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Abstract. We introduce a method of proving maximal inequalities for Hilbert-

space-valued differentially subordinate local martingales. As an application,
we prove that if X = (Xt)t≥0, Y = (Yt)t≥0 are local martingales such that Y

is differentially subordinate to X, then

||Y ||1 ≤ β|| sup
t≥0
|Xt| ||1,

where β = 2.585 . . . is the best possible.

1. Introduction

Since the works of Kolmogorov, Hardy and Littlewood, Wiener, Doob and many
other mathematicians, maximal inequalities have played an important role in analy-
sis and probability. One of the main goals of this paper is to present a method of
proving such estimates for continuous-time Hilbert-space-valued local martingales
satisfying differential subordination.

We start with introducing the necessary background and notation. Let (Ω,F ,P)
be a complete probability space, filtered by a nondecreasing right-continuous family
(Ft)t≥0 of sub-σ-fields of F . In addition, we assume that F0 contains all the events
of probability 0. Let X, Y be two adapted local martingales, taking values in a
certain separable Hilbert space H with norm | · | and scalar product 〈·, ·〉. With no
loss of generality, we may take H = `2. As usual, we assume that the trajectories
of the processes are right-continuous and have limits from the left. The symbol
[X,X] will stand for the quadratic covariance process of X: this object is given by
[X,X] =

∑∞
n=1[Xn, Xn], where Xn denotes the n-th coordinate of X and [Xn, Xn]

is the usual square bracket of the real-valued martingale Xn (see e.g. Dellacherie
and Meyer [15] for details). In what follows, X∗ = supt≥0 |Xt| will denote the
maximal function of X, we also use the notation X∗t = sup0≤s≤t |Xs|. Furthermore,
for 1 ≤ p ≤ ∞, we shall write ||X||p = supt≥0 ||Xt||p and |||X|||p = supτ ||Xτ ||p,
where the second supremum is taken over all adapted bounded stopping times τ .

Throughout the paper we assume that the process Y is differentially subordinate
to X. This concept was originally introduced by Burkholder [8] in the discrete-time
case: a martingale g = (gn)n≥0 is differentially subordinate to f = (fn)n≥0, if for
any n ≥ 0 we have |dgn| ≤ |dfn|. Here df = (dfn)n≥0, dg = (dgn)n≥0 are the
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difference sequences of f and g, respectively, given by the equations

fn =
n∑
k=0

dfk and gn =
n∑
k=0

dgk, n = 0, 1, 2, . . . .

The extension of the domination to the continuous-time setting is due to Bañuelos
and Wang [3] and Wang [23]. We say that Y is differentially subordinate to X, if
the process ([X,X]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function
of t. If we treat given discrete-time martingales f , g as continuous-time processes
(via Xt = fbtc and Yt = gbtc, t ≥ 0), we see this domination is consistent with
Burkholder’s original definition of differential subordination.

To illustrate this notion, consider the following example. Suppose that X is an
H-valued martingale, H is a predictable process taking values in the interval [−1, 1]
and let Y be given as the stochastic integral Yt = H0X0 +

∫ t
0+
HsdXs, t ≥ 0. Then

Y is differentially subordinate to X: we have

[X,X]t − [Y, Y ]t = (1−H2
0 )|X0|2 +

∫ t

0+

(1−H2
s )d[X,X]s.

Another example for stochastic integrals, which plays an important role in appli-
cations (see e.g. [2], [3], [16]), is the following. Suppose that B is a Brownian
motion in Rd and H, K are predictable processes taking values in the matrices of
dimensions m× d and n× d, respectively. For any t ≥ 0, define

Xt =
∫ t

0+

Hs · dBs and Yt =
∫ t

0+

Ks · dBs.

If the Hilbert-Schmidt norms of H and K satisfy ||Kt||HS ≤ ||Ht||HS for all t > 0,
then Y is differentially subordinate to X: this follows from the identity

[X,X]t − [Y, Y ]t =
∫ t

0+

(
||Hs||2HS − ||Ks||2HS

)
ds.

The differential subordination implies many interesting inequalities comparing
the sizes of X and Y . A celebrated result of Burkholder gives the following infor-
mation on the Lp-norms (see [8], [11], [12], [13] and [23]).

Theorem 1.1. Suppose that X, Y are Hilbert-space-valued local martingales such
that Y is differentially subordinate to X. Then

(1.1) |||Y |||p ≤ (p∗ − 1)|||X|||p, 1 < p <∞,
where p∗ = max{p, p/(p− 1)}. The constant is the best possible, even if H = R.

For p = 1, the above moment inequality does not hold with any finite constant,
but we have the corresponding weak-type (1, 1) estimate. In fact, we have the
following result for a wider range of parameters p, proved by Burkholder [8] for
1 ≤ p ≤ 2 and Suh [22] for p > 2. See also Wang [23].

Theorem 1.2. Suppose that X, Y are Hilbert-space-valued local martingales such
that Y is differentially subordinate to X. Then

P(Y ∗ ≥ 1) ≤ 2
Γ(p+ 1)

|||X|||pp, 1 ≤ p ≤ 2,

and

P(Y ∗ ≥ 1) ≤ pp−1

2
|||X|||pp, 2 < p <∞.
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Both inequalities are sharp, even if H = R.

There are many other related results, see e.g. the papers [3] and [4] by Bañuelos
and Wang, [10] and [13] by Burkholder and consult the references therein. For more
recent works, we refer the interested reader to the papers [18] - [20] by the author,
and [6], [7] by Borichev, Janakiraman and Volberg. The estimates have found
numerous applications in many areas of mathematics, in particular, in the study of
the boundedness of various classes of Fourier multipliers (consult, for instance, [1],
[2], [3], [12], [16] and [17]).

