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Abstract. For any 1 < p ≤ q1 < q2 < ∞, we identify the norm of the
dyadic maximal operator on Rn as an operator from Lp,q1 to Lp,q2 . A related
statement for general measure spaces equipped with tree-like structure is also
established. The proof rests on the identi�cation of an explicit formula for the
associated Bellman function, which requires novel ideas due to the non-integral
form of Lorentz norms.

1. Introduction

The motivation for the results of this paper comes from a natural question about
sharp versions of certain Lorentz-norm inequalities for the dyadic maximal operator
on Rn. Recall that this operator is given by the formula

Mdφ(x) = sup

{
1

|Q|

∫
Q

|φ(u)|du : x ∈ Q, Q ⊂ Rn is a dyadic cube

}
,

where φ is a locally integrable function on Rn and the dyadic cubes are those formed
by the grids 2−NZn, N = 0, 1, 2, . . .. The maximal operator is a fundamental
object in analysis and the theory of PDEs (cf. [4, 19]), and the question about its
action on various function spaces (and the size of the associated norms) has gained
a lot of interest in the literature. For example, Md satis�es the weak-type (1, 1)
inequality

(1.1) λ
∣∣ {x ∈ Rn :Mdφ(x) ≥ λ}

∣∣ ≤ ∫
{Mdφ≥λ}

|φ(u)|du

for any φ ∈ L1(Rn) and any λ > 0. This bound is sharp: it is easy to construct
an exemplary non-zero φ for which both sides are equal. Integrating the above
estimate, we obtain the Lp bound

(1.2) ||Mdφ||Lp(Rn) ≤
p

p− 1
||φ||Lp(Rn), 1 < p ≤ ∞,

in which the constant p/(p − 1) is also the best possible. These two results form
a natural starting point for various extensions and numerous applications. Due
to the immense number of results in this direction, we will only mention below
some statements which are closely related to the subject of this paper. First, both
(1.1) and (1.2) hold true in the more general setting of maximal operators MT
on measure spaces equipped with tree-like structure T . Let us brie�y introduce
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the necessary notions. We assume that (Ω, µ) is a nonatomic measure space with
µ(Ω) > 0. Two measurable subsets A, B of Ω are said to be almost disjoint if
µ(A ∩B) = 0.

De�nition 1.1. A set T of measurable subsets of Ω will be called a tree if the
following conditions are satis�ed:

(i) Ω ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there is a �nite subset C(I) ⊂ T such that
(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T m, where T 0 = {Ω} and Tm+1 =

⋃
I∈Tm C(I).

(iv) We have limm→∞ supI∈Tm µ(I) = 0.

If µ(Ω) = 1, i.e., if (Ω, µ) is a probability space, there is one-to-one correspon-
dence between tree structures and atomic �ltrations (σ(T n))n≥0, and all the results
discussed below can be interpreted in terms of martingales and their maximal func-
tions. However, we have decided to present the results from an analytic point of
view only. Although we will formulate the stochastic analogue of our main re-
sult (see Theorem 1.3 below), we restrain ourselves from any further discussion or
applications in this context.

Any measure space equipped with a tree gives rise to the corresponding maximal
operatorMT , given by

MT φ(x) = sup

{
1

µ(I)

∫
I

|φ(u)|dµ(u) : x ∈ I, I ∈ T
}
.

It is easy to describe the interplay between the tree setting and the dyadic coun-
terpart discussed above. Observe that in the dyadic case, it is enough to study
(1.1) and (1.2) for functions supported on the cube [0, 1)n; the passage to general
locally integrable functions follows immediately from straightforward dilation and
translation arguments. It remains to note that the class of dyadic cubes contained
in [0, 1)n forms a tree, and the associated maximal operator coincides with the
dyadic maximal operator (restricted to the functions supported on [0, 1)n). Thus
the setting of trees is indeed more general, and from now on we will work in this
wider context.

Let us present a number of other estimates for the operators MT which have
appeared in the last twenty years. It is well-known that if p = 1, then the inequality

||MT φ||Lp(Ω) ≤ Cp||φ||Lp(Ω)

does not hold with any �nite constant Cp, even in the dyadic case. This gives rise
to the question about an appropriate substitute of this bound. Motivated by the
classical results of Zygmund, Melas [6] proposed an answer in terms of sharp LlogL-
type estimates. The subsequent work [7] concerns another extension of (1.2): the
action of MT , considered as an operator from Lp(Ω) to Lq(Ω) (for 1 ≤ q < p), is
studied there. Speci�cally, among other things, Melas determined the best constant
Cp,q in the following local inequality: for any E ∈ T ,(∫

E

(MT φ)qdµ

)1/q

≤ Cp,q
(∫

Ω

|φ|pdµ
)1/p

µ(E)1/q−1/p.
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The paper [8] by Melas and Nikolidakis extends the above estimate to the wider
range of parameters. It is devoted to the following sharp version of Kolmogorov's
inequality: for any 0 < q < 1 and any E ∈ T ,(∫

E

|MT φ|qdµ
)1/q

≤
(

1

1− q

)1/q (∫
Ω

|φ|dµ
)
µ(E)1/q−1.

Lorentz-norm estimates for MT have also gathered a lot of interest. Let us �rst
provide some necessary background. Recall that if φ is a measurable function on
(Ω, µ), then its nonincreasing rearrangement φ∗ : [0,∞)→ [0,∞) is given by

φ∗(t) = inf

{
s > 0 : µ({x ∈ Ω : |φ(x)| > s}) ≤ t

}
.

Given 0 < p, q <∞, we de�ne the Lorentz space Lp,q = Lp,q(Ω, µ) as the family of
all (equivalence classes of) measurable functions f on Ω such that

‖f‖Lp,q :=

(∫ ∞
0

(
t1/pf∗(t)

)q dt
t

)1/q

.

The space Lp,∞ = Lp,∞(Ω, µ) is de�ned similarly, with the use of the quasinorm

‖f‖Lp,∞ := sup
t>0

t1/pf∗(t).

Melas and Nikolidakis [8] proved that for any 1 < p, q <∞ we have

‖MT φ‖Lp,q(Ω) ≤
p

p− 1
‖φ‖Lp,q .

There is also a related estimate concerning the action of MT between the spaces
Lp,∞ → Lq,r, see [8, 13, 14] for details.

We should point out here that the works cited above contain much more: they
actually identify the explicit formulae for the associated Bellman functions. This
provides a lot of additional information about the action of maximal operators on
the corresponding spaces: for the necessary de�nitions and the explanation of this
fact, consult [5, 9, 10, 12, 17, 18, 20, 21]. See also Section 2 below.

