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Abstract. Assume that X, Y are continuous-path martingales taking values in R
ν , ν ≥ 1,

such that Y is differentially subordinate to X. The paper contains the proof of the maximal
inequality
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The constant 2 is shown to be the best possible, even in the one-dimensional setting of sto-
chastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s
method and rests on the construction of an appropriate special function.
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1. Introduction

Let (Ω,F ,P) be a complete probability space, filtered by a nondecreasing right-

continuous family (Ft)t≥0 of sub-σ-fields of F . In addition, we assume that F0

contains all the events of probability 0. Let X , Y be two adapted martingales, taking

values in R
ν (where ν is a fixed positive integer) with norm |·| and scalar product 〈·, ·〉.

As usual, we assume that paths of the processes are right-continuous, with limits

from the left. The symbol [X,X ] will stand for the quadratic covariance process

of X , given by [X,X ] =
∑ν

n=1
[Xn, Xn]. Here Xn denotes the n-th coordinate of

X and [Xn, Xn] is the usual square bracket of the real-valued martingale Xn (see

Dellacherie and Meyer [7] for details). In what follows, X∗ = supt≥0 |Xt| will denote
the maximal function of X , we also use the notation X∗

t = sup0≤s≤t |Xs|.
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Throughout the paper we assume that the process Y is differentially subordinate

to X . This concept was originally introduced by Burkholder [3] in the discrete-time

case: a martingale g = (gn)n≥0 is differentially subordinate to f = (fn)n≥0, if for any

n ≥ 0 we have |dgn| ≤ |dfn|. Here df = (dfn)n≥0, dg = (dgn)n≥0 are the difference

sequences of f and g, respectively, given by the equations

fn =

n
∑

k=0

dfk and gn =

n
∑

k=0

dgk, n = 0, 1, 2, . . . .

This domination was extended to the continuous-time setting by Bañuelos and Wang

[2] and Wang [16]. We say that Y is differentially subordinate to X , if the process

([X,X ]t− [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function of t. If we treat

given discrete-time martingales f , g as continuous-time processes (via Xt = f⌊t⌋ and

Yt = g⌊t⌋, t ≥ 0), we see this domination is consistent with the original definition of

Burkholder.

To illustrate this notion, consider the following example. Suppose that X is an

R
ν-valued martingale, H is a predictable process taking values in the interval [−1, 1]

and let Y be given as the stochastic integral Yt = H0X0 +
∫ t

0+
HsdXs, t ≥ 0. Then

Y is differentially subordinate to X : we have

[X,X ]t − [Y, Y ]t = (1−H2
0 )|X0|2 +

∫ t

0+

(1 −H2
s )d[X,X ]s.

Another example for stochastic integrals, which plays an important role in applica-

tions (see e.g. [1], [2], [8]), is the following. Suppose that B is a Brownian motion in

R
ν and H , K are predictable processes taking values in the matrices of dimensions

m× ν and n× ν, respectively. For any t ≥ 0, define

Xt =

∫ t

0+

Hs · dBs and Yt =

∫ t

0+

Ks · dBs.

If the Hilbert-Schmidt norms of H and K satisfy ||Kt||HS ≤ ||Ht||HS for all t > 0,

then Y is differentially subordinate to X : this follows from the identity

[X,X ]t − [Y, Y ]t =

∫ t

0+

(

||Hs||2HS − ||Ks||2HS

)

ds.

The differential subordination implies many interesting inequalities comparing the

sizes of X and Y . A celebrated result of Burkholder gives the following information

on the Lp-norms ||X ||p = supt≥0 ||Xt||p, ||Y ||p = supt≥0 ||Yt||p (see [3], [4], [5] and

[16]).
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Theorem 1.1. Suppose that X , Y are Hilbert-space-valued martingales such that

Y is differentially subordinate to X . Then

(1.1) ||Y ||p ≤ (p∗ − 1)||X ||p, 1 < p < ∞,

where p∗ = max{p, p/(p− 1)}. The constant is the best possible, even if H = R.

For p = 1, the above moment inequality does not hold with any finite constant, but

we have the corresponding weak-type and logarithmic estimates; see [3], [10] and [15].

These bounds above have found numerous applications in many areas of mathematics

(consult, for instance, [1], [2], [8] and [9]). There is a general method, invented by

Burkholder, which enables one not only to establish various estimates of this type,

but is also very efficient in determining the optimal constants in such inequalities.

The technique rests on the construction of an appropriate special function (usually,

quite complicated) and a careful use of its properties. See the survey [5] for the

detailed description of the technique in the discrete-time setting and consult Wang

[16] for the modification in the continuous case.

There is another, very interesting direction in which the results can be extended.

In [6] Burkholder modified his technique so that it could be used to study maximal

inequalities for stochastic integrals. As an application, he proved the following result,

which can be regarded as a version of (1.1) for p = 1.

