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Abstract. The paper contains the study of weighted maximal Lp-inequalities
for the Haar system, with the optimal dependence on the characteristics of
the weights involved. The proofs exploit certain special functions, enjoying
appropriate size conditions and concavity.

1. Introduction

The purpose of this paper is to study certain class of weighted inequalities for
the Haar system. Let h = (hn)n≥0 be the collection of Haar functions on [0, 1),
given by

h0 = χ[0,1), h1 = χ[0,1/2) − χ[1/2,1),

h2 = χ[0,1/4) − χ[1/4,1/2), h3 = χ[1/2,3/4) − χ[3/4,1),

h4 = χ[0,1/8) − χ[1/8,1/4), h5 = χ[1/4,3/8) − χ[3/8,1/2),

h6 = χ[1/2,5/8) − χ[5/8,3/4), h7 = χ[3/4,7/8) − χ[7/8,1)

and so on. A classical result of Schauder [16] asserts that the Haar system forms
a basis of Lp = Lp(0, 1), 1 ≤ p < ∞ (with the underlying Lebesgue measure).
Marcinkiewicz showed in [8] that if 1 < p < ∞, then this basis is unconditional:
there is a �nite positive constant βp depending only on p with the property that if
n is a nonnegative integer, a0, a1, . . . , an are real numbers and ε0, ε1, . . ., εn is a
sequence of signs, then

(1.1)

∥∥∥∥∥
n∑
k=0

εkakhk

∥∥∥∥∥
Lp

≤ βp

∥∥∥∥∥
n∑
k=0

akhk

∥∥∥∥∥
Lp

.

One can study a weighted version of this estimate. Here and below, the word
�weight� will refer to a positive and integrable function on [0, 1). Given 1 < p <∞,
we say that a weight w satis�es dyadic Muckenhoupt's condition Ap (shorter: w is
a dyadic Ap weight) if

[w]Ap
:= sup

I

(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w−1/(p−1)
)p−1

<∞.

Here the supremum is taken over all dyadic subintervals I of [0, 1) (i.e., all I of the
form [a2−k, (a + 1)2−k), for some k ≥ 0 and a ∈ {0, 1, . . . , 2k − 1}). There are
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versions of this de�nition for p ∈ {1,∞}: w belongs to the dyadic A∞ class if

[w]A∞ := sup
I

(
1

|I|

∫
I

w

)
exp

(
1

|I|

∫
I

log(1/w)

)
<∞,

and w is a dyadic A1 weight if

[w]A1
= sup

I

(
1

|I|

∫
I

w

)
/ essinf

I
w <∞.

In both conditions, the suprema are taken over all dyadic subintervals I of [0, 1).
One easily veri�es that [w]Ap

≤ [w]Aq
if q ≤ p and hence the classes Ap grow as p

increases.
It follows from the work [10] of Nazarov, Treil and Volberg and the extrapolation

theorem of Rubio de Francia [15] that if 1 < p < ∞ and w is an Ap weight, then
there is a constant Cp,w depending only on the parameters indicated such that∥∥∥∥∥

n∑
k=0

εkakhk

∥∥∥∥∥
Lp(w)

≤ Cp,w

∥∥∥∥∥
n∑
k=0

akhk

∥∥∥∥∥
Lp(w)

.

There is a natural and interesting question concerning the optimal dependence of
Cp,w on the Ap-characteristics [w]Ap . More precisely, the problem is to �nd, for
each 1 < p < ∞, an optimal exponent α = α(p) such that Cp,w ≤ Cp[w]

α
Ap

, where

Cp does not depend on w. This type of question was �rst studied by Buckley [1]
in the context of weighted estimates for maximal operators. Wittwer [22] showed
that α(2) = 1 which, by the sharp version of the extrapolation theorem of Rubio de
Francia, established by Dragi£evi¢ et. al. [6] (see also Duoandikoetxea [7]), yielded
the optimal dependence:

(1.2)

∥∥∥∥∥
n∑
k=0

εkakhk

∥∥∥∥∥
Lp(w)

≤ Cp[w]max{1,1/(p−1)}
Ap

∥∥∥∥∥
n∑
k=0

akhk

∥∥∥∥∥
Lp(w)

.