In this paper, we continue this line of research. We will be interested in the
explicit formula for the norm of MT as an operator from Lp,q1(Ω) to Lp,q2(Ω),
where 0 < p <∞ and 0 < q1, q2 <∞. First, observe that if p < 1, then

(1.3) ‖MT ‖Lp,q1→Lp,q2 =∞,

no matter what q1 and q2 are. For p = 1 the identity (1.3) holds as well, unless
q1 = 1 and q2 = ∞ (but this special case has been already discussed in (1.1)).
Therefore, from now on we only consider the case p > 1. Of course, if q1 > q2, then
there are functions satisfying ||φ||Lp,q1 < ∞ and ||MT φ||Lp,q2 ≥ ||φ||Lp,q2 = ∞, so
in this case (1.3) holds as well. Thus, the only notrivial cases left correspond to
1 < p <∞ and 0 < q1 ≤ q2 <∞.

Our approach will allow us to study the case 1 < p ≤ q1 < q2, from now
on we assume that this condition is satis�ed. Set α = q1/p − 1, β = q2/p − 1,
γ = q1(p− 1)/(p(q1 − 1)) and de�ne

Cp,q1,q2 = q
1
q2
1 (q2(q1 − 1))−

1
q1 γ

q2−q1
q1q2

−1

 (q2 − q1)Γ
(
q1q2
q2−q1

)
Γ
(
q2(q1−1)
q2−q1

)
Γ
(

q2
q2−q1

)


q2−q1
q1q2

.
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Our main result can be formulated as follows.

Theorem 1.2. Suppose that 1 < p ≤ q1 < q2 are �xed parameters. Then for any

integrable function φ on Ω,

(1.4) ‖MT φ‖Lp,q2 (Ω) ≤ Cp,q1,q2‖φ‖Lp,q1 (Ω)

and the constant on the right-hand side is the best possible for each individual tree.

There is a probabilistic analogue of this result, which can be expressed in the
language of martingales, and which follows from Theorem 1.2 by straightforward
approximation (the approximation is needed to handle the case of arbitrary �ltra-
tions). For the necessary de�nitions and related results, we refer the reader to the
classical monograph of Doob [2].

Theorem 1.3. Suppose that f = (fn)n≥0 is a martingale on a certain probability

space. Then for any 1 < p ≤ q1 < q2 we have∥∥∥∥ sup
n≥0
|fn|

∥∥∥∥
Lp,q2

≤ Cp,q1,q2‖f‖Lp,q1

and the constant on the right-hand side is the best possible.

As in the papers cited above, our approach will allow us to prove much more:
we will identify the explicit formula for the Bellman function corresponding to
(1.4). It should be emphasized that our proof will not be just a mere repetition of
the reasoning from [5]-[11]. More speci�cally, the argument will exploit a certain
novel modi�cation of Bellman function method combined with combinatorial and
optimization techniques.

We have organized the paper as follows. In the next section we introduce the
abstract special function B corresponding to (1.4). In Section 3 we present an
informal reasoning which leads to the explicit candidate B for the Bellman function.
In Section 4 we prove that this candidate satis�es B ≥ B and, in particular, we
establish the inequality (1.4) there. Section 5 contains the proof of the reverse
estimate B ≤ B, which, in particular, allows us to show that the constant Cp,q1,q2
in (1.4) is indeed the best possible. In the �nal part of the paper, we sketch the
alternative proof of the estimate (1.4), relating it to a certain Hardy's inequality.

Throughout the article, we will not indicate the dependence of the maximal
operator on the underlying tree (which will be clear from the context) and simply
writeM instead ofMT . However, as we shall work with di�erent measure spaces,
we will sometimes use the notationMΩ to emphasize that we study the action of
the maximal operator on functions on Ω. This should not lead to any confusion.

2. An abstract Bellman function

In the literature, estimates for maximal operators have been studied with the
use of various techniques: these include, for example, covering theorems, Calderón-
Zygmund-type decompositions, interpolation, and many more. In this paper we will
exploit the so-called Bellman function method which, roughly speaking, reduces
the problem of proving a given inequality to that of �nding an appropriate special
function which enjoys certain concavity and size conditions. This approach often
allows to identify best constants involved in the estimate under investigation and it
also provides some additional information about the structure of extremizers (i.e.,
functions on which equality is attained, or almost attained). See e.g. [9, 12] for
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the detailed discussion on these facts. In this paper, we will use a certain novel
modi�cation of the method; let us describe it now.

Suppose that x, y are nonnegative numbers and T > 0. Assume further that
q1 ≥ p, so that α ≥ 0. Consider the class C(x, y, T ), which consists of all nonnegative
measurable functions f given on some measure space (Ω, µ) with µ(Ω) = T , such
that

1

T

∫ T

0

f∗(t)dt = x,
1

T

∫ T

0

tα
[
f∗(t)

]q1
dt ≤ y.

Note that we have inequality in the second requirement. We emphasize that the
measure space (Ω, µ) and the tree structure are allowed to vary. By Hölder's in-
equality, we see that if the class C(x, y, T ) is nonempty, then

(2.1) Tαxq1 ≤ γ1−q1y

(recall that γ = q1(p − 1)/(p(q1 − 1))). Actually, the reverse implication is also
true, which can be seen by taking any measure space (Ω, µ) and any function
f : Ω → [0,∞) satisfying f∗(t) = γx(T/t)α/(q1−1) (for the existence of a function
with a prescribed nonincreasing rearrangement, see [4, p. 65] or Lemma 2.3 in [13]).
Note that if equality holds in (2.1), then this is the only choice for f∗.

The abstract Bellman function related to the estimate (1.4) is given by

B(x, y, T ) = sup

{∫ T

0

tβ
[
(Mf)∗(t)

]q2
dt : f ∈ C(x, y, T )

}
for (x, y, T ) ∈ [0,∞)2 × (0,∞) satisfying (2.1). In the next three sections, we will
identify the explicit formula for B. We would like to emphasize here that our proof
will yield a stronger fact. One might consider the above de�nition of C(x, y, T ) and
B for a �xed measure space (Ω, µ) and a tree structure T . We will actually show
that for any such individual choice, the resulting Bellman function is the same.
However, as it will be useful for us to switch the measure spaces and trees at some
points of the proof, we have decided to work under the above de�nitions.

3. A candidate for the Bellman function

Throughout, we assume that q1 ≥ p. We start our search by proving the following
estimate, which can be regarded as a version of main inequality.

