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ADAM OSȨKOWSKI

Abstract. The purpose of the paper is to introduce a novel “splitting” pro-

cedure which can be helpful in the derivation of explicit formulas for various
Bellman functions. As an illustration, we study the action of the dyadic max-

imal operator on Lp. The associated Bellman function Bp, introduced by

Nazarov and Treil, was found explicitly by Melas with the use of combinato-
rial properties of the maximal operator, and was later re-discovered by Slavin,

Stokolos and Vasyunin with the use of the corresponding Monge–Ampère PDE.

Our new argument enables an alternative simple derivation of Bp.

1. Introduction

Bellman function method is a powerful tool in proving various types of inequal-
ities of harmonic analysis. The technique has its origins in the theory of sto-
chastic optimal control, and its fruitful connection with other areas of mathemat-
ics was firstly observed by Burkholder in [1], during the study of certain sharp
inequalities for martingale transforms. The method has developed rapidly after
the appearance of the fundamental paper [9] by Nazarov and Treil (inspired by
the preprint version of [10]) and has been applied in various settings: see e.g.
[2, 3, 4, 5, 6, 7, 8, 11, 16, 17, 18, 19, 20, 21, 22] and references therein.

Roughly speaking, the technique relates the validity of a given inequality to the
existence of a certain special function, which possesses appropriate majorization and
concavity-type properties. Actually, this object carries all the information on the
underlying estimate: sharp constants, the extremal functions or sequences, and in
many cases it provides a further insight into the structure of the problem. However,
the discovery of the Bellman function is in general a very difficult task, and the
methods leading to the solution involve the exploitation of combinatorial aspects
of the problem or the analysis of complicated intrinsic Monge–Ampère PDE’s, and
any novel tool here is of considerable interest. One of the principal goals of this
paper is to introduce a general procedure which simplifies the technicalities arising
in the study of such problems. More precisely, we will show how to split the
search of a given Bellman function into two parts. The first step is to consider a
family of simpler, less dimensional Bellman functions, while the second involves an
optimization argument which yields the desired object.

As it is rather impossible to put the aforementioned procedure into an abstract
framework, we have decided to describe the approach by working on a specific
example, associated with the action of the dyadic maximal operator on Lp(Rn),
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1 < p <∞. Recall that this operator is given by the formula

Mdφ(x) = sup

{
1

|Q|

∫
Q

|φ(u)|du : x ∈ Q, Q ⊂ Rn is a dyadic cube

}
,

where φ is a locally integrable function on Rn and the dyadic cubes are those formed
by the grids 2−NZn, N = 0, 1, 2, . . .. Following Nazarov and Treil [9], define the
associated Bellman function

Bp(f, F, L)

= sup

{
1

|Q|

∫
Q

(Mdφ)p :
1

|Q|

∫
Q

φ = f,
1

|Q|

∫
Q

φp = F, sup
R:Q⊆R

1

|R|

∫
R

φ = L

}
.

Here Q is a fixed dyadic cube, the variables f, F, L satisfy 0 < f ≤ L, fp ≤ F and
the supremum is taken over all nonnegative functions φ ∈ Lp(Q) and all dyadic
cubes R containing Q. Alternatively, the formula above can be rewritten as

Bp(f, F, L) = sup

{
1

|Q|

∫
Q

max{Mdφ,L}p :
1

|Q|

∫
Q

φ = f,
1

|Q|

∫
Q

φp = F

}
.

By a standard dilation argument, we see that Bp is independent of Q. The con-
nection between this function and the Lp-boundedness ofMd is evident: the iden-
tification of the explicit formula for Bp provides a sharp refinement of the Hardy-
Littlewood-Doob maximal inequality

(1.1) ||Mdφ||p ≤
p

p− 1
||φ||p.

