] V. Vasyunin and A. Volberg, Monge-Ampére equation and Bellman optimization of Carleson
embedding theorems, Linear and complex analysis, pp. 195-238, Amer. Math. Soc. Transl. Ser.

2, 226, Amer. Math. Soc., Providence, RI, 2009.

[19] V. Vasyunin and A. Volberg, Burkholder’s function via Monge-Ampére equation, Illinois J.
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