Theorem 1.2. Suppose that X is a real-valued martingale and Y is the stochastic

integral, with respect to X , of some predictable real-valued process H taking values

in [−1, 1]. Then we have the sharp estimate

(1.2) ||Y ||1 ≤ γ||X∗||1,

where γ = 2.536 . . . is the unique positive number satisfying γ = 3− exp 1−γ
2

.

This result was strengthened by the author to the case in which the first moment

of Y is replaced by the first moment of its maximal function.

Theorem 1.3. Under the assumptions of the above theorem, we have the sharp

inequality

||Y ∗||1 ≤ 3.4351 . . . ||X∗||1.

The precise description of the above constant involves an analysis of a complicated

system of ODE’s. For the details, we refer the reader to [11].

We would like to point out here that both theorems above are valid for real-valued

martingales X , Y such that Y is differentially subordinate to X . However, this is no

longer true when X , Y are assumed to take values in R
2 (cf. [13]).
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We will be interested in the sharp version of Theorem 1.3 for continuous-path

martingales. In general, the best constants in non-maximal inequalities for differen-

tially subordinated martingales do not change when we pass to this more restrictive

setting. See e.g. Section 15 in [3] for the justification of this phenomenon. However,

if we study the maximal estimates, the best constants may be different: for example,

the passage to continuous-time martingales reduces the constant γ in (1.2) to
√
2

(see [12]).

Our main result can be stated as follows.

Theorem 1.4. Suppose that X , Y are continuous-path R
ν-valued martingales

such that Y is differentially subordinate to X . Then

(1.3) ||Y ∗||1 ≤ 2||X∗||1

and the constant is the best possible.

In fact, the constant 2 is optimal even in the one-dimensional setting of stochastic

integrals. More precisely, we will prove that for any κ < 2 there is a stopped

Brownian motion X in R and a predictable process H with values in {−1, 1} such

that the stochastic integral

Yt =

∫ t

0+

HsdXs, t ≥ 0,

satisfies ||Y ∗||1 > κ||X∗||1.
The paper is organized as follows. Our approach exploits Burkholder’s method;

in the next section we introduce the special function corresponding to (1.3), and in

Section 3 we complete the proof of this estimate. Section 4 concerns the optimality

of the constant 2, and in the final part of the paper we sketch some steps which lead

to the discovery of the special function.

2. A special function

A key role in the proof of Theorem 1.4 is played by a special function U defined

on the set

D = {(x, y, z, w) ∈ R
ν × R

ν × (0,∞)× (0,∞) : |x| ≤ z}.

To introduce this function, we distinguish the subdomains D1 −D4 of D, given by

D1 = {(x, y, z, w) ∈ D : w ≤ z},
D2 = {(x, y, z, w) ∈ D : |x|+ |y| < z < w},
D3 = {(x, y, z, w) ∈ D : z ≤ |x|+ |y| < w},
D4 = {(x, y, z, w) ∈ D : z < w ≤ |x|+ |y|}.
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Now, for (x, y, z, w) ∈ D, we define U(x, y, z, w) by











































|y|2 − |x|2 − z2

2z
if (x, y, z, w) ∈ D1,

|y|2 − |x|2 + z2

2z
· e1−w/z + w − 2z if (x, y, z, w) ∈ D2,

(z − |x|) exp
( |x|+ |y| − w

z

)

+ w − 2z if (x, y, z, w) ∈ D3,

(|y| − w + z)2 − |x|2 − 3z2

2z
+ w if (x, y, z, w) ∈ D4.

Lemma 2.1. The function U enjoys the following properties.

(i) It is continuous on D. Furthermore, for a fixed w and z, the function

U(·, ·, w, z) : (x, y) 7→ U(x, y, z, w) is of class C1 on the set {(x, y) ∈ R
ν × R

ν :

0 < |x| < z}.
(ii) For any (x, y, z, w) ∈ D we have the majorization

(2.1) U(x, y, z, w) ≥ w − 2z.

(iii) For any w, z > 0 satisfying w 6= z and any x, y ∈ R
ν such that |x| < z we

have

(2.2) Uz(x, y, z, w) ≤ 0.

Proof. (i) This is straightforward and reduced to a tedious verification that the ap-

propriate limits of U and its partial derivatives match at the common boundaries of

D1, D2, D3 and D4. We leave the details to the reader.

(ii) If (x, y, z, w) ∈ D1, then we use the bounds |y| ≥ 0 and |x| ≤ z to obtain

|y|2 − |x|2 − z2

2z
≥ −z ≥ w − 2z.