It is shown in [9] that Bp(f, F, L) ≤ qpF −pqfLp−1 +pLp, which implies (1.1). The
discovery of the explicit formula for Bp is due to Melas: the proof in [4] exploits deep
combinatorial properties of the operatorMd. An alternative approach, based on the
solution of the underlying Monge–Ampère PDE, can be found in the paper [16] by
Slavin, Stokolos and Vasyunin. Actually, Melas works in the more general setting
of maximal operators MT associated with tree-like structure T . To introduce
the necessary notions, assume that (X,µ) is a nonatomic probability space. Two
measurable subsets A, B of X are said to be almost disjoint if µ(A ∩B) = 0.

Definition 1.1. A set T of measurable subsets of X will be called a tree if the
following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there is a finite subset C(I) ⊂ T containing at least two
elements such that

(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
I∈T m C(I).

(iv) We have limm→∞ supI∈Tm µ(I) = 0.

Any probability space equipped with a tree gives rise to the corresponding max-
imal operator MT , given by

MT φ(x) = sup

{
1

µ(I)

∫
I

|φ(u)|dµ(u) : x ∈ I, I ∈ T
}
.
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Now one extends the definition of Bp as follows:

Bp(f, F, L) = sup

{∫
X

max{MT φ,L}pdµ :

∫
X

φdµ = f,

∫
X

φpdµ = F

}
,

defined, as previously, for f, F, L satisfying 0 < f ≤ L and fp ≤ F . It is clear that
this generalizes the dyadic setting studied previously: simply take X to be equal to
a certain dyadic cube Q, let µ denote the normalized Lebesgue’s measure and take
T to be the class of all dyadic sub-cubes of Q.

One of the main results of [4] asserts that

(1.2) Bp(f, F, L) =

Fwp
(
pLp−1f−(p−1)Lp

F

)p
if L < p

p−1f,

Lp +
(

p
p−1

)p
(F − fp) if L ≥ p

p−1f,

where wp : [0, 1]→ [1, p/(p− 1)] is the inverse to Hp(z) = −(p− 1)zp + pzp−1. This
formula does not depend on T , so in particular it holds true in the above dyadic
setting as well.

We will show how the aforementioned splitting argument leads to a yet another
proof of (1.2). The idea is as follows: instead of studying the complicated, three-
dimensional Bp, we will search for a certain family (Bc,p)c≥0 of simpler functions
depending on two variables only. This family, roughly speaking, arises from moving
the assumption

∫
X
φpdµ = F appearing in the definition of Bp(f, F, L) into the

optimized expression (cf. Section 2 below). The second step of the analysis is to
optimize over the parameter c to obtain Bp: see Section 3 for the details.

We would like to point out here that the argument works fine also in other
settings as well. For instance, we have successfully applied it to obtain Burkholder’s
function corresponding to Lp estimates for martingale transforms (see [13]). The
range of potential applications is much wider. See Section 4 for more information.

2. A family of related Bellman functions

For any c ≥ 0, introduce the function

Bc,p(f, L) = sup

{∫
X

[
max{MT φ,L}p − cpφp

]
dµ : φ ∈ Lp+(X),

∫
X

φ dµ = f

}
,

given for 0 ≤ f ≤ L. Comparing this to the definition of Bp(f, F, L), we see that we
have removed the assumption

∫
X
φpdµ = F ; instead, we have plugged −cp

∫
X
φpdµ

into the optimized expression. As the result, we have got rid of the dependence on
F : the function above is truly two-dimensional.

In the statement below, we provide the explicit formulas for Bc,p. For the sketch
of some steps leading to the discovery of these, see Remark 2.4 below.

Theorem 2.1. If c < p/(p− 1), then

(2.1) Bc,p(f, L) =∞, for all f, L.