Lemma 3.1. For any S, T > 0 and any x, y, c ≥ 0 we have

B
(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥ B(x, y, T ) +

(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

(3.1)

Proof. Take arbitrary measure spaces (Ω, µΩ), (Λ, µΛ) satisfying Ω∩Λ = ∅, µΩ(Ω) =
T , µΛ(Λ) = S, equipped with some tree structures T Ω, T Λ, respectively. Let µΩ∪Λ

be the measure on the space Ω ∪ Λ, given by µΩ∪Λ(A ∪ B) = µΩ(A) + µΛ(B) for
all measurable A ⊆ Ω, B ⊆ Λ. Let c ≥ 0 be a positive number. Suppose that
f : Ω→ [0,∞) satis�es

(3.2)
1

T

∫ T

0

f∗(t)dt = x,
1

T

∫ T

0

tα
[
f∗(t)

]q1
dt ≤ y
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and consider its extension f̃ = fχΩ + cχΛ, a nonnegative function on the measure
space (Ω ∪ Λ, µΩ∪Λ). We compute directly that

(3.3)
1

µΩ∪Λ(Ω ∪ Λ)

∫
Ω∪Λ

f̃dµΩ∪Λ =
Tx+ Sc

T + S

and, since α ≥ 0 (here is the place where we use the assumption q1 ≥ p),

1

µΩ∪Λ(Ω ∪ Λ)

∫ T+S

0

tα[f̃∗(t)]q1dt

≤ 1

µΩ∪Λ(Ω ∪ Λ)

[∫ T

0

tα[f∗(t)]q1dt+

∫ T+S

T

tαcq1dt

]

= (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
.

(3.4)

In other words, we have the inclusion

f̃ ∈ C
(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
.

Now let us study the appropriate Lorentz norm of the maximal function of f̃ . To this
end, we equip the space (Ω∪Λ, µΩ∪Λ) with the tree T Ω∪Λ given by T Ω∪Λ

0 = {Ω∪Λ}
and T Ω∪Λ

n = T Ω
n−1∪T Λ

n−1 for n ≥ 1. To avoid confusion, we will denote byMΩ and
MΩ∪Λ the maximal operators on (Ω, µΩ) and (Ω ∪ Λ, µΩ∪Λ). Of course, we may
write ∫ T+S

0

tβ
[
(MΩ∪Λf̃)∗(t)

]q2
dt

=

∫ T

0

tβ
[
(MΩ∪Λf̃)∗(t)

]q2
dt+

∫ T+S

T

tβ
[
(MΩ∪Λf̃)∗(t)

]q2
dt.

Next, observe that on Ω,

MΩ∪Λf̃ = max

{
MΩf,

1

T + S

∫
Ω∪Λ

f̃dµΩ∪Λ

}
≥MΩf.

Hence (MΩ∪Λf̃)∗ ≥ (MΩf)∗ on (0, T ] and the �rst integral on the right is not

smaller than
∫ T

0
tβ
[
(Mf)∗(t)

]q2
dt. To deal with the second integral, note that

MΩ∪Λf̃ ≥
1

µ(Ω ∪ Λ)

∫
Ω∪Λ

f̃dµΩ∪Λ =
Tx+ Sc

T + S
on Ω ∪ Λ,

and hence∫ T+S

T

tβ
[
(MΩ∪Λf̃)∗(t)

]q2 ≥ (Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

Thus, taking into account the above estimates forMΩ∪Λf̃ and the conditions (3.3),
(3.4), we obtain, by the very de�nition of B,

B
(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥
∫ T

0

tβ
[
(Mf)∗(t)

]q2
dt+

(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.
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Since (Ω, µΩ) was an arbitrary measure space and f was an arbitrary nonnegative
function on Ω satisfying (3.2), we get the claim. �

In what follows, we will also need a certain homogeneity-type property of B.

Lemma 3.2. We have

(3.5) B(x, y, T ) = xq2T β+1ϕ
( y

xq1Tα

)
,

where ϕ(s) = B(1, s, 1).

Proof. Fix an arbitrary measure space (Ω, µ) satisfying µ(Ω) = T and an arbitrary
function f : Ω→ [0,∞) satisfying

1

T

∫ T

0

f∗(t)dt = x,
1

T

∫ T

0

tα
[
f∗(t)

]q1
dt ≤ y.

Then for any λ > 0, the function f̃ = λf satis�es

1

T

∫ T

0

f̃∗(t)dt = λx,
1

T

∫ T

0

tα
[
f̃∗(t)

]q1
dt ≤ λq1y

and ∫ T

0

tβ
[
(Mf̃)∗(t)

]q2
dt = λq2

∫ T

0

tβ
[
(Mf)∗(t)

]q2
dt,

so by the very de�nition of B we obtain

B(λx, λq1y, T ) ≥ λq2
∫ T

0

tβ
[
(Mf)∗(t)

]q2
dt.

Since Ω and f were arbitrary, this gives B(λx, λq1y, T ) ≥ λq2B(x, y, T ). Replacing x,
y, λ with λx, λq1y and λ−1, respectively, we get the reverse bound. Consequently,
we may write

(3.6) B(x, y, T ) = xq2B(1, y/xq1 , T ).

Next, consider the space (Ω, µ̃) := (Ω, µ/λ) with the same tree structure and let f
be as above. We compute that

1

µ̃(Ω)

∫
Ω

fdµ̃ = x

and∫ T/λ

0

tα(f∗µ̃(t))q1dt =
λ−α

T

∫ T/λ

0

tα(f∗µ̃(t/λ))q1dt =
λ−α

T

∫ T

0

tα(f∗(t))q1dt ≤ λ−αy.

SinceM acts identically on the spaces (Ω, µ) and (Ω, µ̃), we have∫ T/λ

0

tβ((Mf)∗µ̃(t))q2dt = λ−β−1

∫ T

0

tβ((Mf)∗µ(t))q2dt

and therefore, by the de�nition of B,

B(x, y/λα, T/λ) ≥ λ−β−1

∫ T

0

tβ((Mf)∗µ(t))q2dt.

Since f was arbitrary, we get B(x, y/λα, T/λ) ≥ λ−β−1B(x, y, T ). Replacing y, T ,
λ with yλ−α, T/λ and λ−1, we obtain the reverse estimate. Combining this with
(3.6), we �nally arrive at

B(x, y, T ) = xq2B(1, y/xq1 , T ) = xq2T β+1B(1, x−q1yT−α, 1),
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which is the desired identity. �

To �nd the candidate for B, we will exploit the �in�nitesimal� version of the main
inequality (3.1), which combined with the identity (3.5) will yield a certain ordinary
di�erential inequality for ϕ. From now on we assume that B is of class C1. We
would like to stress that at this point we may impose any regularity assumption,
since our main purpose is to guess the explicit formula; the rigorous veri�cation
will be postponed to the next section.

