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Abstract

Let X, Y be continuous-path martingales satisfying the condition [X,X]t ≥ [Y, Y ]t for
all t ≥ 0. We prove that

|| sup
t≥0

Yt||1 ≤
3
2
|| sup
t≥0
|Xt|||1

and the constant 3/2 is the best possible.
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1. Introduction

The purpose of this note is to prove a sharp inequality for martingales satisfying
certain domination relation. However, to present the motivation and related results from
the literature, we start with the setting of stochastic integrals.

Let (Ω,F ,P) be a probability space, filtered by a non-decreasing right-continuous
family (Ft)t≥0 of sub-σ-fields of F . Let X = (Xt)t≥0 be an adapted right-continuous
martingale with limits from the left, taking values in R, and let Y = H · X be the Itô
integral of H with respect to X. That is, for any t ≥ 0,

Yt = H0X0 +
∫ t

0+

HsdXs.

Here H = (Hs) is a predictable process, taking values in [−1, 1]. The maximal function
and the one-sided maximal function of X are defined by |X|∗ = supt≥0 |Xt| and X∗ =
supt≥0Xt, respectively. We will also use the notation |X|∗s = sup0≤t≤s |Xt| and X∗s =
sup0≤t≤sXt for s ≥ 0. Furthermore, we shall write ||X||p = supt≥0 ||Xt||p for 1 ≤ p ≤ ∞.

We will be interested in comparing the sizes of the maximal functions of X and Y .
Burkholder (1984) introduced a method of handling such inequalities and exploited it
to prove the following.
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Theorem 1.1. Let X and Y be as above. Then

||Y ||1 ≤ γ|| |X|∗ ||1, (1)

where γ = 2.536 . . . is the solution to the equation

3− γ = exp
(

1− γ
2

)
.

The inequality is sharp.

The author showed that if X is assumed to be nonnegative, the optimal constant
in (1) equals 2 + (3e)−1 = 2.1226 . . . (see Osȩkowski (2008)). The following related
inequality

|| Y ∗ ||1 ≤ β|| |X|∗ ||1
was studied in Osȩkowski (2009a). It was proved that the optimal constant β = 2.0856 . . .
is the unique number from (0, 8/3) satisfying

2 log
(

8
3
− β

)
= 1− β.

If, in addition, X ≥ 0, then the best constant decreases to 14/9 = 1.555 . . .. We will
study this inequality under different assumptions. Let X, Y be two (Ft)-martingales on
(Ω,F ,P) and let [X,X] and [Y, Y ] denote their quadratic variation processes, respectively
(see e.g. Chapter VII in Dellacherie and Meyer (1982)). Here we allow the martingales
to be vector-valued: if X takes values in Rν for some ν > 1, then we set [X,X]t =∑ν
j=1[Xj , Xj ]t. We impose the following condition on X and Y :

[Y, Y ]t ≤ [X,X]t for every t ≥ 0. (2)

Note that this holds in the setting of stochastic integrals described above: indeed, for
any t ≥ 0, [X,X]t − [Y, Y ]t =

∫ t
0
(1 − |Hs|2)d[X,X]s ≥ 0. The condition (2) is closely

related to differential subordination: we say that Y is differentially subordinate to X
if the process ([X,X] − [Y, Y ])t≥0 is nonnegative and nondecreasing (see Bañuelos and
Wang (1995) and Wang (1995)).

We are ready to state the main result of the paper.

Theorem 1.2. Suppose that X and Y are continuous-path martingales such that X takes
values in Rν , ν ≥ 1, Y takes values in R and that (2) holds. Then

|| Y ∗ ||1 ≤
3
2
|| |X|∗ ||1 (3)

and the constant is the best possible. It is optimal even if ν = 1, X is a stopped Brownian
motion and Y = H ·X for some predictable H taking values in {−1, 1}.

Some remarks relating the above result to those presented earlier are in order. First,
let us stress that we have the additional continuity of the paths of X and Y . On the other
hand, we see that a sharp inequality for stochastic integrals is extended, with unchanged
constant, to a much more general setting described by (2). It is even less restrictive than
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the differential subordination, the condition which is usually imposed while studying
estimates of this type (see e.g. Wang (1995), Suh (2005) and Osȩkowski (2009b)).