If c ≥ p/(p− 1), then

(2.2) Bc,p(f, L) =

{
γ
γ−1

[
Lp − p

p−1L
p−1f

]
if L ≤ γf,

Lp − cpfp if L > γf,

where γ is the unique number from the interval (1, p/(p− 1)] satisfying

(2.3) (p− 1)(γ − 1) =
(γ
c

)p
.
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For any f, L ≥ 0, denote by Bc,p(f, L) the right-hand side of (2.1) or (2.2),
depending on whether c < p/(p − 1) or c ≥ p/(p − 1). In the proof of the above
theorem, we will require the following properties of Bc,p.

Lemma 2.2. Suppose that c ≥ p/(p− 1).
(i) The function Bc,p is continuous on the first quadrant and of class C1 in its

interior.
(ii) For any x, z ≥ 0 we have the majorization

Bc,p(x, z) ≥ zp − cpxp.

(iii) For any x, y ≥ 0 and z ≥ x we have

(2.4) Bc,p(y,max{y, z}) ≤ Bc,p(x, z) +
∂Bc,p(x, z)

∂x
(y − x).

Proof. (i) This is straightforward: the details are left to the reader.
(ii) Clearly, we only need to handle the case z ≤ γx. By (2.3), we have cp =

γp(p− 1)−1(γ − 1)−1, and the majorization can be rewritten in the form

(γx)p

p
+

(p− 1)zp

p
≥ zp−1 · (γx).

This bound follows directly from Young’s inequality.
(iii) For a fixed z, the left-hand side of (2.4), considered as a function of y ∈

[0, z], is concave, while the right hand side is linear; furthermore, both expressions
agree, along with their derivatives, at y = x. This establishes the inequality for
y ≤ z; suppose then, that y is larger than z. Using the aforementioned concavity of
Bc,p(·, z) on [0, z] (which implies that the right-hand side of (2.4) is a nonincreasing
function of x), we see that it suffices to show the estimate for x = z. Then the
bound is equivalent to yp − zp ≥ pzp−1(y − z), which follows at once from the
mean-value theorem. �

We are ready for the proof of Theorem 2.1. We start with the upper bound for
the function Bc,p.

Proof of the inequality Bc,p ≤ Bc,p. Of course, it suffices to establish the claim for
c ≥ p/(p− 1). The proof is a slight modification of the arguments presented in [9].
Let φ be an arbitrary p-integrable function on X with mean f , and introduce the
sequences (φn)n≥0, (Mn

T φ)n≥0 of measurable functions on X as follows. Given an
integer n, an element E of Tn and a point x ∈ E, set

φn(x) =
1

µ(E)

∫
E

φ(t)dµ(t),

Mn
T φ(x) = sup

{
1

µ(I)

∫
I

|φ(u)|dµ(u) : x ∈ I, I ∈ Tk for some k ≤ n
}
.

In other words, Mn
T φ describes the action on φ of a maximal operator associated

with the truncated tree (T0, T1, . . . , Tn−1, Tn, Tn, Tn, . . .). Observe that if n, E are
as above, and E1, E2, . . ., Em are the elements of Tn+1 whose union is E, then

(2.5)
1

µ(E)

∫
E

φn(t)dµ(t) =

m∑
i=1

µ(Ei)

µ(E)
· 1

µ(Ei)

∫
Ei

φn+1(t)dµ(t).
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Consequently, for any L ≥ f we have∫
E

Bc,p(φn(t),max {Mn
T φ(t), L})dµ(t)

≥
∫
E

Bc,p(φn+1(t),max
{
Mn+1
T φ(t), L

}
)dµ(t).

(2.6)

Indeed, we have Mn+1
T φ = max{Mn

T φ, φn+1}, so by (2.4), applied to x = φn(t),
y = φn+1(t) and z = max {Mn

T φ(t), L} (for some t ∈ E), we obtain

Bc,p(φn+1,max
{
Mn+1
T φ,L

}
)

≤ Bc,p(φn,max {Mn
T φ,L}) +

∂Bc,p(φn,max {Mn
T φ,L})

∂x
(φn+1 − φn)

(2.7)

on E. It suffices to integrate both sides over E and use (2.5) to get (2.6). Summing
over all E ∈ Tn, we see that∫

X

Bc,p(φn,max {Mn
T φ,L})dµ ≥

∫
X

Bc,p(φn+1,max
{
Mn+1
T φ,L

}
)dµ

and therefore, by induction,∫
X

Bc,p(φ0,max
{
M0
T φ,L

}
)dµ ≥

∫
X

Bc,p(φn,max {Mn
T φ,L})dµ.