Lemma 3.3. The function ϕ = B(1, ·, 1) satis�es

(3.7) ϕ
(
γq1−1

)
=

q1

q2γ

and the di�erential inequality

(3.8) (q1 − 1)

γ −(sϕ′(s)− q2
q1
ϕ(s)

ϕ′(s)

)1/(q1−1)
(sϕ′(s)− q2

q1
ϕ(s)

)
≥ 1.

Proof. To show (3.7), note that the class C(1, γq1−1, 1) contains only one element:
see the discussion below (2.1) (formally: all the elements from the class have the
same nonincreasing rearrangements) and hence the Bellman function can be directly
evaluated. We turn our attention to the di�erential inequality. Put T = x = 1 and
rewrite (3.1) in the form

1

S

[
B
(

1 + Sc

1 + S
, (1 + S)−1

(
y + cq1 · (1 + S)α+1 − 1

α+ 1

)
, 1 + S

)
− B(1, y, 1)

]
≥
(

1 + Sc

1 + S

)q2 (1 + S)β+1 − 1

(β + 1)S
.

Letting S → 0 (and using the assumption that B is of class C1), we get the partial
di�erential inequality

(3.9) (−1 + c)Bx(1, y, 1) + (−y + cq1)By(1, y, 1) + BT (1, y, 1) ≥ 1,

or equivalently

(q2ϕ(y)− q1yϕ
′(y))(c− 1) + ϕ′(y)(cq1 − y) + (β + 1)ϕ(y)− αyϕ′(y) ≥ 1.

Since q2/q1 = (1 + β)/(1 + α), this can be rewritten in the form

(q2ϕ(y)− q1yϕ
′(y))

(
c+

α+ 1

q1
− 1

)
+ ϕ′(y)cq1 ≥ 1.

This estimate holds for all c, we may optimize over this parameter. Putting

c =

(
y − q2ϕ(y)

q1ϕ′(y)

)1/(q1−1)

,

we obtain the desired di�erential inequality. �

Now, let us assume that the di�erential inequality (3.8) is actually an equality.
This leads us to the following candidate for the Bellman function. Namely, let ϕ
be the solution of the di�erential equation (3.8) with the initial condition (3.7) (of
course, we need to show that such a solution exists; this will be done below). Then
the candidate B is obtained via the identity (3.5), i.e.,

(3.10) B(x, y, T ) = xq2T β+1ϕ
( y

xq1Tα

)
.
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4. Proof of B ≤ B

We start the formal analysis by showing that B is well-de�ned. To this end, we
need the rigorous de�nition of ϕ. This will be proved with the help of the following
statement.

Lemma 4.1. For any s > γq1−1 there is a unique u = u(s) ∈ (0, γ) which satis�es

the identity

q2(q1 − 1)

q2 − q1

∫ γ

u

(γ − w)
q1/(q2−q1)

wq1(q1−1)/(q2−q1)+q1−2dw

= (s− uq1−1) (γ − u)
q1/(q2−q1)

uq1(q1−1)/(q2−q1).

(4.1)

Furthermore, lims→γq1−1 u(s) = γ and lims→∞ u(s) = 0.

Proof. For a �xed s, consider the di�erence of the left- and the right-hand side as
a function of u ∈ (0, γ) and denote it by F (u). A bit lengthy computation shows
that

F ′(u) =
q1

q2 − q1
(γ − u)

q2/(q2−q1)−1
uq1(q1−1)/(q2−q1)−1G(u),

where G(u) = s(q1u− q1 + 1 + α)− uq1 . Since G′(u) = q1(s− uq1−1), the function
G is increasing on the interval (0, γ). Note that G(0) = s(−q1 + 1 + α) < 0 and

G (γ) = γ
(
s− γq1−1

)
> 0,

so there is a unique u0 such that the function G is negative on (0, u0) and positive
on (u0, γ). This implies that F decreases on (0, u0) and increases on (u0, γ); since
F (0) > 0 and F (γ) = 0, the existence of u(s) is proved. The limiting behavior of
this function as s→ γq1−1 or s→∞ follows quickly from the de�nition (4.1). �

Letting s→∞ in (4.1) and using the fact that u(s)→ 0, we see that

q2(q1 − 1)

q2 − q1

∫ γ

0

(γ − w)
q1/(q2−q1)

wq1(q1−1)/(q2−q1)+q1−2dw

= γq1/(q2−q1) lim
s→∞

su(s)q1(q1−1)/(q2−q1),

or equivalently,

lim
s→∞

sq2/q1−1u(s)q1−1

=

q2(q1 − 1)

q2 − q1
·

Γ
(

q2
q2−q1

)
Γ
(
q2(q1−1)
q2−q1

)
Γ
(
q1q2
q2−q1

)
q2/q1−1

γq2(q1−1)/q1 ,
(4.2)

by the properties of beta function. We are ready for the proof of the existence of
the function ϕ.

Lemma 4.2. There is an increasing function ϕ :
[
γq1−1,∞

)
→ R, satisfying the

di�erential equation

(4.3) (q1 − 1)

γ −(sϕ′(s)− q2
q1
ϕ(s)

ϕ′(s)

)1/(q1−1)
(sϕ′(s)− q2

q1
ϕ(s)

)
= 1

for s > γq1−1 and the initial condition ϕ
(
γq1−1

)
= q1

q2γ
. Furthermore, we have

ϕ(s) ≤ Cq2p,q1,q2s
q2/q1 for all s.
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Proof. De�ne ϕ by the formula

ϕ(s) =
q1(s− uq1−1(s))

q2(q1 − 1)uq1−1(s)(γ − u(s))
, s > γq1−1,

where u comes from the previous lemma. Some lengthy calculations show that

ϕ′(s) =
1

(q1 − 1)uq1−1(s)(γ − u(s))
=

q2
q1
ϕ(s)

s− uq1−1(s)
.