If (x, y, z, w) lies in D2, then the majorization follows immediately from the obvious

estimate |y|2 − |x|2 + z2 ≥ 0. If (x, y, z, w) ∈ D3, then (2.1) is trivial. Finally, for

(x, y, z, w) ∈ D4 it suffices to apply the inequalities (|y| −w+ z)2 ≥ 0 and |x| ≤ z to

get the assertion.

(iii) It is easy to check that the assumptions on x, y, z and w imply the existence

of the partial derivative Uz. If (x, y, z, w) belongs to D1, then

Uz(x, y, z, w) =
|x|2 − |y|2 − z2

2z2
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is nonpositive. When (x, y, z, w) ∈ D2, then we derive that

Uz(x, y, z, w) =

[ |x|2 − |y|2
2z2

(

1− w

z

)

+
1

2

(

1 +
w

z

)

]

· e1−w/z − 2

≤
[−z2

2z2

(

1− w

z

)

+
1

2

(

1 +
w

z

)

]

· e1−w/z − 2

=
w

z
e1−w/z − 2 < 0.

Now suppose that (x, y, z, w) ∈ D3. Then

Uz(x, y, z, w) = exp

( |x|+ |y| − w

z

)

·
(

1− (z − |x|) |x| + |y| − w

z2

)

− 2

≤ exp

( |x|+ |y| − w

z

)

·
(

1− |x|+ |y| − w

z

)

− 2 < 0.

Finally, when (x, y, z, w) ∈ D4, then

Uz(x, y, z, w) = − (|y| − w)2

2z2
+

|x|2
2z2

− 1 < −1

2

and we are done. �

To prove the next property, let us introduce an auxiliary function c : D → [0,∞)

given by

c(x, y, z, w) =























z−1 if (x, y, z, w) ∈ D1,

z−1 · e1−w/z if (x, y, z, w) ∈ D2,

z−1 · exp
( |x|+ |y| − w

z

)

if (x, y, z, w) ∈ D3,

z−1 if (x, y, z, w) ∈ D4.

Lemma 2.2. Let x = (x, y, z, w) be a point belonging to the interior of one of the

sets D1, D2, D3 or D4, satisfying |x| · |y| 6= 0. Then for any h, k ∈ R
ν we have

(2.3) 〈Uxx(x)h, h〉+ 2〈Uxy(x)h, k〉+ 〈Uyy(x)k, k〉 ≤ c(x)(|k|2 − |h|2).

Proof. If x belongs to the interior of D1 or D2, the claim is evident; in fact, then

both sides of (2.3) are equal. The most technical part corresponds to the domain

D3. A little computation gives that the left-hand side of (2.3) is equal to c(x)(|k|2 −
|h|2) + I + II, where

I =

( 〈y, k〉2
|y|2 − |k|2

)

· |x|+ |y| − z

2z|y| · exp
( |x|+ |y| − w

z

)

,

II = − |x|
2z2

( 〈x, h〉
|x| − 〈y, k〉

|y|

)2

· exp
( |x|+ |y| − w

z

)

,
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and it suffices to note that both terms above are nonpositive. Finally, if (x, y, z, w)

lies in the interior of D4, then we rewrite the definition of U(x, y, z, w) in the form

U(x, y, z, w) =
|y|2 − |x|2 − 2(w − z)|y|+ (w − z)2 − 3z2

2z
+ w.

If the term −2(w−z)|y| was absent in the numerator, then we would have equality in

(2.3). However, the function (x, y) 7→ −(w− z)|y|/z is concave on R
ν ×R

ν , because

of the inequality w > z. This yields (2.3) and completes the proof. �

The final fact concerning the function U is the following.

Lemma 2.3. For any (x, y, z, w) ∈ D such that 0 < |y| ≤ |x| we have

(2.4) U(x, y, |x|, |y|) ≤ 0.

Proof. This is straightforward: for x, y as above, we have (x, y, |x|, |y|) ∈ D1 and

hence U(x, y, |x|, |y|) = (|y|2 − 2|x|2)/(2|x|) ≤ 0. �

3. Proof of (1.3)

For the reader’s convenience, we have split this section into two parts. In the first

part we present a slight modification of the function U , and then, in the second part,

we use its properties to establish the inequality (1.3).

3.1. A mollified function. The general idea of the proof of (1.3) is to prove that

the process U(X,Y,X∗, Y ∗) is a supermartingale. To show this, it is natural to

try to apply Itô’s formula and use the inequality (2.3) together with the differential

subordination to control the finite variation term. However, things are a little bit

more complicated since the function U does not have the necessary smoothness and

the direct application of Itô’s formula is not permitted. To overcome this difficulty, we

use a standard mollification argument. Pick a radial function g : Rν ×R
ν ×R×R →

[0,∞) of class C∞, supported on the unit ball B of Rν × R
ν × R × R, satisfying

∫

B
g = 1. For a fixed δ > 0 and (x, y, z, w) ∈ D such that |x| > δ and w > 3δ, define

U δ(x, y, z, w)

=

∫

B

U(x+ δu, y + δv, z + 2δ + δr, w − 2δ + δs)g(u, v, r, s) dudvdrds.