However, we have M0
T φ = φ0 ≡

∫
X
φdµ = f . Thus, the left-hand side equals

Bc,p(f,max{f, L}) = Bc,p(f, L), while the right can be bounded from below with
the use of Lemma 2.2 (ii). As the result, we obtain∫

X

[
max {Mn

T φ,L}
]p

dµ ≤ cp
∫
X

φpndµ+Bc,p(f, L) ≤ cp
∫
X

φpdµ+Bc,p(f, L),

where in the last line we have exploited Jensen’s inequality. Letting n → ∞ and
using Fatou’s lemma, we obtain∫

X

[
max {MT φ,L}

]p
dµ− cp

∫
X

φpdµ ≤ Bc,p(f, L),

Taking the supremum over all φ yields the desired bound Bc,p(f, L) ≤ Bc,p(f, L).
�

The proof of the reverse bound for Bc,p rests on the construction of appropriate
examples. We will need a lemma, which can be found in [4].

Lemma 2.3. For every I ∈ T and every α ∈ (0, 1) there is a subfamily F (I) ⊂ T
consisting of pairwise almost disjoint subsets of I such that

µ

 ⋃
J∈F (I)

J

 =
∑

J∈F (I)

µ(J) = αµ(I).

Proof of the inequality Bc,p ≥ Bc,p. Suppose first that c ≥ p/(p − 1). If L ≥ γf ,
then the estimate is obvious: in the definition of Bc,p consider the constant function
φ ≡ f . When L < γf , the construction of the extremal function is more involved.
The idea is to find φ such that for each n, both sides of (2.7) are asymptotically
equal. To give the precise definition, pick arbitrary γ′ ∈ (L/f, γ) and δ > 0. By an
inductive use of Lemma 2.3, there is a sequence X = A0 ⊃ A1 ⊃ A2 ⊃ . . . satisfying
the following properties:
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(i) For each k, Ak is a union of certain pairwise disjoint subsets from T : we
have Ak =

⋃
Fk for some Fk ⊂ T .

(ii) We have

µ(A1) =
fγ′ − L
L(γ′ − 1)

.

(iii) For any k ≥ 1 and any I ∈ Fk,

µ(Ak+1 ∩ I)

µ(I)
=

γ′ − 1

γ′ − 1 + δγ′
.

In particular, condition (iii) implies that µ(Ak+1) = γ′−1
γ′−1+δγ′µ(Ak) for k ≥ 1, so

µ(Ak \Ak+1) =
δγ′

γ′ − 1 + δγ′
µ(Ak)

=
δγ′

γ′ − 1 + δγ′

(
γ′ − 1

γ′ − 1 + δγ′

)k−1

µ(A1)

=
δγ′

γ′ − 1 + δγ′

(
γ′ − 1

γ′ − 1 + δγ′

)k−1
fγ′ − L
L(γ′ − 1)

.

(2.8)

Next, consider the function

φ =
L

γ′
χA0\A1

+
L

γ′

∞∑
k=1

(1 + δ)k−1χAk\Ak+1
.

Then we compute that∫
X

φpdµ =
L− f

L(1− 1/γ′)

(
L

γ′

)p
+

fγ′ − L
L(γ′ − 1)

(
L

γ′

)p ∞∑
k=1

(1 + δ)(k−1)p

(
γ′ − 1

γ′ − 1 + δγ′

)k−1
δγ′

γ′ − 1 + δγ′

δ→0−−−→ Lγ′ − fγ′

L(γ′ − 1)

(
L

γ′

)p
+

fγ′ − L
L(γ′ − 1)

(
L

γ′

)p
γ′

γ′ − p(γ′ − 1)
.