A few words about the organization of the paper. In the proof we exploit Burkholder’s
method: the annouced inequality follows from the existence of a certain special function.
Such an object is introduced in the next section and we establish (3) there. In the final
part of the paper we prove that the constant 3/2 cannot be replaced by a smaller one.

2. Proof of (3)

Let U : Rν × R× (0,∞)× R→ R be given by the formula

U(x, y, z, w) =
(y − w + z)2 − |x|2

2z
+ w − z.

The key properties of this function are listed in the lemma below. The easy proof is
omitted.

Lemma 2.1. (i) We have the majorization

U(x, y, z, w) ≥ w − 3
2
z, (4)

provided |x| ≤ z.
(ii) For any x ∈ Rν , y ∈ R, z > 0 and w > 0,

Uz(x, y, |x|, w) ≤ 0 if |x| 6= 0, (5)

and
Uw(x, y, z, y) = 0. (6)

Proof of (3). We start with a reduction step. Take a positive integer N and consider
the stopping time τN = inf{t :

√
N−2 + |Xt|2 + |Yt| ≥ N}. Let XN , Y N be martingales

given by

XN
t = (Xτ∧N , N

−1)1{τN>0} ∈ Rν+1, Y Nt = Yτ∧N1{τN>0}, t ≥ 0.

Clearly, (2) is valid for these processes. Moreover, it suffices to establish (3) for XN and
Y N . Indeed, having this done, we obtain that ||(Y N )∗||1 ≤ 3

2 (|| |X|∗ ||1 +N−1), and the
inequality for initial X and Y follows from Lebesgue’s monotone convergence theorem
(when N →∞). Thus, we may assume that X and Y are bounded and |X0| is bounded
away from 0. This will guarantee the integrability of all the variables appearing below.

Denote Zt = (Xt, Yt, |X|∗t , Y ∗t ) for t ≥ 0. The function U is of class C2, so we may
apply Itô’s formula to obtain

U(Zt) = U(Z0) + I1 + I2 +
1
2
I3, (7)

where

I1 =
∫ t

0+

Ux(Zs)dXs +
∫ t

0+

Uy(Zs)dYs,
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I2 =
∫ t

0+

Uz(Zs)d|X|∗s +
∫ t

0+

Uw(Zs)dY ∗s ,

I3 =
∫ t

0+

Uxx(Zs)d[X,X]s + 2
∫ t

0+

Uxy(Zs)d[X,Y ]s +
∫ t

0+

Uyy(Zs)d[Y, Y ]s.

Here Ux(Zs) = (Ux1(Zs), Ux2(Zs), . . . , Uxν (Zs)), Uxx(Zs) = (Uxixj (Zs))
ν
i,j=1, Uxy(Zs) =

(Ux1y(Zs), Ux2y(Zs), . . . , Uxνy(Zs)), and we have used the notation∫ t

0+

Uxx(Zs)d[X,X]s =
ν∑

i,j=1

∫ t

0+

Uxixj (Zs)d[Xi, Xj ]s

and similar notation for the second integral in I3. We will show that the expectation
of the right-hand side of (7) is nonpositive. We have that U(Z0) = Y0 − |X0|. By the
properties of stochastic integrals, I1 has mean 0. Furthermore, by the continuity of paths,
the measure dX∗s is concentrated on the set {s : Xs = |X|∗s}, and Uz(Xs, Ys, |X|∗s, Y ∗s ) is
nonpositive there, by (5). Similarly, (6) implies that Uw vanishes on the support of the
measure dY ∗s ; thus I2 ≤ 0. To deal with I3, note that integration by parts, together with
(2) and the fact that the process (1/|X|∗t ) is nonincreasing, yield

I3 = −
∫ t

0+

1
|X|∗s

d([X,X]s − [Y, Y ]s)

=
∫ t

0+

([X,X]s − [Y, Y ]s)d
1
|X|∗s

− [X,X]t − [Y, Y ]t
|X|∗t

+
[X,X]0 − [Y, Y ]0

|X|∗0

≤ [X,X]0 − [Y, Y ]0
|X|∗0

=
|X0|2 − |Y0|2

|X0|
.