This function is of class C∞ and inherits all the crucial properties of U . First of all,

the somewhat surprising summand 2δ on the third coordinate guarantees that U δ is
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well-defined: we have |x + δu| ≤ |z + 2δ + δr| and hence (x + δu, y + δv, z + 2δ +

δr, w − 2δ + δs) falls into the domain of U . By (2.1), we have the majorization

U δ(x, y, z, w) ≥
∫

B

[

(w − 2δ + δs)− 2(z + 2δ + δr)
]

g(u, v, r, s) dudvdrds

= w − 2z − 6δ,
(3.1)

where in the last line we have used the fact that g is radial and has integral 1.

Furthermore, we have

(3.2) U δ
z ≤ 0

on the domain of U δ, which follows directly from (2.2) and integration by parts.

There is a version of this inequality for the partial derivative Uw: if δ is sufficiently

small, then for any (x, y, z, w) ∈ D such that |x| > 3δ and |y| = w > 3δ we have

(3.3) U δ
w(x, y, z, w) ≤ 0.

To show this, we use integration by parts to get

U δ
w(x, y, z, w)

=

∫

B

Uw(x+ δu, y + δv, z + 2δ + δr, w − 2δ + δs)g(u, v, r, s) dudvdrds.

Now, if w − 2δ + δs < z + 2δ + δr, then the integrand vanishes (because then we

have (x+ δu, y+ δv, z + 2δ + δr, w− 2δ+ δs) ∈ D1 and the function U restricted to

D1 does not depend on w). If w − 2δ + δs > z + 2δ + δr, then |x+ δu|+ |y + δv| >
3δ− δ+ |y| − δ ≥ |w− 2δ+ δs|, so the point (x+ δu, y+ δv, z+2δ+ δr, w− 2δ+ δs)

belongs to the interior of D4. Therefore,

Uw(x+ δu, y + δv, z + 2δ + δr, w − 2δ + δs)

=
(w − 2δ + δs)− |y + δv|

z + 2δ + δr
≤ w − 2δ + δs− w + δv

z + 2δ + δr
< 0

and (3.3) is established. Finally, the function U δ inherits the property (2.3). To see

this, fix x = (x, y, z, w) belonging to the domain of U δ. A combination of Lemma

2.1 (i) with integration by parts gives

U δ
xx(x) =

∫

B

Uxx(x + δu, y + δv, z + 2δ + δr, w − 2δ + δs)g(u, v, r, s) dudvdrds
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and similar formulas for the remaining second-order partial derivatives of U δ. Thus,

(3.4) 〈U δ
xx(x)h, h〉+ 2〈U δ

xy(x)h, k〉+ 〈U δ
yy(x)k, k〉 ≤ cδ(x)(|k|2 − |h|2),

where cδ is a nonnegative function given by

cδ(x) =

∫

B

c(x+ δu, y + δv, z + 2δ + δr, w − 2δ + δs)g(u, v, r, s) dudvdrds.

Equipped with the function U δ, we turn to the assertion of Theorem 1.4.

3.2. Proof of (1.3). With no loss of generality we may and do assume that ||X∗||1
is finite, since otherwise there is nothing to prove. Furthermore, we may restrict

ourselves to the setting in which X and Y are bounded away from 0. Indeed, if this

is not the case, then we fix a small positive number a and consider the R
ν+1-valued

martingales X̄ , Ȳ given by X̄t = (Xt, a) Ȳt = (Yt, a) for t ≥ 0. These new processes

are bounded away from 0 and inherit the differential subordination. Having proved

(1.3) for X̄ and Ȳ , we let a → 0 and obtain the desired estimate for the initial pair.

Thus, from now on, we assume that inft≥0 |Xt| and inft≥0 |Yt| are larger than a certain

deterministic constant ε > 0. Fix a large positive integerN and consider the stopping

time τN = inf{t ≥ 0 : |Xt| + |Yt| ≥ N}. Pick δ ∈ (0, ε/3), and apply Itô’s formula

(cf. Revuz and Yor [14]) to U δ composed with the process Z = (X,Y,X∗, Y ∗) to get

U δ(ZτN∧t)− U δ(Z0) = I1 + I2 + I3/2,(3.5)

where

I1 =

∫ τN∧t

0+

U δ
x(Zs) · dXs +

∫ τN∧t

0+

U δ
y (Zs) · dYs,

I2 =

∫ τN∧t

0+

U δ
z (Zs) dX

∗
s +

∫ τN∧t

0+

U δ
w(Zs) dY

∗
s ,

I3 =

∫ τN∧t

0+

U δ
xx(Zs) d[X,X ]s + 2

∫ τN∧t

0+

U δ
xy(Zs) d[X,Y ]s

+

∫ τN∧t

0+

U δ
yy(Zs) d[Y, Y ]s.