There is a general method, invented by Burkholder, which enables one not only
to establish various estimates for differentially subordinated martingales, but is also
very efficient in determining the optimal constants in such inequalities. The idea
is to construct an appropriate special function, an upper solution to a nonlinear
problem corresponding to the inequality under investigation, and then to exploit its
properties. See the survey [13] for the detailed description of the technique in the
discrete-time setting and consult Wang [23] for the necessary changes which have
to be implemented so that the method worked in the continuous-time setting.

The above results can be extended in another, very interesting direction. Namely,
in the present paper we will be interested in inequalities involving the maximal
functions of X and/or Y . In [14] Burkholder modified his technique so that it
could be used to study such inequalities for stochastic integrals, and applied it to
obtain the following result, which can be regarded as another version of (1.1) for
p = 1.

Theorem 1.3. Suppose that X is a real-valued martingale and Y is the stochastic
integral, with respect to X, of some predictable real-valued process H taking values
in [−1, 1]. Then we have the sharp estimate

(1.2) |||Y |||1 ≤ γ||X∗||1,

where γ = 2.536 . . . is the unique positive number satisfying

γ = 3− exp
1− γ

2
.

As we have already observed above, if X and Y satisfy the assumptions of this
theorem, then Y is differentially subordinate to X. An appropriate modification
of the proof in [14] shows that the assertion is still valid if we impose this less
restrictive condition on the processes. However, the assertion does not hold any
more if we pass from the real to the vector valued case. Here is one of the main
results of this paper.

Theorem 1.4. Suppose that X, Y are Hilbert-space-valued local martingales such
that Y is differentially subordinate to X. Then

(1.3) |||Y |||1 ≤ β||X∗||1,

where β = 2.585 . . . is the unique positive number satisfying

(1.4) β = 2 + log
1 + β

2
.

The constant β is the best possible, even for discrete-time martingales taking values
in a two-dimensional subspace of H.
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This is a very surprising result. In most cases, the inequalities for stochas-
tic integrals of real valued martingales carry over, with unchanged constants, to
the corresponding bounds for vector-valued local martingales satisfying differential
subordination. In other words, given a sharp inequality for H-valued differentially
subordinated martingales, the extremal processes, i.e. those for which the equality
is (almost) attained, can be usually realized as stochastic integrals in which the
integrator takes values in one-dimensional subspace of H. See e.g. the statements
of Theorems 1.1 and 1.2 above. Here the situation is different: the optimal constant
does depend on the dimension of the range of X and Y .

Finally, let us mention here another related result. In general, the best con-
stants in non-maximal inequalities for differentially subordinated local martingales
do not change when we restrict ourselves to continuous-path processes; see e.g.
Section 15 in [8] for the justification of this phenomenon. However, if we study
the maximal estimates, the best constants may be different: for example, the pas-
sage to continuous-path local martingales reduces the constant γ in (1.2) to

√
2.

Specifically, we have the following theorem, which is one of the principal results of
[21].

Theorem 1.5. Assume that X, Y are Hilbert-space-valued, continuous-path local
martingales such that Y is differentially subordinate to X. Then

||Y ||p ≤
√

2
p
||X∗||p, 1 ≤ p ≤ 2,

and
||Y ||p ≤ (p− 1)||X∗||p, 2 < p <∞.

Both inequalities are sharp, even if H = R.

We have organized the paper as follows. The next section is devoted to an
extension of Burkholder’s method. In Section 3 we apply the technique to establish
(1.3). In Section 4 we prove that the constant β cannot be replaced in (1.3) by
a smaller one. The final part of the paper contains the proofs of technical facts
needed in the earlier considerations.

2. On the method of proof

Burkholder’s method from [14] is a powerful tool for proving maximal inequal-
ities for transforms of discrete-time real-valued martingales. Then the results for
the wider setting of stochastic integrals are obtained by the use of approximation
theorems of Bichteler [5]. This approach has the advantage that it avoids prac-
tically all the technicalities which arise naturally in the study of continuous-time
processes. On the other hand, it does not allow to study estimates for (local) mar-
tingales under differential subordination; the purpose of this section is to present a
refinement of the method which can be used to handle such problems.

The general statement is the following. Let V : H×H× [0,∞)× [0,∞)→ R be
a given Borel function and suppose that we want to show the estimate

(2.1) EV (Xt, Yt, X
∗
t , Y

∗
t ) ≤ 0

for any t ≥ 0 and any H-valued local martingales X, Y such that Y is differentially
subordinate to X. Due to some technical reasons, we shall deal with a slightly
different, localized version of (2.1) (see Theorem 2.2 for the precise statement). Let
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D = H ×H × (0,∞) × (0,∞). Introduce the class U(V ), which consists of all C2

functions U : D → R satisfying (2.2)–(2.5) below: for any (x, y, z, w) ∈ D,

U(x, y, z, w) ≤ 0 if |x| ≤ z, |y| ≤ min{|x|, w},(2.2)

(2.3) U(x, y, z, w) ≥ V (x, y, z, w) if |x| ≤ z, |y| ≤ w.

Furthermore, there is a locally bounded measurable function c : D → [0,∞) such
that for all (x, y, z, w) ∈ D with |x| ≤ z, |y| ≤ w and all h, k ∈ H,

〈Uxx(x, y, z, w)h, h〉+ 2〈Uxy(x, y, z, w)h, k〉+ 〈Uyy(x, y, z, w)k, k〉
≤ c(x, y, z, w)(|k|2 − |h|2).

(2.4)

Finally, for all (x, y, z, w) ∈ D with |x| ≤ z, |y| ≤ w and all h, k ∈ H with |k| ≤ |h|,
U(x+ h, y + k, |x+ h| ∨ z, |y + k| ∨ w)

≤ U(x, y, z, w) + 〈Ux(x, y, z, w), h〉+ 〈Uy(x, y, z, w), k〉.
(2.5)

The latter condition implies that

Uz(x, y, z, w) ≤ 0 if |x| = z,

Uw(x, y, z, w) ≤ 0 if |y| = w.
(2.6)

For example, let us establish the bound for Uw. Pick x, y, z, w with |y| = w; by
the continuity of Uw, we may and do assume that |x| < z. Apply (2.5) to x, y, z, w
and h = k = sy for some s > 0. Then, take all the terms on one side, divide
throughout by s and let s → 0. Since |x + sy| ∨ z = z for sufficiently small s and
|y + sy| ∨ w = (1 + s)w for all s > 0, we obtain the second estimate in (2.6); the
bound for Uz is established similarly.