The same chain of calculations shows that
∫
X
φdµ = f (this time for all δ, without

passing to the limit). Furthermore, for any n ≥ 1,∫
An

φdµ =
L

γ′

∞∑
k=n

(1 + δ)k−1 δγ′

γ′ − 1 + δγ′

(
γ′ − 1

γ′ − 1 + δγ′

)k−1
fγ′ − L
L(γ′ − 1)

=
fγ′ − L
γ′ − 1

(1 + δ)n−1

(
γ′ − 1

γ′ − 1 + δγ′

)n−1

and, by (2.8),

µ(An) =

(
γ′ − 1

γ′ − 1 + δγ′

)n−1
fγ′ − L
L(γ′ − 1)

,

so we get that
1

µ(An)

∫
An

φdµ = L(1 + δ)n−1.

This implies a slightly stronger statement. Namely, for any n ≥ 1 and any I ∈ Fn,

1

µ(I)

∫
I

φ dµ = L(1 + δ)n−1.
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Indeed, by (ii), (iii) and the definition of φ, the conditional distribution of φ is the
same on each I ∈ Fn (i.e., µ({x ∈ I : φ(x) ≥ λ})/µ(I) does not depend on I, but
only on the “level” n to which I belongs). Therefore the above equality holds, and
it implies that MT φ ≥ L(1 + δ)n−1 on An, n ≥ 1. Hence, comparing this to the
definition of φ, we obtain the pointwise bound MT φ ≥ γ′φ on A1, and thus

(2.9) max{MT φ,L} ≥ γ′φ on X

(note that the use of the function max{·, L} is necessary to guarantee this inequality
on the set X \A1). Consequently,∫

X

[
max{MT φ,L}p − cpφp

]
dµ ≥ ((γ′)p − cp)

∫
X

φpdµ.

Plugging the above formula for
∫
X
φpdµ and letting δ → 0, we conclude that

(2.10) Bc,p(f, L) ≥

(
1−

(
c
γ′

)p)
Lp−1γ′

γ′ − 1

[
L− f +

(
f − L

γ′

)
γ′

p− (p− 1)γ′

]
.

Now let γ′ → γ, and combine it with the equality(
c

γ

)p
=

1

(p− 1)(γ − 1)
,

which follows from (2.3). Then, after some tedious, but straightforward calcula-
tions, we obtain Bc,p(f, L) ≥ Bc,p(f, L).

It remains to consider the case c < p/(p − 1). Let us first assume that L <
pf/(p − 1). Consider the same examples as previously; then, by (2.10), we get
Bc,p(f, L) = ∞, simply by letting γ′ → p/(p − 1). To see that Bc,p is infinite for
L ≥ pf/(p − 1), use the fact that for any fixed f , the function L 7→ Bc,p(f, L)
is nondecreasing (which follows from the very definition of Bc,p) and the fact that
Bc,p(f, L) =∞ for L ∈ [f, pf/(p−1)), as we have just shown. The claim follows. �

Remark 2.4. Let us briefly describe the informal reasoning which leads to the
discovery of the formula for Bc,p. We start from the observation that this function
is homogeneous of order p (which follows from the very definition). How to proceed
further? The key is to search for a function which satisfies the properties listed in
Lemma 2.2. Then (2.4) implies that

(2.11) for any z > 0, Bc,p(·, z) is convex on [0, z]

and (taking x = z and letting y ↓ z)

(2.12)
∂Bc,p
∂z

(z, z) ≤ 0 for any z > 0.