Let us analyze the terms I1–I3. We have EI1 = 0, since both the stochastic integrals

are martingales. Next, I2 ≤ 0: by (3.2), we have Uz(Zs) ≤ 0 and hence the first

integral in I2 is nonpositive. Furthermore, for any ω ∈ Ω, the second summand

in I2 is the Lebesgue-Stieltjes integral of U δ
w(Zs(ω)) with respect to the continuous

nondecreasing function s 7→ Y ∗
s (ω). Clearly, the support of the measure generated by
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this function is supported on the set {s : |Ys(ω)| = Y ∗
s (ω)}, on which the integrand

is nonpositive (see (3.3)). This shows that the second integral, and hence the whole

I2, is nonpositive. To deal with I3, fix 0 ≤ s0 < s1 ≤ t. For any ℓ ≥ 0, let

(ηℓi )1≤i≤iℓ be a nondecreasing sequence of stopping times with ηℓ0 = s0, η
ℓ
iℓ

= s1
such that limℓ→∞ max1≤i≤iℓ−1 |ηℓi+1 − ηℓi | = 0. Keeping ℓ fixed, we apply, for each

i = 0, 1, 2, . . . , iℓ, the property (3.4) to x = Xs0 , y = Ys0 , z = X∗
s0 , w = Y ∗

s0 and

h = hℓ
i = XτN∧ηℓ

i+1
−XτN∧ηℓ

i

, k = kℓi = YτN∧ηℓ

i+1
− YτN∧ηℓ

i

. We sum the obtained

iℓ + 1 inequalities and let ℓ → ∞. Using the notation [S, T ]us = [S, T ]u − [S, T ]s, we

may write the result in the form

ν
∑

m=1

ν
∑

n=1

[

U δ
xmxn

(Zs0)[X
m, Xn]τN∧s1

τN∧s0 + 2U δ
xmyn

(Zs0)[X
m, Y n]τN∧s1

τN∧s0

+ U δ
ymyn

(Zs0 )[Y
m, Y n]τN∧s1

τN∧s0

]

≤ cδ(Zs0 )
{

[Y, Y ]τN∧s1
τN∧s0 − [X,X ]τN∧s1

τN∧s0

}

≤ 0,

where the last inequality is due to the differential subordination. Thus I3 ≤ 0, using

a standard approximation of integrals by discrete sums. Plugging all the above facts

into (3.5) and taking expectation of both sides, we obtain E

{

U δ(ZτN∧t)−U δ(Z0)
}

≤
0, or

EU δ(ZτN∧t)1{τN>0} ≤ EU δ(Z0)1{τN>0}.

An application of (3.1) gives

E

(

Y ∗
τN∧t − 2X∗

τN∧t − 6δ
)

1{τN>0} ≤ EU δ(Z0)1{τN>0}.

By the continuity of U , if we let δ → 0, then U δ(Z0) converges to U(Z0) =

U(X0, Y0, |X0|, |Y0|), which is nonpositive (see (2.4)). Therefore, by Lebesgue’s dom-

inated convergence theorem,

EY ∗
τN∧t1{τN>0} ≤ 2EX∗

τN∧t1{τN>0}.

Finally, letting N go to infinity yields (1.3), in light of Lebesgue’s monotone conver-

gence theorem.

4. Sharpness

Now we will construct an appropriate example to show that the constant 2 is

optimal in (1.3). The construction consists of two steps. Let K be a large even

integer and assume that B is a standard one-dimensional Brownian motion starting

from 1.
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Step 1. Introduce a nondecreasing sequence (τn)
K
n=0 of stopping times given by

τ0 ≡ 0 and, inductively,

τn+1 = inf
{

t ≥ τn : Bt ∈ {0, n+ 2}
}

, n = 0, 1, 2, . . . , K − 1.

Define X and Y by

Xt = Bt and Yt =

K−1
∑

n=0

(−1)n(Bτn+1∧t −Bτn∧t)

for t ∈ [0, τK ]. We see that (X,Y ) starts from the point (1, 0) and moves along

the line segment of slope 1, joining the points (0,−1) and (2, 1). If the process

reaches the point (0,−1), it stops (because, directly from the definition, we have

τ1 = τ2 = . . . = τK); if the pair gets to the point (2, 1) first, then it starts to evolve

along the line segment joining (0, 3) and (3, 0) (note that the slope switches to −1).