Before we turn to the main result of this section, let us mention here a technical
fact, which will be needed later. Recall that for any semimartingale X there exists
a unique continuous local martingale part Xc of X satisfying Xc

0 = 0 and

[X,X]t = |X0|2 + [Xc, Xc]t +
∑

0<s≤t

|∆Xs|2 for t ≥ 0.

Here ∆Xs = Xs−Xs− is the jump of X at time s. Furthermore, [Xc, Xc] = [X,X]c,
the pathwise continuous part of [X,X]. Here is Lemma 1 of Wang [23].

Lemma 2.1. If X and Y are semimartingales, then Y is differentially subordinate
to X if and only if Y c is differentially subordinate to Xc, |∆Yt| ≤ |∆Xt| for all
t > 0 and |Y0| ≤ |X0|.

We are ready to study the interplay between the class U(V ) and the bound (2.1).

Theorem 2.2. Assume that U(V ) is nonempty and X, Y are Hilbert-space-valued
local martingales such that Y is differentially subordinate to X. Then there is a
nondecreasing sequence (τN )N≥1 of stopping times such that limN→∞ τN =∞ and

(2.7) EV (XτN∧t, YτN∧t, X
∗
τN∧t ∨ ε, Y

∗
τN∧t ∨ ε) ≤ 0

for all N ≥ 1, t > 0 and ε > 0.

Proof. Let (σn)n≥1 be the localizing sequence for X and Y . Fix t > 0, ε > 0,
N ∈ {1, 2, . . .} and let

τN = σN ∧ inf{s > 0 : |Xs|+ |Ys|+ |Xc
s |+ |Y cs | ≥ N}.
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Since Xc
τN∧t is bounded, for any δ > 0 there is D = D(δ,N, t) ≥ 1 such that

(2.8) E
∑
k>D

[Xkc, Xkc]τN∧t = E
∑
k>D

|Xkc
τN∧t|

2 < δ.

For 0 ≤ s ≤ t and d ≥ D, put

X(d)
s = (X1

s , X
2
s , . . . , X

d
s , 0, 0, . . .),

Y (d)
s = (Y 1

s , Y
2
s , . . . , Y

d
s , 0, 0, . . .)

and

Z(d)
s = (X(d)

s , Y (d)
s , X(d)∗

s ∨ ε, Y (d)∗
s ∨ ε).

There is a sequence (TN,j)j≥1 of stopping times with TN,j ↑ τN , localizing the
stochastic integrals

∫
Ux(Z(d)

s− ) · dX(d)
s ,

∫
Uy(Z(d)

s− ) · dY (d)
s . Since X(d), Y (d) take

values in finite-dimensional subspace, we may apply Ito’s formula to get

U(Z(d)
TN,j∧t)− U(Z(d)

0 ) = I1 + I2 + I3/2 + I4,(2.9)

where

I1 =
∫ TN,j∧t

0+

Ux(Z(d)
s− ) · dX(d)

s +
∫ TN,j∧t

0+

Uy(Z(d)
s− ) · dY (d)

s ,

I2 =
∫ TN,j∧t

0+

Uz(Z
(d)
s− ) d(X(d)∗ ∨ ε)cs +

∫ TN,j∧t

0+

Uw(Z(d)
s− ) d(Y (d)∗ ∨ ε)cs,

I3 =
∫ TN,j∧t

0+

Uxx(Z(d)
s− ) d[X(d), X(d)]cs + 2

∫ TN,j∧t

0+

Uxy(Z(d)
s− ) d[X(d), Y (d)]cs

+
∫ TN,j∧t

0+

Uyy(Z(d)
s− ) d[Y (d), Y (d)]cs,

I4 =
∑

0<s≤TN,j∧t

[
U(Z(d)

s )− U(Z(d)
s− )− 〈Ux(Z(d)

s− ),∆X(d)
s 〉 − 〈Uy(Z(d)

s− ),∆Y (d)
s 〉

]
.

Note that the integrals in I2 are with respect to the continuous parts of the processes
X(d)∗ ∨ ε and Y (d)∗ ∨ ε; this is due to the lack of the terms Uz(Z

(d)
s− )∆(X(d)∗

s ∨ ε)
and Uw(Z(d)

s− )∆(Y (d)∗
s ∨ ε) in I4.

Let us analyze the terms I1–I4. We have EI1 = 0, since both the stochastic
integrals are martingales. Next, I2 ≤ 0: by (2.6), we have Uz(Z

(d)
s− ) ≤ 0 on the

set {s : |X(d)
s− | = X

(d)∗
s− ∨ ε} in which the support of d(X(d)∗ ∨ ε)cs is contained.

This gives that the first integral in I2 is nonpositive, the second one is handled
analogously. To deal with I3, fix 0 ≤ s0 < s1 ≤ t. For any ` ≥ 0, let (η`i )1≤i≤i`
be a nondecreasing sequence of stopping times with η`0 = s0, η

`
i`

= s1 such that
lim`→∞max1≤i≤i`−1 |η`i+1 − η`i | = 0. Keeping ` fixed, we apply, for each i =
0, 1, 2, . . . , i`, the property (2.4) to x = X