The first idea is just to take Bc,p(x, z) = zp − cpxp: this function satisfies the
majorization and (2.11). Unfortunately, the condition (2.12) does not hold and
hence the function Bc,p must be raised a little bit in the neighborhood of the
diagonal {(z, z) : z > 0}. By homogeneity, we have only one reasonable candidate:
there must be some γ > 1 such that for any z > 0,

Bc,p(x, z) =

{
zp − cpxp if z ≥ γx,
linear in x if z ≤ γx.



8 ADAM OSȨKOWSKI

Since Bc,p is expected to be of class C1, we compute that

Bc,p(x, z) = zp
(

1−
(
c

γ

)p)
− pcp

(
z

γ

)p−1(
x− z

γ

)
for z ≤ γx.

Now it can be easily verified that (2.12) is equivalent to(γ
c

)p
− (p− 1)(γ − 1) ≤ 0.

If c < p/(p − 1), then no γ > 1 satisfies this estimate: this suggests that Bc,p is
infinite. On the other hand, if c ≥ p/(p − 1), we assume that we actually have
equality above (i.e., (2.3) holds), and this brings us to the right-hand side of (2.2).

3. The formula for Bp

We are ready to deduce the formula for the three-dimensional Bellman function
Bp. Recall that Hp : [1, p/(p− 1)]→ [0, 1] is given by Hp(z) = −(p− 1)zp + pzp−1

and wp stands for its inverse. Denote the right-hand side of (1.2) by Bp. For any
φ satisfying

∫
X
φ = f and

∫
X
φp ≤ F , and any c ≥ p/(p− 1), we may write∫

X

max{MT φ,L}pdµ =

∫
X

[
max{MT φ,L}p − cpφp

]
dµ+ cp

∫
X

φpdµ

≤ Bc,p(f, L) + cpF,

which implies

Bp(f, F, L) ≤ inf
c≥p/(p−1)

{
Bc,p(f, L) + cpF

}
.

We will check that the right-hand side is precisely Bp(f, F, L). First we will deal
with the case L ≥ pf/(p− 1). Then Bc,p(f, L) = Lp − cpfp and hence

inf
c≥p/(p−1)

{
Bc,p(f, L) + cpF

}
= inf
c≥p/(p−1)

{
Lp + cp(F − fp)

}
= Lp +

(
p

p− 1

)p
(F − fp) = Bp(f, F, L),

where in the second equality we have used the bound F ≥ fp. Next, let L <
pf/(p− 1). By (2.3), we have cp = γp(p− 1)−1(γ − 1)−1 for γ ∈ (1, p/(p− 1)], so

Bc,p(f, L) + cpF =

{
Lp + γp(F−fp)

(p−1)(γ−1) if γ < L/f,
γ
γ−1

[
Lp − p

p−1L
p−1f

]
+ γpF

(p−1)(γ−1) if γ ≥ L/f.

We must find the minimal value of the expression on the right, when γ is assumed
to run over the interval (1, p/(p− 1)]. The right-hand side is a continuous function
of γ, and the function γ 7→ γp/(γ−1) is nonincreasing (for γ ≤ p/(p−1)); therefore,
the minimum is attained on the interval [L/f, p/(p − 1)]. A direct differentiation
shows that

d

dγ

[
γ

γ − 1

[
Lp − p

p− 1
Lp−1f

]
+

γpF

(p− 1)(γ − 1)

]
= − 1

(γ − 1)2

[
Lp − p

p− 1
Lp−1f

]
+

(p− 1)γp − pγp−1

(γ − 1)2

F

p− 1
.

The latter expression is negative for γ → L/f , and positive for γ → p/(p − 1) (in
both cases, this follows from the estimate L < pf/(p − 1)). Furthermore, it has a
unique root γ equal to wp

(
(pLp−1f − (p− 1)Lp)/F

)
. Consequently, the minimum
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is attained for this choice of γ, and after some easy computations we get that this
minimal value equals Fγp. This completes the proof of the inequality Bp ≤ Bp.