Plugging the above estimates to (7) we get

EU(Zt) ≤ E
[
Y0 − |X0|+

|X0|2 − |Y0|2

2|X0|

]
= −E

(|X0| − Y0)2

2|X0|
≤ 0.

It suffices to use (4) and let t→∞ to complete the proof.

3. Sharpness

We will construct an example showing that the constant 3/2 in (3) is optimal. Fix a
positive parameter δ. Suppose that B = (Bt)t≥0 is a one-dimensional Brownian motion
starting from 1 and let (Ft)t≥0 stand for the completion of its natural filtration. Consider
a sequence (τn)n≥0 of stopping times of B, given by τ0 = inf{t : Bt = B∗t /2} and, by
induction, for k = 0, 1, 2, . . .,

τ2k+1 =
{

inf{t > τ2k : Bt/B∗τ0 ∈ {−δ, 1}} if Bτ2k 6= −B∗τ0 ,
τ2k if Bτ2k = −B∗τ0 ,

τ2k+2 =
{

inf{t > τ2k+1 : Bt/B∗τ0 ∈ {−1, 0}} if Bτ2k+1 6= B∗τ0 ,
τ2k+1 if Bτ2k+1 = B∗τ0 .
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Now take τ = limn→∞ τn and observe that τ = inf{t > τ0 : |Bt| = B∗τ0}, which guarantees
the integrability of |B|∗τ : indeed, we have |B|∗τ = B∗τ0 , and the latter random variable
belongs to Lp for any p < 2, see e.g. Wang (1991).

Now let Xt = Bτ∧t for t ≥ 0 and let H = (Ht)t≥0 be a process defined by

Ht = 1[0,τ0)(t) +
∞∑
n=1

(−1)n1[τn−1,τn)(t).

Note that H is predictable and takes values in {−1, 1}. Finally, let Y be the Itô integral
of H with respect to X.

Let us write some elementary facts which follow immediately from the properties of
the Brownian motion. First, we have that P(τ > τ0) = 1 and

P(τ = τ1|Fτ0) = P(Bτ1 = B∗τ0 |Fτ0) =
1 + 2δ

2(1 + δ)
. (8)

Moreover, for n ≥ 1, {τ > τn} = {|Bτk/B∗τ0 | 6= 1 for all k = 1, 2, . . . , n}, which implies
that for k ≥ 1,

P(τ > τ2k−1|Fτ0) =
1
2

(1 + δ)−k(1− δ)k−1, P(τ > τ2k|Fτ0) =
1
2

(1 + δ)−k(1− δ)k.

Hence, for n ≥ 1,

P(τ = τn+1 > τn|Fτ0) =
1
2

(1 + δ)−k−1(1− δ)kδ, (9)

where k = bn/2c.
The second observation is that Y ∗τ0 = B∗τ0 , since Yt = Bt for t ≤ τ0. Furthermore, for

n ≥ 1, on the set {τ > τn} we have

Y ∗τn = Yτn = Bτ0 − (Bτ1 −Bτ0) + (Bτ2 −Bτ1) + . . .+ (−1)n(Bτn −Bτn−1)

= B∗τ0(1 + nδ).

Indeed, the first two summands are B∗τ0/2 and B∗τ0(1/2 + δ), respectively, and the re-
maining n− 1 ones are equal to δB∗τ0 . Thus, we may write that for n ≥ 0,

Y ∗τ ≥ Y ∗τn = B∗τ0(1 + nδ) on the set {τ = τn+1 > τn}. (10)

Now we are ready to estimate the first moment of Y ∗. By (8), (9) and (10),

E(Y ∗|Fτ0) = E(Y ∗τ |Fτ0) ≥ B∗τ0
∞∑
n=0

(1 + nδ)P(τ = τn+1 > τn|F0)

= B∗τ0 ·
6 + 3δ − 3δ2

4 + 4δ
= |X|∗ · 6 + 3δ − 3δ2

4 + 4δ
.

Since δ > 0 was arbitrary, we see that no constant smaller than 3/2 suffices in (3). The
proof is complete.
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