(d)
s0−, y = Y

(d)
s0−, z = X

(d)∗
s0− ∨ ε, w =

Y
(d)∗
s0− ∨ ε and h = h`i = X

(d)c

TN,j∧η`
i+1
−X(d)c

TN,j∧η`
i

, k = k`i = Y
(d)c

TN,j∧η`
i+1
− Y (d)c

TN,j∧η`
i

. We

sum the obtained i` + 1 inequalities and let ` → ∞. Using the notation [S, T ]us =
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[S, T ]u − [S, T ]s, we may write the result in the form

d∑
m=1

d∑
n=1

[
Uxmxn

(Z(d)
s0−)[Xmc, Xnc]TN,j∧s1

TN,j∧s0 + 2Uxmyn
(Z(d)

s0−)[Xmc, Y nc]TN,j∧s1
TN,j∧s0

+ Uymyn
(Z(d)

s0−)[Y mc, Y nc]TN,j∧s1
TN,j∧s0

]
≤ c
(
Z

(d)
s0−
) d∑
k=1

(
[Y kc, Y kc]TN,j∧s1

TN,j∧s0 − [Xkc, Xkc]TN,j∧s1
TN,j∧s0

)
≤ c
(
Z

(d)
s0−
)(

[Y c, Y c]TN,j∧s1
TN,j∧s0 − [Xc, Xc]TN,j∧s1

TN,j∧s0 +
∑
k>d

[Xkc, Xkc]TN,j∧s1
TN,j∧s0

)
≤ c
(
Z

(d)
s0−
)∑
k>d

[Xkc, Xkc]TN,j∧s1
TN,j∧s0

= c
(
Z

(d)
TN,j∧s0−

)∑
k>d

[Xkc, Xkc]TN,j∧s1
TN,j∧s0 ,

where in the third passage we have exploited the differential subordination of Y c

to Xc. From the local boundedness of c and the definition of τN , we infer that on
the set {TN,j > 0}, c(Z(d)

TN,j∧s0−) is bounded by a constant C depending only on N
and ε. Thus

I3 ≤ C
∑
k>d

[Xkc, Xkc]TN,j∧t,

using a standard approximation of integrals by discrete sums. Finally, we see
that each summand in I4 is nonpositive, directly from (2.5) and the fact that
|∆Ys| ≤ |∆Xs|, see Lemma 2.1. Consequently,

I4 ≤ U(Z(d)
TN,j∧t)− U(Z(d)

TN,j∧t−)

−
〈
Ux(Z(d)

TN,j∧t−),∆X(d)
TN,j∧t

〉
−
〈
Uy(Z(d)

TN,j∧t−),∆Y (d)
TN,j∧t

〉
on the set {TN,j > 0}. Plug all the above estimates into (2.9) and take expectation
of both sides. By (2.8), the bound we obtain can be rewritten in the form

E
[
U(Z(d)

TN,j∧t−)− U(Z(d)
0 )

+
〈
Ux(Z(d)

TN,j∧t−),∆X(d)
TN,j∧t

〉
+
〈
Uy(Z(d)

TN,j∧t−),∆Y (d)
TN,j∧t

〉]
1{TN,j>0} ≤Cδ.

(2.10)

For fixed N , the random variables Z(d)
TN,j∧t−, j ≥ 1, d ≥ D, are uniformly bounded

on {τN > 0}, in view of the definition of τN . Moreover, we have

|∆X(d)
TN,j∧t| = |∆X

(d)
TN,j∧t|1{TN,j=τN} + |∆X(d)

TN,j∧t|1{TN,j<τN}

≤ |∆X(d)
τN∧t|1{TN,j=τN} +

(
|X(d)

TN,j∧t|+ |X
(d)
TN,j∧t−|

)
1{TN,j<τN}

≤ |∆XτN∧t|+ 2N

and, similarly, |∆Y (d)
TN,j∧t| ≤ |∆YτN∧t| + 2N . The random variables |∆XτN∧t| and

|∆YτN∧t| are integrable on 1{τN>0}, since (τN )N≥1 localizes X and Y . Thus, if we
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let j →∞ and then d→∞ in (2.10), we obtain

E
[
U(ZτN∧t−)− U(Z0)

+ 〈Ux(ZτN∧t−),∆XτN∧t〉+ 〈Uy(ZτN∧t−),∆YτN∧t〉
]
1{τN>0} ≤ Cδ,

by Lebesgue’s dominated convergence theorem. Here Zs = (Xs, Ys, X
∗
s ∨ ε, Y ∗s ∨ ε),

s ≥ 0. Let δ → 0 and apply (2.5) to get

E
[
U(ZτN∧t)− U(Z0)

]
= E

[
U(ZτN∧t)− U(Z0)

]
1{τN>0} ≤ 0.

It remains to use (2.2) and (2.3) to complete the proof. �

Remark 2.3. A careful inspection of the proof of the above theorem shows that
the function U need not be given on the whole D = H×H×(0,∞)×(0,∞). Indeed,
it suffices to define it on a certain neighborhood of the set {(x, y, z, w) ∈ D : |x| ≤
z, |y| ≤ w} in which the process Z takes its values. This can be further relaxed: if
we are allowed to work with those X, Y which are bounded away from 0, then all
we need is a C2 function U given on some neighborhood of {(x, y, z, w) ∈ D : 0 <
|x| ≤ z, 0 < |y| ≤ w}, satisfying (2.2)-(2.5) on this set.

3. The special function corresponding to (1.3)

Now we apply the approach described in the previous section to establish (1.3).
Let V : D → R be given by V (x, y, z, w) = |y| − β(|x| ∨ z). Furthermore, put

(3.1) U(x, y, z, w) = zΦ
(
|y|2 − |x|2

z2
+ 1
)

for {(x, y, z, w) ∈ D : 0 < |x| <
√
|y|2 + z2, |y| > 0}, where Φ : [0,∞) → R is

defined by

Φ(t) =
(

1 +
1
β

)[√
t− log(1 +

√
t)− (2− log 2)

]
.

We start with four technical lemmas, which will be proved in Section 5.

Lemma 3.1. (i) We have Φ(t) ≤ Φ(1) ≤ 0 for t ≤ 1.
(ii) We have Φ(t) ≥

√
t− β for t ≥ 0.