If (X,Y ) visits (0, 3), the process stops (by similar reasons as above); if it gets to

the other endpoint of the line segment, then the pair begins to move along the line

segment with endpoints (0,−3) and (4, 1), and so on. The first stage ends at time

τK , when (X,Y ) reaches (1 +K, 0) or visits the line x = 0. Observe that if YτK 6= 0

(so (XτK , YτK ) lands on the y-axis), then Y ∗
τK = |YτK | ∈ [X∗

τK − 1, X∗
τK +1], directly

from the construction.

Step 2. Define another nondecreasing sequence (σn)n≥0 of stopping times, given

by σ0 ≡ τK and, by induction,

σ2n+1 = inf

{

t ≥ σ2n : Bt ≤ −|YτK | or Bt ≥
1

2

}

,

σ2n+2 = inf
{

t ≥ σ2n+1 : Bt ≤ 0 or Bt ≥ |YτK |
}

for n = 0, 1, 2, . . .. Clearly, (σn)n≥0 converges almost surely to σ = inf{t ≥ τK :

|Bt| ≥ |YτK |}, which is finite with probability 1. For t > τK , put Xt = Bσ∧t and

Yt =
∞
∑

n=0

(−1)n(Bσn+1∧t −Bσn∧t) · sgnYτK .

The understand what happens during the second stage, observe first that the

process (X,Y ) does not evolve at all when XτK = 1 + K: indeed, then we have

BτK = 1 + K ≥ |Yτk | and hence σ0 = σ1 = σ2 = . . . = σ = τK . Suppose then,

that XτK = 0 and YτK > 0 (if YτK < 0 then the behavior of the pair (X,Y ) is

symmetric). We have that
(

(Xt, Yt)
)

t≥τK
starts from (0, YτK ) and first moves along

the line segment of slope 1, which joins (−YτK , 0) and (1/2, YτK + 1/2). If (X,Y )
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gets to the first endpoint, it stays there forever. If the pair reaches the second

endpoint, then the line segment along which the process evolves changes to the one

with endpoints (YτK , 1) and (0, YτK + 1). If (X,Y ) gets to (YτK , 1) first, then the

evolution stops; otherwise, the pair starts to move along the line segment joining

(−YτK + 1, 1) and (1/2, YτK + 3/2). The pattern is then repeated.

Calculation. We start with some observations which follow from the above con-

struction. First, X is a stopped Brownian motion, Y is an integral with respect to

X , of a predictable process with values in {−1, 1} and both these martingales are

uniformly integrable. Second, we have

(4.1) X∗ = max
{

X∗
τK , sup

t>τK

|Xt|
}

≤ max
{

X∗
τK , |YτK |} ≤ X∗

τK + 1.

Next, a closer look at the second stage shows that the process Y does not change

its sign on the interval [τK ,∞), so E
[

|Yσ|
∣

∣FτK

]

= |YτK | by the martingale property.

Finally, if YτK 6= 0, then

Y ∗ ≥ |Yσ|+ |YτK | − 1

2
,

which combined with the preceding observation yields

EY ∗1{YτK
6=0} ≥ 2E|YτK |1{YτK

6=0} −
1

2
.

However, on {YτK 6=0} we have |YτK | ≥ X∗
τK − 1 (see the last line in the description

of Step 1) and hence

(4.2) EY ∗ ≥ 2EX∗
τK1{YτK 6=0} −

5

2
.

Now, directly from the elementary properties of Brownian motion, we deduce that

P(X∗
τK ≥ s) =











1 if s ∈ [0, 1],

s−1 if s ∈ [0,K + 1],

0 if s > K + 1,

and hence

EX∗
τK =

∫ ∞

0

P(X∗
τK ≥ s)ds = 1 + ln(K + 1),

EX∗
τK1{YτK 6=0} = EX∗

τK − (K + 1)P(X∗
τK = K + 1) = ln(K + 1).

Plugging these identities into (4.2) and applying (4.1) yields

EY ∗

EX∗
≥ 2 ln(K + 1)

2 + ln(K + 1)
− 5

2(1 + ln(K + 1))
,

which can be made arbitrarily close to 2 by taking sufficiently large K. This proves

the desired sharpness.
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5. On the search of the suitable function

Let us sketch some steps which led to the right choice of the optimal constant 2,

and the right guess of the special function U used in the proof of (1.3). We would like

to stress here that the reasoning we present is informal and rests on several intuitive

assumptions. For the sake of clarity, we have split this section into three parts.