We turn our attention to the reverse inequality Bp ≥ Bp. We will make use of the
examples constructed in the previous section. Suppose first that L < pf/(p−1) and
let φ be the function of Section 2, corresponding to a certain γ′ ∈ [L/f, p/(p− 1))
and δ > 0. If δ is sufficiently small, then

∫
X
φpdµ can be made arbitrarily close to

Lγ′ − fγ′

L(γ′ − 1)

(
L

γ′

)p
+

fγ′ − L
L(γ′ − 1)

(
L

γ′

)p
γ′

γ′ − p(γ′ − 1)

=
p− 1

p− (p− 1)γ′

(
L

γ′

)p−1 [
p

p− 1
f − L

]
=
pLp−1f − (p− 1)Lp

Hp(γ′)
.

If γ′ = L/f , then the expression equals fp; if γ′ → p/(p − 1), then it tends to
infinity. Thus, there is γ′ for which the expression equals F : this γ′ is precisely
wp((pL

p−1f − (p− 1)Lp)/F ). Hence, for this choice of γ′,

Bp(f, F, L) ≥
∫
X

max{MT φ,L}pdµ.

But max{MT φ,L} ≥ γ′φ (see (2.9)), so

Bp(f, F, L) ≥ (γ′)p
∫
X

φpdµ = F (γ′)p = Fwp

(
pLp−1f − (p− 1)Lp

F

)p
.

It remains to handle the case L ≥ pf/(p − 1). If fp = F , we get the estimate
Bp(f, F, L) ≥ Lp, which is obvious. Suppose then that fp < F , and let us use a
certain modification of the example of the previous section. Namely, take ε > 0,
γ′ ∈ [1, p/(p − 1)) and consider the sequence X = A0 ⊃ A1 ⊃ A2 ⊃ . . . satisfying
(i), (iii) and

(ii’) We have µ(A1) = ε/(L− f + ε).

Introduce the function

φ = (f − δ)χA0\A1
+
L

γ′

∞∑
k=1

(1 + δ)k−1χAk\Ak+1
.

Repeating the preceding calculations, we derive that
∫
X
φdµ = f and∫

X

φpdµ =
L− f

L− f + ε
· (f − ε)p +

ε

L− f + ε

Lp

Hp(γ′)
.

If ε → 0, then the right-hand side tends to fp < F ; thus, it is less than F for
sufficiently small ε. Moreover, if we let γ′ → p/(p − 1), then Hp(γ

′) → 0 and the
right-hand side explodes. Hence, if ε is sufficiently small, then there is γ′ = γ′ε for
which

∫
X
φpdµ = F and limε→0 γ

′
ε = p/(p − 1). However, max{MT φ,L} ≥ L on

A0 \ A1 and, as one easily verifies, max{MT φ,L} ≥ γ′εφ on A1 (repeat the proof
of (2.9)), so∫

X

max{Mφ,L}pdµ ≥ L− f
L− f + ε

· Lp +
ε

L− f + ε

(γ′ε)
pLp

Hp(γ′ε)

=
L− f

L− f + ε
Lp + (γ′ε)

p

(
F − L− f

L− f + ε
(f − ε)p

)
.
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It remains to let ε→ 0 to obtain that

Bp(f, F, L) ≥ Lp +

(
p

p− 1

)p
(F − fp) = Bp(f, F, L).

The proof is complete.

4. Further examples and questions

The considerations presented above concern the analysis of the Lp estimate for
the maximal operator. We would like to conclude the paper by presenting several
related problems for which the above method might work. For the sake of consis-
tence, we will focus on maximal operators; for the probabilistic aspects of these
statements, we refer the interested reader to the survey [13].

Let us take a look at the following four estimates for maximal operators. Firstly,
note that the Lp bounds fail to hold for p = 1, so, as a substitute, one can ask
about sharp versions of the L logL inequalities∫

X

MT φdµ ≤ K
∫
X

(|φ|+ 1) log(|φ|+ 1)dµ+ L.