(iii) For any c ≥ 0 the function

f(s) = −
√
s log

(
1 +

c√
s

)
− (2− log 2)

√
s

is convex and nonincreasing.
(iv) For any c > 0, the function

f(s) =
√
s− c log

(
1 +
√
s

c

)
is concave.

Lemma 3.2. The function y 7→ Φ(|y|2) is convex on H.

Lemma 3.3. (i) For any y, k ∈ H, we have

(2− log 2)(1−
√

1 + |k|2) + (1−
√

1 + |k|2) log(
√

1 + |k|2 + |y + k|)

+
√

1 + |k|2 log(
√

1 + |k|2) ≤ 0.
(3.2)
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(ii) For any y, k ∈ H with |y|+ 1 ≤
√

1 + |k|2 + |k| − |y| we have

(2− log 2)(1−
√

1 + |k|2)+
√

1 + |k|2
[

2
|k| − |y|√

1 + |k|2
−log

(
1 +

|k| − |y|√
1 + |k|2

)]

≤ |k|
1 + |y|

− log(1 + |y|).
(3.3)

Lemma 3.4. Assume that x, y, h, k ∈ H and z > 0 satisfy |x| = z, 〈x, h〉 ≥ 0 and
|k| ≤ |h|. Then

(3.4) U(x+h, y+k, |x+h|∨z, |y+k|∨w) ≤ U(x, y, z, w)+
(

1 +
1
β

)
〈y, k〉 − 〈x, h〉

1 + |y|
.

Equipped with these four lemmas, we turn to the following statement.

Theorem 3.5. The function U belongs to the class U(V ).

Proof. We check each of the conditions (2.2)–(2.5) separately.
The estimate (2.2): this follows immediately from the first part of Lemma 3.1.
The property (2.4): we derive that the left-hand side of the estimate equals

|k|2 − |h|2

z +
√
S
− (〈y, k〉 − 〈x, h〉)2

2(z +
√
S)2
√
S
≤ |k|

2 − |h|2

z +
√
S

,

with S = |y|2 − |x|2 + z2. The property follows.
The majorization (2.3): in particular, (2.4) implies that for any h the function

t 7→ U(x + th, y, z, w) is concave on [t−, t+], where t− = inf{t : |x + th| ≤ z}
and t+ = sup{t : |x + th| ≤ z}. Consequently, it suffices to verify (2.3) only for
(x, y, z, w) satisfying |x| = z. But this reduces to the second part of Lemma 3.1.

The condition (2.5): by homogeneity and continuity of both sides, we may as-
sume that z = 1 and |x| < 1. Define

H(t) = U(x+ th, y + tk, |x+ th| ∨ 1, |y + tk| ∨ w)

for t ∈ R and let t−, t+ be as above; note that t− < 0 and t+ > 0. By (2.4),
H is concave on [t−, t+] and hence (2.5) holds if |x + h| ≤ 1. Suppose then that
|x + h| > 1 or, in other words, that t+ < 1. The vector x′ = x + t+h satisfies
〈x′, h〉 ≥ 0: this is equivalent to d

dt |x + th|2|t=t+ ≥ 0. Hence, by (3.4), if we put
y′ = y + t+k, then

U(x+ h, y + k, |x+ h| ∨ 1, |y + k| ∨ w)

= U(x′ + (1− t+)h, y′ + (1− t+)k, |x+ h| ∨ 1, |y + k| ∨ w)

≤ U(x′, y′, 1, w) +
(

1 +
1
β

)
〈y′, (1− t+)k〉 − 〈x′, (1− t+)h〉

1 + |y′|
= H(t+) +H ′−(t+)(1− t+)

≤ H(0) +H ′(0)t+ +H ′(0)(1− t+) = H(0) +H ′(0).

This is precisely the claim. �

Proof of (1.3). It suffices to establish the estimate for X∗ ∈ L1, because otherwise
there is nothing to prove. Furthermore, we may assume that Y is bounded away
from 0. To see this, consider a new Hilbert space R×H and the martingales (δ,X)
and (δ, Y ), with δ > 0. These martingales are bounded away from 0 and (δ, Y )
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is differentially subordinate to (δ,X). Having proved (1.3) for these processes, we
let δ → 0 and get the bound for X and Y , by Lebesgue’s dominated convergence
theorem.

We must show that for any bounded stopping time τ we have

E|Yτ | ≤ βEX∗.

Now we make use of the methodology described in the previous section (in par-
ticular, we exploit Remark 2.3). Since U ∈ U(V ), the above estimate follows
immediately from (2.7), applied to the local martingales (Xτ∧t)t≥0, (Yτ∧t)t≥0, and
letting N →∞, t→∞ and ε→ 0. �

4. Sharpness

The constant β can be shown to be optimal in (1.3) by the use of appropriate
examples, but then the calculations are quite involved. To simplify the proof, we
use a different approach. Assume that the probability space is the interval [0, 1]
equipped with its Borel subsets and Lebesgue’s measure. Suppose that there is
β0 ∈ (0, β) with the following property: for any discrete filtration (Fn)n≥0 and any
adapted martingales f , g taking values in R2 such that g is differentially subordinate
to f , we have

(4.1) ||g||1 ≤ β0||f∗||1.
We shall show that the validity of this estimate implies the existence of a certain
special function, with properties similar to those in the definition of the class U(V ).
Then, by proper exploitation of these conditions, we shall deduce that β0 ≥ β.

Recall that a sequence (fn)n≥0 is called simple if for any n the term fn takes only
a finite number of values and there is a deterministic N such that fN = fN+1 =
fN+2 = . . . = f∞. For any (x, y) ∈ R2 × R2, introduce the class M(x, y) which
consists of those simple martingale pairs (f, g) with values in R2×R2, which satisfy
the following two conditions.

(i) (f0, g0) ≡ (x, y),
(ii) for any n ≥ 1 we have |dgn| ≤ |dfn|.