5.1. Assumptions. Suppose that β is the best constant in the inequality

||Y ∗||1 ≤ β||X∗||1,

where (X,Y ) runs over the class of all pairs of continuous-path real-valued martin-

gales such that Y is differentially subordinate to X . Of course, this is equivalent to

saying that for such (X,Y ) we have

EV (Xt, Yt, X
∗
t , Y

∗
t ) ≤ 0 for all t ≥ 0,

where V (x, y, z, w) = w − βz. The general idea of Burkholder’s method is to find a

function U , defined on the set {(x, y, z, w) ∈ R×R×[0,∞)×[0,∞) : |x| ≤ z, |y| ≤ w}
and satisfying the following two conditions: first,

(5.1) V (x, y, z, w) ≤ U(x, y, z, w)

and second, that for all X , Y as above,

(5.2) U =
(

U(Xs, Ys, X
∗
s , Y

∗
s )

)

s≥0
is a supermartingale with U0 ≤ 0.

Clearly, the existence of such U yields the desired bound: indeed, then

(5.3) E(Y ∗
t − βX∗

t ) ≤ EUt ≤ EU0 ≤ 0.

How to find the right function? To avoid technical problems, we assume that U is

of class C2. The first observation is that the function V is homogeneous of order 1

and satisfies V (±x,±y, z, w) = V (x, y, z, w); it is reasonable to expect that U also

should have these properties. Thus, the problem of finding U is reduced to that of

finding (x, y, w) 7→ U(x, y, 1, w), 0 ≤ x ≤ 1, 0 ≤ y ≤ w. The next step is to look at

(5.2). In contrast with (5.1), which is of nice analytic form, this condition is more

difficult to capture and thus it is plausible to replace it with possibly weaker set of

pointwise estimates. A glimpse at the proof of (1.3) above suggests to impose the

following requirements. First, for any x, y, z, w such that |x| ≤ z, |y| ≤ w,

(5.4) Uz(x, y, |x|, w) ≤ 0, Uw(x, y, z, |y|) ≤ 0.
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The second assumption is the existence of a nonnegative function c such that for all

x = (x, y, z, w) and all h, k ∈ R,

Uxx(x)h
2 + 2Uxy(x)hk + Uyy(x)k

2 ≤ c(x)(k2 − h2).

This is just the one-dimensional version of (2.3). If we apply it with z = 1 and

h = ±k, we obtain the following consequence: for any fixed w, the function (x, y) 7→
U(x, y, 1, w) is concave along any line segment of slope ±1 contained in the rectangle

[0, 1] × [0, w]. Such concavity is a typical property of Burkholder’s functions (see

the survey [5]); actually, much more can be said. Namely, usually for most (x, y)

there is a (small) line segment of slope 1 or −1, passing through (x, y), such that

the corresponding restriction is linear. Motivated by the properties of the special

function constructed in [11] (where Theorem 1.3 was proved), we assume that

(x, y) 7→ U(x, y, 1, w) is linear along the line segments of slope −1

contained in [0, 1]× [0, w].
(5.5)

The next step is to look at the set D = {(x, y, z, w) : U(x, y, z, w) = V (x, y, z, w)}.
Since β is the best constant in the maximal inequality, there is t ≥ 0 and a pair

(X,Y ) of differentially subordinate martingales for which ||Y ∗
t ||1 and β||X∗

t ||1 are

almost equal. This, in view of (5.3), leads to the natural conjecture that the set D
is nonempty (we expect to have “almost” equality throughout in (5.3), which com-

bined with (5.1) enforces U(Xt, Yt, X
∗
t , Y

∗
t ) ≈ V (Xt, Yt, X

∗
t , Y

∗
t ) with overwhelming

probability). What can be said about the structure of D? No point of the form

(x, y, 1, |y|) can belong to it: otherwise, we exploit (5.4) and find, for any ε > 0, a

number w > |y| such that

U(x, y, 1, w) ≤ U(x, y, 1, |y|) + ε(w − |y|) = |y| − β + ε(w − |y|) < w − β,

a contradiction with (5.1). Furthermore, D cannot contain any point of the form

(x, y, 1, w) with |x| < 1 and |y| < w. Indeed, otherwise, by (5.1) and the afore-

mentioned concavity of U along the line segments of slope ±1 (combined with the

fact that V is constant along these segments) we would obtain that the whole rec-

tangle [−1, 1]× [−|y|, |y|]× {1} × {|y|} would belong to D. In particular, the point

(x, y, 1, |y|) would lie in D, which is impossible, as we have shown above. Therefore,

the set D can only contain the points of the form (x, y, |x|, w) with |y| < w. The

crucial assumption, coming from experimentation, is as follows:

(5.6) if w > 1 and y ≤ w − 1, then (1, y, 1, w) ∈ D.

Finally, we impose the following condition (cf. (5.4))

(5.7) Uw(0, y, 1, |y|) = 0.
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5.2. Deriving U on D2 ∪D3. Introduce the function A(y, w) = U(0, y, 1, w), 0 ≤
y ≤ w. By (5.5), if x, y ≥ 0 and 1 ≤ x+ y ≤ w, then

U(x, y, 1, w) = (1− x)A(y + x,w) + xU(1, y + x− 1, 1, w).