To be more precise, two questions can be formulated:

(i) For which K there is a universal L <∞ such that the above bound holds?
(ii) For K as in (i), what is the best value L = L(K)?

These questions were answered by Melas [5], who identified the explicit expression
for the associated Bellman function given by

B(f, F, L, k) = sup

{∫
E

max{MT φ,L} dµ :

∫
X

φdµ = f,∫
X

(φ+ 1) log(φ+ 1)dµ ≤ F,

E ⊂ X is measurable, µ(E) = k

}
(as in the Lp case, one easily sees that it is enough to handle nonnegative functions
φ only. We will also exploit this observation in the two remaining bounds as well).

A second problem concerns the related weak-type (p, p) inequalities for MT :

||MT φ||p,∞ ≤ cp||φ||p, 1 ≤ p <∞.

Here ||φ||p,∞ = supλ>0 λ(µ({x ∈ X : |φ(x)| ≥ λ}))1/p denotes the weak p-th norm.
The above inequality was studied by Melas and Nikolidakis in [7] by means of the
associated Bellman function

Bp(f, F, L) = sup

{
µ
(

max{MT φ(x), L} ≥ 1
)

:

∫
X

φdµ = f,

∫
X

φpdµ ≤ F
}
.

The third result is the sharp localized Lp → Lq estimates(∫
E

(MT φ)qdµ

)1/q

≤ Cp,q
(∫

X

|φ|pdµ
)1/p

µ(E)1/q−1/p,
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where 1 ≤ q < p and E runs over all measurable subsets of X. This estimate was
studied by Melas [6]: he found the explicit expression for

B(F, f, L, k) = sup

{∫
E

(max{MT φ,L})qdµ :

∫
X

φdµ = f,

∫
X

φpdµ ≤ F,

E ⊂ X is measurable, µ(E) = k

}
(for a related estimate corresponding to q < 1, see [8]). Finally, let us look at the
following sharp comparison between the weak norms:

||MT φ||p,∞ ≤
p

p− 1
||φ||p,∞, 1 < p <∞.

This bound was obtained by Nikolidakis [12] with the use of the corresponding
Bellman function

Bp(f, F, L) = sup

{
µ
(

max{MT φ(x), L} ≥ 1
)

:

∫
X

φ dµ = f, ||φ||pp,∞ ≤ F
}
.

All the Bellman functions written above were found by the exploitation of certain
combinatorial properties of MT and optimization arguments. Can these objects
be identified with the use of the approach we have developed in the preceding
sections? Some initial calculations made by the author suggest that the answer
may be affirmative.

We can ask similar question concerning the sharp comparison of Lorentz norms

||MT φ||p,q ≤ Cp,q||φ||p,q, 1 ≤ p <∞, 1 ≤ q <∞.
To the best of our knowledge, almost nothing is known about the optimal values
of Cp,q; see [14] for some partial statements. While one can easily write down the
Bellman function corresponding to this estimate, it is absolutely not clear how to
identify the explicit expression for this object. The main problem which makes our
approach fail is that the Lorentz norms are not integral. So, if we consider the
simplified function

Bc,p(f, L) = sup

{∣∣∣∣max{MT φ(x), L}
∣∣∣∣p
p,q
− c||φ||pp,q :

∫
X

φdµ = f

}
,

we cannot express the optimized difference as an integral over X of some object,
and hence we are unable to proceed any further.

However, we would like to mention a paper [15] which does contain some positive
results in the above direction. It was shown here how to adapt the above approach
to obtain the sharp inequality

||MT φ||q ≤
(

p

p− q

)1/q
p

p− 1
||φ||p,∞, 1 ≤ q < p <∞.

As we hope, the arguments used there may be helpful in the study of the above
problems involving the Lorentz norms, but we have been unable to push the calcu-
lations through.
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