Here we also allow the filtration (Fn)n≥0 to vary. Let W : R2 × R2 × (0,∞) →
R ∪ {∞} be given by the formula

W (x, y, z) = sup
{
E|g∞| − β0E(f∗ ∨ z)

}
,

where the supremum is taken over all (f, g) ∈M(x, y).

Lemma 4.1. The function W enjoys the following properties.
(i) W is finite.
(ii) W is homogeneous of order 1: for any (x, y, z) ∈ R2×R2×(0,∞) and λ 6= 0,

W (λx,±λy, |λ|z) = |λ|W (x, y, z).

(iii) We have W (x, y, z) = W (x, y, |x| ∨ z) for all (x, y, z) ∈ R2 × R2 × (0,∞).
(iv) We have W (x, y, z) ≥ |y| − β0(|x| ∨ z) for (x, y, z) ∈ R2 × R2 × (0,∞).
(v) For fixed x ∈ R2 and z > 0, the function y 7→W (x, y, z) is convex on R2.
(vi) For any (x, y, z) ∈ R2×R2×(0,∞) with |x| ≤ z, any h, k ∈ R2 with |k| ≤ |h|

and any s, t > 0,

(4.2)
s

s+ t
W (x+ th, y + tk, z) +

t

s+ t
W (x− sh, y − sk, z) ≤W (x, y, z).
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Proof. (i) This follows from (4.1): for any (f, g) ∈M(x, y) the martingale g − y =
(gn − y)n≥0 is differentially subordinate to f , so for any z > 0,

E|g∞| − β0E(f∗ ∨ z) ≤ |y|+ E|g∞ − y| − β0Ef∗ ≤ |y|.

Taking the supremum over (f, g) ∈M(x, y) yields W (x, y, z) ≤ |y| <∞.
(ii) Use the fact that (f, g) ∈M(x, y) if and only if (λf,±λg) ∈M(λx,±λy).
(iii) This follows immediately from the very definition of W .
(iv) The constant pair (x, y) belongs to M(x, y).
(v) Take any x, y1, y2 ∈ R2, α ∈ (0, 1) and let y = αy1 + (1 − α)y2. Pick

(f, g) ∈M(x, y) and observe that (f, g + yi − y) ∈M(x, yi), i = 1, 2. Thus,

E|g∞| − β0E(f∗ ∨ z) ≤ α
[
E|g∞ + y1 − y| − β0E(f∗ ∨ z)

]
+ (1− α)

[
E|g∞ + y2 − y| − β0E(f∗ ∨ z)

]
≤ αW (x, y1, z) + (1− α)W (x, y2, z).

Taking the supremum over (f, g) ∈M(x, y) gives the desired convexity.
(vi) This is a consequence of the so-called “splicing argument” of Burkholder

(see e.g. page 77 in [9]). For the convenience of the reader, let us provide the easy
proof. Pick (f+, g+) ∈M(x+ th, y+ tk), (f−, g−) ∈M(x− sh, y− sk). These two
pairs are spliced together into one pair (f, g) as follows: set (f0, g0) ≡ (x, y) and
(recall that Ω = [0, 1])

(fn, gn)(ω) =

{
(f+
n−1, g

+
n−1)

(ω(s+t)
s

)
if ω ≤ s

s+t ,

(f−n−1, g
−
n−1)

((
ω − s

s+t

)
t+s
t

)
if ω > s

s+t

for n = 1, 2, . . .. It is not difficult to see that (f, g) is a martingale pair with respect
to its natural filtration. Furthermore, it is clear that this pair belongs to M(x, y).
Finally, since |x| ≤ z, we have f∗n ∨ z = sup1≤k≤n |fk| ∨ z for n = 1, 2, . . . and
therefore

W (x, y, z) ≥ E|g∞| − β0E(f∗ ∨ z)

=
s

t+ s

[
E|g+
∞| − β0E(f+∗ ∨ z)

]
+

t

t+ s

[
E|g−∞| − β0E(f−∗ ∨ z)

]
.

It remains to take the supremum over all (f−, g−) and (f+, g+) to get (4.2). �

It will be convenient to work with another special function: for any r ≥ 0, define

Ψ(r) = inf{W (x, y, 1) : |x| = 1, |y| = r}.

We shall establish the following property of this object.

Lemma 4.2. For any r > 0 and ε > 0 we have

(4.3) Ψ(r) ≥ Ψ
(√

r2 + ε
)

+
εΨ(1)

2(r + 1)
.

Proof. Fix δ > 0. Pick (x, y, z) ∈ R2 × R2 × (0,∞) satisfying |x| = z = 1, |y| = r
and apply (4.2) with h = x, k = −y/r, s = δ and t > 0. We obtain

W (x, y, 1) ≥ δ

δ + t
W (x+ tx, y − ty/r, 1) +

t

δ + t
W (x− δx, y + δy/r, 1)

=
δ

δ + t
(1 + t)W (x,

y − ty/r
1 + t

, 1) +
t

δ + t
W (x− δx, y + δy/r, 1),
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where we have used parts (ii) and (iii) of Lemma 4.1. By part (v) of that lemma,
the function s 7→W (x, sy, 1), s ∈ R, is continuous. Thus, if we let t→∞, we get

W (x, y, 1) ≥ δW (x,−y/r, 1) +W (x− δx, y + δy/r, 1)

≥ δΨ(1) +W (x− δx, y + δy/r, 1).
(4.4)

Now we have come to the point where we use the fact that we are in the vector-
valued setting. Namely, we pick a vector d ∈ R2 \ {0}, orthogonal to y + δy/r −
(x − δx). Let s, t > 0 be uniquely determined by the equalities |x − δx − sd| =
|x− δx+ td| = 1. Then

|y + δy/r − sd|2 − |x− δx− sd|2 = |y + δy/r|2 − |x− δx|2

= |y|2 + 2δ|y| − 1 + 2δ,

since, as we have assumed at the beginning, |y| = r and |x| = 1. In other words,
we have |y + δy/r − sd| =

√
|y|2 + 2δ|y|+ 2δ and, similarly, |y + δy/r + td| =√

|y|2 + 2δ|y|+ 2δ. Therefore, if we apply (4.2) with x′ := x− δx, y′ := y + δy/r,
z = 1, h = k = d and s, t as above, and combine it with the definition of Ψ, we get

W (x− δx, y + δy/r, 1) ≥ Ψ
(√
|y|2 + 2δ|y|+ 2δ

)
.