By (5.6), this is equivalent to

(5.8) U(x, y, 1, w) = (1− x)A(y + x,w) + x(w − β).

Since U satisfies the symmetry condition U(x, y, z, w) = U(−x, y, z, w) (this is one

of the assumptions), we get Ux(0, y, 1, w) = 0 and hence, for 1 ≤ y ≤ w we have

Ay(y, w) − A(y, w) + w − β = 0. This differential equation can be easily solved: we

get that

(5.9) A(y, w) = C(w)ey + w − β for y ∈ [1, w],

for some function C to be found. An application of (5.7) yields C′(w)ew + 1 = 0, so

C(w) = e−w +K for some constant K, and hence (5.8) gives

(5.10) U(x, y, 1, w) = (1− x)ex+y−w +K(1− x)ex+y + w − β

provided x ∈ [0, 1], 1 ≤ x+ y ≤ w. Consequently, if (x, y, z, w) ∈ D3, then

U(x, y, z, w) = (z − |x|) exp
( |x|+ |y| − w

z

)

+K(z − x) exp

( |x|+ |y|
z

)

+ w − βz.

In particular, we have U(0, w, 1, w) = 1 +Kew + w − β, so K ≥ 0, since otherwise

(5.1) is violated for large w. On the other hand, we derive that Uz(1, w − 1, 1, w) =

1 +Kew − β, which implies K ≤ 0, since otherwise (5.4) does not hold for large w.

Thus K = 0, and on D3 the function U is given by

U(x, y, z, w) = (z − |x|) exp
( |x|+ |y| − w

z

)

+ w − βz.

Now we will derive the formula for U on D2. For x ∈ [0, 1], define B(x,w) =

U(x, 0, 1, w). Pick x, y ≥ 0 with x+ y ≤ 1 and apply (5.5) to get that

U(x, y, 1, w) =
x

x+ y
B(x+ y, w) +

y

x+ y
A(x+ y, w).

By the symmetry condition U(±x,±y, 1, w) = U(x, y, 1, w), we have Ux(0, y, 1, w) =

Uy(x, 0, 1, w) = 0, which gives the following system of partial differential equations:

B(y, w)

y
− A(y, w)

y
+ Ay(y, w) = 0,(5.11)

A(x,w)

x
− B(x,w)

x
+Bx(x,w) = 0.(5.12)
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Replacing x with y and summing the equations, we get Ay(y, w) + Bx(y, w) = 0,

which implies that A(y, w) + B(y, w) = α for some constant α. Plugging this into

(5.11) gives

Ay(y, w) =
2A(y, w)− α

y
, y ∈ [0, 1].

It is straightforward to solve this: we get A(y, w) = γy2 + α/2 for some constant γ.

Since A is of class C1, comparing this formula with (5.9) yields

A(1, w) = γ +
α

2
= e1−w + w − β, Ay(1, w) = 2γ = e1−w.

Therefore,

A(y, w) =
1

2
e1−wy2 +

e1−w

2
+ w − β, B(x,w) = −1

2
e1−wx2 +

e1−w

2
+ w − β,

so, by (5.10), U(x, y, 1, w) = e1−w(y2−x2+1)/2+w−β. Exploiting the homogeneity

of U , we obtain that on D2,

U(x, y, z, w) =
|y|2 − |x|2 + z2

2z
· e1−w/z + w − βz.

5.3. The formula for U on D1 ∪D4. To find the formula for U on D1, take the

point (x, y, z, w) lying on the boundary of D1 and D2, i.e., satisfying w = z. Then

U(x, y, z, w) =
|y|2 − |x|2 − z2

2z
+ (2− β)z.

We guess that this formula holds true for all (x, y, z, w) ∈ D1. Then for w < 1 we

have Uz(1, 0, 1, w) = 2 − β and hence (5.4) implies β ≥ 2. Assuming equality, we

obtain the function which coincides with the special function of Section 2 on the sets

D1, D2 and D3. Finally, to get the formula on D4, the author experimented with

the expression of the form

(y − F (w, z))2 − x2 − κ1z
2

κ2z
+ w − 2z,

with the function F and the parameters κ1, κ2 to be found. Expressions of this

type appear in many Burkholder’s functions (see [11], [12] and [13]); actually, the

formulas on D1 and D2 are also of similar type. The unknown parameters can be

derived from the fact that U is of class C1; the luck is with us, we are led precisely

to the right formula.

This completes the search.

16



Acknowledgment

The author would like to express his gratitude to the anonymous Referee for the

careful reading of the first version of the paper, and for many helpful comments and

suggestions.

References
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norm. Rossĭıskaya Akademiya Nauk. Algebra i Analiz 15 (2003), 142–158. MR2068982
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