Consequently, we have u(s) = (s− q2
q1
ϕ(s)/ϕ′(s))1/(q1−1) and (4.3) follows. To prove

the initial condition, recall that by the previous lemma,

lim
s→γq1−1

u(s) = γ

and hence, by the de�nitions of ϕ and u,

lim
s→γq1−1

ϕ(s) = lim
s→γq1−1

q1

∫ γ
u

(γ − w)
q1/(q2−q1)

wq1(q1−1)/(q2−q1)+q1−2dw

(q2 − q1) (γ − u(s))
q2/(q2−q1)

(u(s))q2(q1−1)/(q2−q1)
=

q1

q2γ
,

where in the last line we have used de l'Hospital rule. Finally, to establish the ma-
jorization ϕ(s) ≤ Cq2p,q1,q2s

q2/q1 , one easily shows that the function s 7→ ϕ(s)/sq2/q1

is increasing and converges to Cq2p,q1,q2 as s → ∞. Indeed, by di�erentiation, the
monotonicity follows from the estimate ϕ′(s)s ≥ q2

q1
ϕ(s) (which obviously holds),

and the formula for the limit is a consequence of the de�nition of ϕ and the identity
(4.2). �

Thus we have shown that the candidate B given by (3.10) is well-de�ned. We
turn our attention to its properties.

Lemma 4.3. We have

(4.4) Bx(x, y, T ) · c− x
T

+By(x, y, T ) · c
q1Tα − y

T
+BT (x, y, T ) ≥ xq2T β .

Proof. We will use certain formulas obtained in the previous section. First, note
that we have the following analogue of (3.9):

(4.5) (−1 + c)Bx(1, s, 1) + (−s+ cq1)By(1, s, 1) +BT (1, s, 1) ≥ 1.

To show this, observe that By(1, s, 1) > 0 (since ϕ is an increasing function) and

Bx(1, s, 1) = q2ϕ(s)− q1sϕ
′(s) ≤ 0.

Hence the expression on the left of (4.5), considered as a function of c ≥ 0, attains

its minimum at c = ((−Bx(1, s, 1)/(q1By(1, s, 1))))
1/(q1−1)

. But this minimal value
is equal to 1: this is equivalent to the di�erential equation (4.3), as we have already
checked in the previous section. Hence (4.5) holds; replacing c with cx, we get

(4.6) (−1 + cx)Bx(1, s, 1) + (−y + cq1xq1)By(1, s, 1) +BT (1, s, 1) ≥ 1.

Put s = x−q1yT−α. It follows directly from the de�nition of B that

Bx(x, y, T ) = xq2−1T β+1Bx(1, x−q1yT−α, 1),

By(x, y, T ) = xq2−q1T β+1−αBy(1, x−q1yT−α, 1)

and

BT (x, y, T ) = xq2T βBT (1, x−q1yT−α, 1).



MAXIMAL OPERATOR 11

Combining these identities with (4.6) yields the claim. Let us also record that if

(4.7) c =

(
− Bx(x, y, T )

q1TαBy(x, y, T )

)1/(q1−1)

,

then both sides if (4.4) are equal. This follows from the proof above. �

Now we will show that B satis�es the following main inequality.

Lemma 4.4. For any S, T > 0, any x, y and c ∈ [0, x] we have

B

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥ B(x, y, T ) +

(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

(4.8)

Proof. De�ne auxiliary functions X, Y : [T, S + T ]→ [0,∞) by the formulas

X(t) =
Tx+ (t− T )c

t
, Y (t) =

1

t

(
Ty + cq1 · t

α+1 − Tα+1

α+ 1

)
.

We compute that

d

dt
B(X(t), Y (t), t)

= Bx(X(t), Y (t), t) · T (c− x)

t2

+By(X(t), Y (t), t) ·
(
−Ty + (α+ 1)−1cq1(tα+1 − Tα+1)

t2
+ cq1tα−1

)
+BT (X(t), Y (t), t).

(4.9)

However, by (4.4), the expression

Bx(X(t), Y (t), t) · c−X(t)

t
+By(X(t), Y (t), t) · c

q1tα − Y (t)

t
+BT (X(t), Y (t), t)

is not smaller than X(t)q2tβ . In addition, we have

c−X(t)

t
=
T (c− x)

t2

and
cq1tα − Y (t)

t
= −Ty + (α+ 1)−1cq1(tα+1 − Tα+1)

t2
+ cq1tα−1,

so by (4.9), we obtain

d

dt
B(X(t), Y (t), t) ≥ X(t)q2tβ ≥

(
Tx+ Sc

T + S

)q2
tβ .

Here in the last line we have used the inequality X(t) ≥ (Tx+ Sc)/(T + S), which
is a direct consequence of the assumption c ≤ x. This proves that

B(X(T + S), Y (T + S), T + S) ≥ B(X(T ), Y (T ), T ) +

∫ T+S

T

(
Tx+ Sc

T + S

)q2
tβdt,
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and it remains to use the identities (X(T ), Y (T ), T ) = (x, y, T ) and

(X(T + S), Y (T + S), T + S)

=

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
.

The claim is established. �

Remark 4.5. Later on, we will need to know when both sides of (4.8) are almost
equal. Of course, this is true if we let S → 0, but actually the reasoning from
the previous section allows to extract an �in�nitesimal� version of this statement:
namely, if S → 0 and we let

c =

(
−Bx(X(T ), Y (T ), T )

q1TαBy(X(T ), Y (T ), T )

)1/(q1−1)

,

then the di�erence of the left- and the right-hand side is of order o(S). This follows
from the proof of Lemma 4.3.

We are ready for the proof of the key estimate.

Proof of B ≤ B. Let (Ω, µ) be an arbitrary measure space with µ(Ω) = T and let
f : Ω→ [0,∞) be a measurable function belonging to the class C(x, y, T ).

Step 1. Reductions. If equality holds in (2.1), then there is nothing to prove: we
already know that B = B at such point. So, suppose that we have strict inequality in

(2.1); then by a simple approximation, we may assume that 1
T

∫ T
0
tα[f∗(t)]q1dt < y.

Next, we replace f by an appropriate simple function. To this end, let N be a huge
integer and let g = gN be the conditional expectation of f with respect to T N : that
is, g is constant on each element Q of T N and equal to 1

µ(Q)

∫
Q
fdµ there. Clearly, g

has the same average as f ; furthermore, by Doob's martingale convergence theorem
(and the assumption (iv) on the tree), we have gN → f µ-almost everywhere and
hence also ‖gN‖Lp,q1 → ‖f‖Lp,q1 ; thus in particular gN ∈ C(x, y, T ) provided N
is large enough. Furthermore, MgN ≤ Mf and MgN ↑ Mf . Thus, an upper
estimate for ‖MgN‖Lp,q2 will also imply the same bound for ‖Mf‖Lp,q2 . So, let

N be �xed. Our �nal reduction is that we may assume that gN =
∑M
k=1 akχAk

for some pairwise disjoint sets Ak of the same measure µ(Ω)/M = T/M : this can
be seen by modifying the generation T N so that its elements have (almost) equal
measures and discarding the generations T N+1, T N+2, . . .. From now on, we will
write g instead of gN . We need to prove that

(4.10)

∫ T

0

tβ [(Mg)∗(t)]q2dt ≤ B(x, y, T ).