Plugging this into (4.4) and taking the infimum over x, y (satisfying |x| = 1,
|y| = r), we arrive at the estimate

Ψ(r) ≥ Ψ
(√

r2 + 2δ(r + 1)
)

+ δΨ(1).

It suffices to put δ = ε/(2r + 2) to get the claim. �

Now we are ready to prove that β0 ≥ β; suppose on contrary that this inequality
does not hold. By induction, (4.3) yields

Ψ(1) ≥ Ψ(
√

1 + nε) +
εΨ(1)

2

n−1∑
k=0

1
1 +
√

1 + kε
.

Fix t > 1, put ε = (t2 − 1)/n and let n→∞ to obtain

Ψ(1) ≥ Ψ(t) +
Ψ(1)

2

∫ t2

1

1
1 +
√
s

ds = Ψ(t) + Ψ(1)
(
t− log

(
1 + t

2

)
− 1
)
.

We have Ψ(t) ≥ t− β0 by Lemma 4.1 (iv), so the above estimate yields

(4.5) β0 ≥ t+ Ψ(1)
(
t− log

(
1 + t

2

)
− 2
)

for all t > 1.

Now we shall choose an appropriate t. We have Ψ(1) < −1; otherwise, we would
let t→∞ and obtain the contradiction with the assumption β0 < β. Furthermore,
Ψ(1) ≥ 1−β0 > −2. Thus, the number t, determined by the equation Ψ(1) = − 1+t

t ,
satisfies t > 1. Application of (4.5) with this choice of t gives

β0 ≥ t−
1 + t

t

(
t− log

(
1 + t

2

)
− 2
)
.

It remains to note that for any t > 1 the right-hand side is not smaller than β.
This follows from a standard analysis of the derivative. The proof is complete.
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5. Proofs of technical lemmas

Proof of Lemma 3.1. (i) We have Φ′(t) = (1 + β−1)/(2(1 +
√
t)) > 0 and Φ(1) =

−(1 + β−1) < 0.
(ii) The claim is equivalent to Ψ(t) := Φ(t2)− t+ β ≥ 0 for all t ≥ 0. We easily

check that Ψ is convex on [0,∞) and, by virtue of (1.4), satisfies Ψ(β) = Ψ′(β) = 0.
(iii) Since lims→∞ f ′(s) = 0, it suffices to prove the convexity of f . We have

f ′′(s) =
1

4s3/2

[
log
(

1 +
c√
s

)
−
√
s

c+
√
s

+
s

(c+
√
s)2

]
+

2− log 2
4s3/2

and the expression in the square brackets is nonnegative: indeed, the function

x 7→ log(1 + x)− (1 + x)−1 + (1 + x)−2, x ≥ 0,

vanishes at 0 and is nondecreasing.
(iv) We compute that f ′′(s) = −[ 4(c+

√
s)2
√
s ]−1 ≤ 0. �

Proof of Lemma 3.2. Pick y1, y2 ∈ H and α ∈ (0, 1). By the concavity of the
logarithm, we have

α [|y1| − log(1 + |y1|)] + (1− α) [|y2| − log(1 + |y2|)]
≥ |αy1|+ |(1− α)y2| − log

(
1 + |αy1|+ |(1− α)y2|

)
.

This can be further bounded from below by

|αy1 + (1− α)y2| − log
(
1 + |αy1 + (1− α)y2|

)
,

since the function t 7→ t− log(1 + t) is nondecreasing on [0,∞). We are done. �

Proof of Lemma 3.3. (i) This follows easily from the obvious estimates

log(
√

1 + |k|2 + |y + k|) ≥ log(
√

1 + |k|2)

and
1−

√
1 + |k|2 ≤ − log(

√
1 + |k|2).

(ii) For simplicity, we shall write k, y instead of |k|, |y|, respectively. We consider
two major cases.

Case I: Suppose that

(5.1)
√

1 + k2 ≥ (2− log 2)(1 + y).

Then
√

1 + k2 ≥ 2− log 2, or k ≥ k0 :=
√

(2− log 2)2 − 1. In addition, k−y√
1+k2 ≤ 1,

so using the convexity of the function ξ(s) = 2s− log(1 + s), s ≥ 0, we have

ξ

(
k − y√
1 + k2

)
≤ k − y√

1 + k2
· ξ(1) +

(
1− k − y√

1 + k2

)
· ξ(0),

or

2
k − y√
1 + k2

− log
(

1 +
k − y√
1 + k2

)
≤ (2− log 2)

k − y√
1 + k2

.

Hence it suffices to prove that

(5.2) (2− log 2)(1 + k −
√

1 + k2) ≤ k

1 + y
− log(1 + y) + (2− log 2)y.

We consider three possibilities y ≤ 1, 1 < y < 2 and y ≥ 2 separately.
1◦ If y ≤ 1, then the function

k 7→ (2− log 2)(1 + k −
√

1 + k2)− k

1 + y
, k ≥ k0,
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is nonincreasing: its derivative at k equals

(2− log 2)
(

1− k√
1 + k2

)
− 1

1 + y
≤ (2− log 2)

(
1− k0√

1 + k2
0

)
− 1

2

= −0.03 . . . < 0.

Thus, for y ≤ 1 all we need is to check (5.2) for k satisfying the equation
√

1 + k2 =
(2− log 2)(1 + y). But then the estimate is equivalent to(

2− log 2− 1
1 + y

)
(k −

√
1 + k2) ≤ − log(1 + y) + (2− log 2)y,

and the left-hand side is negative, the right-hand side is nonnegative.
2◦ If 1 < y < 2, then by (5.1) we have k ≥

√
4(2− log 2)2 − 1 > 2.4. Conse-

quently, the left-hand side of (5.2) is smaller than 2 − log 2, while the right-hand
side exceeds

k

3
+ 2− 2 log 2 > 0.8 + 2− 2 log 2 > 2− log 2.

3◦ Suppose finally, that y ≥ 2. As previously, the left-hand side of (5.2) is
bounded from above by 2− log 2. On the other hand, the right-hand side is larger
than − log 3 + 2(2− log 2) > 2− log 2.

Case II: Now we assume that

(5.3)
√

1 + k2 < (2− log 2)(1 + y).

The inequality (3.3) is equivalent to F (k) ≤ 2y − log(1 + y), where

F (k) = (2− log 2)(1−
√

1 + k2) + 2(k− y)−
√

1 + k2 log
(

1 +
k − y√
1 + k2

)
− k

1 + y
.

We derive that F ′(k) = J1 + J2, where

J1 = − k√
1 + k2

[
log
(

1 +
k − y√
1 + k2

)
−

k−y√
1+k2

1 + k−y√
1+k2

]
,

J2 =
y

1 + y
+

k − y√
1 + k2 + k − y

− (2− log 2)k√
1 + k2

.

Since log(1 + x) ≥ x/(x + 1) for x > −1, we have J1 ≤ 0. Furthermore, using the
assumption

√
k2 + 1 + k − y ≥ 1 + y, we get

J2 ≤
y

1 + y
+
k − y
1 + y

− (2− log 2)k√
1 + k2

=
k√

1 + k2

(√
1 + k2

1 + y
− (2− log 2)

)
< 0,

due to (5.3). Hence F is nonincreasing; thus F (k) ≤ F (k1), where k1 satisfies√
1 + k2

1 = (2− log 2)(1 +y); however, by the Case I, F (k1) ≤ 2y− log(1 +y). This
completes the proof. �

Proof of Lemma 3.4. Of course, we may assume that h 6= 0. Furthermore, by
homogeneity, it suffices to verify the estimate for z = 1. It is convenient to split
the reasoning into three parts.

Step 1. First we shall show (3.4) in the case when x and h are linearly dependent.
Introduce the function G : [0,∞)→ R given by

G(t) = |x+ th|Φ
(
|y + tk|2

|x+ th|2

)
.
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We shall prove that this function is convex. To do this, fix t1, t2 ≥ 0, α1, α2 ∈ (0, 1)
with α1 + α2 = 1, and let t = α1t1 + α2t2. Using Lemma 3.2, we get

α1G(t1) + α2G(t2)

= α1|x+ t1h|Φ
(
|y + t1k|2

|x+ t1h|2

)
+ α2|x+ t2h|Φ

(
|y + t2k|2

|x+ t2h|2

)
≥ (α1|x+ t1h|+ α2|x+ t2h|)Φ

(
|y + tk|2

(α1|x+ t1h|+ α2|x+ t2h|)2

)
= |x+ th|Φ

(
|y + tk|2

|x+ th|2

)
= G(t),

where in the third passage we have exploited the linear dependence of x, h and the
inequality 〈x, h〉 ≥ 0. Therefore, using the bound |k| ≤ |h| and Lemma 3.1 (i),

lim
t→∞

G′(t) = lim
t→∞

G(t)−G(1)
t− 1

= |h|Φ
(
|k|2

|h|2

)
≤ |h|Φ(1)

= −
(

1 +
1
β

)
|h|

= −
(

1 +
1
β

)
|y||h|+ |h|

1 + |y|

≤
(

1 +
1
β

)
〈y, k〉 − 〈x, h〉

1 + |y|
.

Consequently,

U(x+ h, y + k, |x+ h| ∨ 1, |y + k| ∨ w)− U(x, y, 1, w) = G(1)−G(0)

≤
(

1 +
1
β

)
〈y, k〉 − 〈x, h〉

1 + |y|
.

Step 2. Next we check (3.4) in the case when x and h are orthogonal. The
inequality becomes

|y + k| −
√

1 + |h|2 log

(
1 +

|y + k|√
1 + |h|2

)
− (2− log 2)

√
1 + |h|2 − 〈y, k〉

1 + |y|

≤ |y| − log(1 + |y|)− (2− log 2).

(5.4)

As a function of |h|, the left-hand side of the inequality is nonincreasing (see Lemma
3.1 (iii)), so it suffices to prove the bound for |h| = |k|. Fix |y|, |k| and consider
the left-hand side as a function F of 〈y, k〉. This function is concave (by part (iv)
of Lemma 3.1), and

(5.5) F ′(〈y, k〉) =
1√

1 + |k|2 + |y + k|
− 1

1 + |y|
.

Now, if |y| + 1 >
√

1 + |k|2 + |k| − |y|, then F ′ vanishes at 〈y, k〉 = (1 + |y|)(1 −√
1 + |k|2) and hence it suffices to establish (5.4) for y and k satisfying this equation.

A little calculation transforms the estimate into (3.2). On the other hand, if |y|+1 ≤
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1 + |k|2 + |k|− |y|, then F ′ is nonpositive on [−|y||k|, |y||k|] and we need to verify

(5.4) for y, k satisfying 〈y, k〉 = −|y||k|. Then the bound reduces to (3.3).
Step 3. Finally, we treat (3.4) for general vectors. The bound is equivalent to

|y + k| − |x+ h| log
(

1 +
|y + k|
|x+ h|

)
− (2− log 2)|x+ h|+ 〈x, h〉 − 〈y, k〉

1 + |y|
≤ |y| − log(1 + |y|)− (2− log 2).

(5.6)

For fixed |x|, y, h and k, the left-hand side, as a function of 〈x, h〉, is convex (see
Lemma 3.1 (iii)) and hence it suffices to verify the estimate in the case when 〈x, h〉 =
{|x||h|, 0}. These cases have been considered in Step 1 and Step 2 above. �
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