This will be done by induction.

Step 2. Proof of (4.10) for M = 1. Then both g andMg are constant and equal
to x on Ω and, in addition,

(4.11) y ≥ 1

T

∫ T

0

tα(g∗(t))q1dt = cq1Tα/(α+ 1).
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Note that B ≥ 0, so (4.8) implies

B

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥
(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

So, letting T → 0 we get, by the continuity of B,

B(c, cq1Sα/(α+ 1), S) ≥ cq2Sβ+1/(β + 1).

Now replace c with x, S with T and use the inequality (4.11) together with the
monotonicity of B with respect to the variable y to get

xq2T β+1/(β + 1) ≤ B(x, y, T ).

This is precisely (4.10) (for M = 1).

Step 3. Induction step. It follows from the weak-type inequality for M that
there exists k ∈ {1, 2, . . . ,M} such that Mg = 1

µ(Ω)

∫
Ω
fdµ = x on Ak. Consider

the space Ω̃ = Ω \ Ak equipped with the restricted measure µ and the tree T̃
which consists of all sets of the form A \Ak, A ∈ T , provided that the di�erence is

nonempty. Denote the associated maximal operator by M̃.
Obviously, there is an index m such that g = min g on Am. If k 6= m, then we

replace g with

g̃ = akχAm + amχAk
+

∑
r/∈{k,m}

arχAr ,

i.e., we switch the values of g at the sets Ak and Am. Since µ(Ak) = µ(Am), this
modi�cation does not change the nonincreasing rearrangement of g. On the other
hand, note that on Ak we have

Mg̃ ≥ 1

µ(Ω)

∫
Ω

g̃dµ =
1

µ(Ω)

∫
Ω

gdµ =Mg.

Furthermore, we have

(4.12) M̃ g̃ ≥Mg on Ω \Ak.
Indeed, suppose that u ∈ Ω \ Ak and let A be the element of T containing u such
that

(4.13) Mg =
1

µ(A)

∫
A

gdµ.

There may be many sets A with this property; if this is the case, we choose A
which belongs to T j with j as small as possible. If A ∩ Ak = ∅, then g̃ ≥ g on A
and hence M̃g̃(u) ≥ 1

µ(A)

∫
A
g̃dµ ≥ Mg(u). On the other hand, if Ak ⊂ A, then

1
µ(A)

∫
A
gdµ ≤ x, by the very de�nition of Ak, and hence we must actually have

equality: see (4.13). Hence

M̃g̃(u) ≥ 1

µ(Ω \Ak)

∫
Ω\Ak

g̃dµ ≥ 1

µ(Ω)

∫
Ω

gdµ = x =Mg(u)

and the desired majorization is established. Note that we may apply induction
hypothesis to g̃, obtaining∫ T (M−1)/M

0

tβ
[
(M̃g̃)∗(t)

]q2
dt ≤ B (x̃, ỹ, T (M − 1)/M) ,
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where

x̃ =
1

µ(Ω̃)

∫
Ω̃

g̃dµ, ỹ =
1

µ(Ω̃)

∫ µ(Ω̃)

0

tα(g̃∗(t))q1dt.

Hence

∫ T

0

tβ
[
(Mg)∗(t)

]q2
dt

=

∫ T (M−1)/M

0

tβ
[
(Mg)∗(t)

]q2
dt+

∫ T

T (M−1)/M

tβ
[
(Mg)∗(t)

]q2
dt

≤
∫ T (M−1)/M

0

tβ
[
(M̃g̃)∗(t)

]q2
dt+ xq2(β + 1)−1T β+1

(
1−

(
M − 1

M

)β+1
)

≤ B(x̃, ỹ, T (M − 1)/M) + xq2(β + 1)−1T β+1

(
1−

(
M − 1

M

)β+1
)
.

(4.14)

In the light of (4.8) (applied with x := x̃, y := ỹ, S := T/M , T := T (M − 1)/M
and c := am = min g), the latter expression is not bigger than B(x, y, T ). This
completes the proof of (4.10) and the inequality B ≤ B follows. �

Proof of (1.4). Take any measure space (Ω, µ), any measurable function f : Ω→ R
and set

T = µ(Ω), x =
1

T

∫ T

0

f∗(t)dt, y =
1

T

∫ T

0

tα(f∗(t))q1dt.

Then by Lemma 4.2,

‖Mf‖q2Lp,q2 (Ω,µ) =

∫ T

0

tβ [(Mf(t))∗]q2dt

≤ B(x, y, T ) ≤ xq2T β+1 · Cq2p,q1,q2
( y

xq1Tα

)q2/q1
= Cq2p,q1,q2‖f‖

q2
Lp,q1 .

This completes the proof. �

5. The inequality B ≥ B

It is convenient to split the reasoning into two parts.

5.1. On the search of the extremizer. First we will sketch some steps which
lead to the discovery of extremal function. Let us emphasize here that the argu-
mentation will be informal and brief, its purpose is to discover the formula for the
nonincreasing rearrangement of the appropriate function. From the formal point of
view, the reader might skip this subsection and proceed to the next one; however,
we believe that the contents of this subsection is helpful as it explains the origins
of the complicated formulas which will appear later. The idea is very simple: we
will inspect carefully the above proof of the inequality B ≤ B and try to �nd a
function g for which all the inequalities become (almost) equalities. Fix a huge
integer N (it will be sent to in�nity in a moment). First, we will consider a special
measure space (Ω, µ): the interval (0, 1] with the Lebesgue measure, and equip it
with the tree T , where for any 0 ≤ n ≤ N , the family T n contains the intervals
(0, (N − n)/N ], ((N − n)/N, (N − n+ 1)/N ], . . ., (1− 1/N, 1]. In what follows, we
will assume that g is a nonincreasing function. Then Mg also has this property,
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and hence the function g̃, appearing in the proof of B ≤ B, coincides with g on
its domain (therefore in (4.12) we will have equality). Thus the only inequalities
which must be turned into (almost) equalities is the last passage in (4.14) and the
fact that the �nal expression in (4.14) is not bigger than B(x, y, T ). Let us look
at the second estimate: to see when both sides become almost equal, we go back
to Remark 4.5. This statement suggests that on the interval (m/N, (m+ 1)/N ], g
should equal(

−Bx(X(m/N), Y (m/N),m/N)

q1(m/N)αBy(X(m/N), Y (m/N),m/N)

)1/(q1−1)

= X(m/N)

(
s− q2ϕ(s)

q1ϕ′(s)

)1/(q1−1)

= X(m/N)u(s),

where

X(m/N) =
1

m/N

∫ m/N

0

g(t)dt, Y (m/N) =
1

m/N

∫ m/N

0

tαg(t)q1dt

and s = X−q1(m/N)Y (m/N)(m/N)−α. Now let N → ∞: we obtain that for any
t ∈ (0, 1], we should have

(5.1) ξ(t) :=
g(t)

1
t

∫ t
0
g(r)dr

= u

((
1

t

∫ t

0

g(r)dr

)−q1 (
1

t

∫ t

0

rαg(r)q1dr

)
t−α

)
.

Plug this into the de�nition of u: we get

q2(q1 − 1)

q2 − q1

∫ γ

ξ(t)

(γ − w)
q1/(q2−q1)

wq1(q1−1)/(q2−q1)+q1−2dw

=

(
Y (t)

tαX(t)
− ξ(t)q1−1

)
(γ − ξ(t))q1/(q2−q1)

ξ(t)q1(q1−1)/(q2−q1).

Now we di�erentiate both sides with respect to t. After some lengthy and tedious
computations, we get the equivalent equality I · II = 0, where

I = ξ′(t) +
q2 − q1

q1
· ξ(t) (γ − ξ(t))

t

and II is a certain complicated expression. Assuming that the term I vanishes, we
obtain a simple di�erential equation for ξ, whose general solution is

ξ(t) = γ
(

1 + dtγ
q2−q1

q1

)−1

.

Here d is an arbitrary real number. Having identi�ed ξ, we easily �nd X and g:
since X ′(t) = g(t)/t−X(t)/t, (5.1) implies

d

dt
X(t) = −X(t)

t
+
X(t)ξ(t)

t
.

This is easily solved:

X(t) = ct−α/(q1−1)
(

1 + dtγ
q2−q1

q1

)−q1/(q2−q1)

,

(where c is an arbitrary number) and hence we obtain the following candidate for
the extremizer:

(5.2) g(t) = ct−α/(q1−1)
(

1 + dtγ
q2−q1

q1

)−q2/(q2−q1)

.



16 ADAM OS�KOWSKI AND MATEUSZ RAPICKI

Now, we can choose c and d so that

(5.3)

∫ 1

0

g(t)dt = x and

∫ 1

0

tα(g(t))q1dt = y.

Indeed: we compute that

R(d) :=

∫ 1

0
tα(g(t))q1dt(∫ 1

0
g(t)dt

)q1 =

∫ 1

0
t−α/(q1−1)

(
1 + dtγ

q2−q1
q1

)−q2q1/(q2−q1)

dt(∫ 1

0
t−α/(q1−1)

(
1 + dtγ

q2−q1
q1

)−q2/(q2−q1)

dt

)q1
is a continuous function of d ∈ [0,∞) and

R(0) = γ, lim
d→∞

R(d) =∞.

Therefore, there is d for which R(d) = y/xq1 , and then we choose c so that
∫ 1

0
g = x.

5.2. A formal veri�cation. Now we can prove rigorously the bound B(x, y, T ) ≥
B(x, y, T ). By homogeneity, we may assume that T = 1: that is, we assume
that (Ω, µ) is a probability space. We repeat the above arguments in the reverse
direction. Let g be given by (5.2), where c, d are chosen so that (5.3) holds. Then
a careful inspection of the above arguments (or a direct calculation) shows that the
function

G(t) := B

(
1

t

∫ t

0

g(r)dr,
1

t

∫ t

0

rα(g(r))q1dr, t

)
+

∫ 1

t

rβ
(

1

r

∫ r

0

g(w)dw

)q2
dr

is constant. We have G(1) = B(x, y, 1); let us check how G behaves in the neigh-
borhood of 0. Note that

B

(
1

t

∫ t

0

g(r)dr,
1

t

∫ t

0

rα(g(r))q1dr, t

)
=

(
1

t

∫ t

0

g(r)dr

)q2
tβ+1ϕ(s),

where

s =

(
1

t

∫ t

0

rαg(r)q1dr

)(
1

t

∫ t

0

g(r)dr

)−q1
t−α.

Now if we let t→ 0, then s→ γq1−1 as t→ 0, and the factor(
1

t

∫ t

0

g(r)dr

)q2
tβ+1

converges to zero. Therefore

lim
t→0

G(t) =

∫ 1

0

rβ
(

1

r

∫ r

0

g(w)dw

)q2
dr

and hence we have proved that∫ 1

0

rβ
(

1

r

∫ r

0

g(w)dw

)q2
dr = B(x, y, 1).

Now we return to the general context. Let (Ω, µ) be a nonatomic probability
space equipped with an arbitrary tree structure T . The idea is very simple: we
will construct a random variable f such that the distributions of f and g coincide,

while the distributions ofMf and the function t 7→ 1
t

∫ t
0
g are arbitrarily close. Let

us recall a notion which is frequently used in probability theory.
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De�nition 5.1. Suppose that f1, f2 are two measurable functions on some measure
spaces (Ωi, µi) with µi(Ωi) > 0, i = 1, 2.

(i) Suppose that µ1(Ω1) = µ2(Ω2). The measurable functions f1 : Ω1 → R
and f2 : Ω2 → R are said to have the same distribution, if their nonincreasing
rearrangements coincide: f∗ = g∗.

(ii) Without the assumption µ1(Ω1) = µ2(Ω2), the functions f1 and f2 are said
to have the same conditional distribution, if their nonincreasing rearrangements,
with respect to the normalized measures µ1/µ1(Ω1), µ2/µ2(Ω2), coincide.

We will freely use the fact that if (Ω1, µ1), (Ω2, µ2) are nonatomic measure spaces
with µi(Ωi) > 0, i = 1, 2, then for any measurable function f1 on Ω1, there exists
a measurable function f2 on Ω2 with the same conditional distribution. See [4, p.
65] or Lemma 2.3 in [13].

We will also need the following simple structural fact proved in [5].

Lemma 5.2. For every Q ∈ T and every β ∈ (0, 1) there is a subfamily F (Q) ⊂ T
consisting of pairwise almost disjoint subsets of Q such that

µ

 ⋃
R∈F (Q)

R

 =
∑

R∈F (Q)

µ(R) = βµ(Q).

Now we proceed to the construction. Let N ≥ 2 be a �xed integer.

Step 1. First we use Lemma 5.2 inductively, in order to construct an appropriate
nonincreasing sequence Ω = E0 = E1 ⊃ E2 ⊃ . . . ⊃ EN−1 ⊃ EN = ∅ with
µ(Ej) = 1− j/N for all j, possessing an additional fractal structure. This sequence
corresponds to the sequence [0, 1) ⊃ [0, 1−N−1) ⊃ [0, 1−2N−1) ⊃ . . . ⊃ [0, N−1) ⊃
∅ which appears in the above analysis of g. We use the following recursive argument.
We set E0 = Ω. Suppose that we have constructed the set Ej , for some j ∈
{0, 1, 2, . . . , N − 2}, which is a union of a pairwise almost disjoint family Qj ⊂ T
(clearly, E0 has this property, as it itself belongs to T ). Then, for each element
Q ∈ Qj , we apply Lemma 5.2 with the parameter β = 1 − (N − j)−1, obtaining
an appropriate family F (Q). Then we set Qj+1 =

⋃
Q∈Qj F (Q) and de�ne Ej+1 as

the union of all elements from Qj+1: then

µ(Ej+1) =
∑
Q∈Qj

µ
(⋃

F (Q)
)

= (1− (N − j)−1)µ(Ej) = 1− j + 1

N

and the sets from Qj+1 are pairwise almost disjoint. This procedure gives us
the nonincreasing sequence (Ej)

N
j=0 as above. Note that we can actually prove

a stronger fractal property. Namely, by the construction, for any Q ∈ Qj we have
µ(Q ∩ Ej+1) = µ(Q) · (1− (N − j)−1) and this implies, for each k ≥ j,

(5.4)
µ(Q ∩ Ek)

µ(Q)
=
N − k
N − j

=
|[0, 1− k/N)|
|[0, 1− j/N)|

.

The straightforward inductive proof with respect to k is left to the reader.

Step 2. By the construction, for each j the set Ej \Ej+1 is the union of pairwise
almost disjoint sets Q \ Ej+1, Q ∈ Qj . Let f : Ω → R be a function whose
distribution is uniquely determined by the following requirement: for any j and
any Q ∈ Qj , the function f restricted to Q \ Ej+1 and the function g restricted
to [1 − (j + 1)/N, 1 − j/N) have the same conditional distributions. Hence, if we
�x j and sum over all Q ∈ Qj , we see that the distribution of f restricted to
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Ej \Ej+1 and the distribution of g restricted to [1− (j + 1)/N, 1− j/N) coincide.
Consequently, f and g have the same distribution and hence f ∈ C(x, y, 1).

It remains to handle the maximal functionMf , and this is the place where the
fractal properties will be used. An important observation is that for any j and any
Q ∈ Qj the distribution of f restricted to Q and the distribution of g restricted to
[0, 1− j/N) conditionally coincide; this follows from (5.4). So, in particular,

1

µ(Q)

∫
Q

fdµ =
N

N − j

∫
[0,1−j/N)

g(r)dr.

Consequently, by the de�nition of the maximal function, we obtain

Mf ≥ N

N − j

∫
[0,1−j/N)

g(r)dr on Q,

and since Q ∈ Qj was arbitrary, the above estimate holds on the whole Ej . By the
very de�nition of the nonincreasing rearrangement, this yields

(Mf)∗(t) ≥ 1

t+N−1

∫ t+N−1

0

g(r)dr,

since µ(Ej) = 1− j/N . Therefore,∫ 1

0

tβ
[
(Mf)∗(t)

]q2
dt ≥

∫ 1

0

tβ

(
1

t+N−1

∫ t+N−1

0

g(r)dr

)q2
dr.

By Lebesgue's monotone convergence theorem, the expression on the right con-
verges, as N →∞, to∫ 1

0

tβ
(

1

t

∫ t

0

g(r)dr

)q2
dt = B(x, y, 1).

This, by the very de�nition of B, shows that B(x, y, 1) ≥ B(x, y, 1) and completes
the proof.

6. On an alternative proof of (1.4)

It was pointed out by the Referee that the Lorentz-norm estimate (1.4) can
be established directly, without referring to the Bellman function method. The
purpose of this section is to sketch brie�y the main steps of the argumentation.

We start from an observation concerning the weak-type bound (1.1). Namely, it
is well-known that the probabilistic version of this estimate is equivalent to

(MT φ)∗(t) ≤ 1

t

∫ t

0

φ∗(s)ds for all t ∈ (0, 1].

This inequality is extremely sharp: as we have seen above, for any nonincreasing
and integrable function g and any probability space (Ω, µ) equipped with a tree T ,
there exists a random variable f such that the distributions of f and g coincide,

while the distributions of MT f and t 7→ 1
t

∫ t
0
g are as close as we wish. (For the

probabilistic version of this sharpness, see Dubins and Gilat [3]). This observation
allows to reduce the problem of �nding the sharp constant in (1.4) to the question
about the best constant in a modi�ed Hardy's inequality

(6.1)

(∫ 1

0

t1/p
(

1

t

∫ t

0

g(s)ds

)q1
dt

t

)1/q1

≤ Cp,q1,q2
(∫ 1

0

t1/pgq2(t)
dt

t

)1/q2
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tested against non-increasing functions g; the two constants coincide. The complete
analysis of the latter estimate, for the full range of parameters p, q1, q2 can be found,
for example, in the paper by Persson and Samko [16]. Interestingly, they studied
the inequality for general (i.e., not necessarily monotone) functions and it turns out
that the extremizers are nonincreasing if and only if q1 ≤ q2. In other words, both
approaches - exploiting the Bellman function and that above - allow to obtain the
sharp version of the estimate (1.4) only in this limited range of q1 and q2.

Several comments are in order. The proof of the estimate (6.1) presented in [16]
rests on a number of clever observations and substitutions which reduce the claim
to the classical Bliss' inequality(∫ ∞

0

(∫ x

0

g(t)dt

)q
x−q/p

′−1dx

)1/q

≤ cp,q
(∫ ∞

0

gp(x)dx

)1/p

,

for 1 < p ≤ q <∞. This estimate was established in [1] with the use of the calculus
of variations (see also [15] for an alternative proof). We would like to emphasize that
the reasoning presented in this paper - i.e., the explicit formula for the Bellman
function B - gives more information about the action of maximal operators on
Lorentz spaces: it yields the sharp bound for ‖Mf‖Lp,q2 assuming that ‖f‖Lp,q1

and ‖f‖L1 are known. In addition, we strongly believe that our approach to (1.4) is
of independent interest and connections. To the best of our knowledge, this is the
�rst time when the Bellman function method has been successfully applied in the
study of Lorentz-norm estimates. The approach seems very �exible, which might
enable the uni�ed treatment of related inequalities in other important contexts of
harmonic analysis.
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