Our �rst result is the following maximal version of the estimate above. Throughout
the paper, Cp denotes the optimal value of the constant appearing in (1.2).

Theorem 1.1. Let 1 < p < ∞. If w is a dyadic Ap weight, N is a nonnegative
integer, a0, a1, . . . , aN are real numbers and ε0, ε1, . . ., εN is a sequence of signs,
then

(1.3)

∥∥∥∥∥ max
0≤n≤N

∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∥∥∥∥∥
Lp(w)

≤ 21+1/pCp[w]
max{1,1/(p−1)}
Ap

∥∥∥∥∥
N∑
k=0

akhk

∥∥∥∥∥
Lp(w)

.

The exponent max{1, 1/(p− 1)} is the best possible.

Clearly, only the validity of (1.3) is an issue, the optimality of the exponent
follows at once from the fact that the above bound is stronger than (1.2).

In the case p = 1, the inequality (1.2) fails even in the unweighted setting, but
one can study the substitute in which the maximal function appears on the right.
Such an estimate allows much wider class of weights. A simple modi�cation of the
argument of Burkholder [4] and Coifman [5] shows that if 1 ≤ q <∞ and w satis�es
the dyadic condition A∞, then we have the bound

(1.4)

∥∥∥∥∥ max
0≤n≤N

∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∥∥∥∥∥
Lq(w)

≤ cq,w

∥∥∥∥∥ max
0≤n≤N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
∥∥∥∥∥
Lq(w)
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for N = 0, 1, 2, . . ., with some cq,w < ∞ depending only on the parameters in-
dicated. Indeed, the aforementioned paper of Burkholder gives an appropriate
unweighted good-lambda inequality involving the functions max0≤n≤N |

∑n
k=0 akhk|

and max0≤n≤N |
∑n
k=0 εkakhk| (see (8.13) in [4]), which is then transformed into the

context of A∞ weights by the argument of Coifman. This weighted good-lambda
estimate yields in turn the above Lq-inequality (1.4) by standard integration. Since
Ap ⊂ A∞ for all p, we see that in particular the Lq-inequality holds true for Ap
weights. Our principal goal is to extract the optimal dependence of cq,w on [w]Ap

.
Here is the precise statement.

Theorem 1.2. For any parameters 1 ≤ p, q <∞, there is a constant Cp,q depend-
ing only on p and q which has the following property. If w is a dyadic Ap weight,
N is a nonnegative integer, a0, a1, . . . , aN are real numbers and ε0, ε1, . . ., εN is
a sequence of signs, then

(1.5)

∥∥∥∥∥ max
0≤n≤N

∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∥∥∥∥∥
Lq(w)

≤ Cp,q[w]Ap

∥∥∥∥∥ max
0≤n≤N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
∥∥∥∥∥
Lq(w)

.

The linear dependence on the Ap characteristics is optimal for each p.

Since A∞ =
⋃

1≤p<∞Ap, this gives us an alternative proof of (1.4) for A∞
weights. There is a natural question whether the dependence of cq,w on [w]A∞ is
also linear. We have been unable to answer it, though some information on Cp,q
indicate that this might not be the case. More precisely, our proof will establish
(1.5) with

(1.6) Cp,q = 21/q · 6 · inf
r

{
Cr

(
r

q
+ 3−r

)1/q }
,

where Cr is the best constant in (1.2) and the in�mum is taken over all r satisfying
r ≥ max{p, 2} and r > q. Let us provide a more explicit formula for Cp,q. As shown
in [2], we have the estimate C2 ≤ 1109. Now, it follows from the extrapolation
theorems of Duoandikoetxea [7] and the sharp weighted bounds for the dyadic
maximal operator established in [12], that if r ≥ 2, then

Cr ≤ (
√
8re)(r−2)/(r−1)C2 ≤

√
8reC2 < 8527r.

Modulo the constant factor, this inequality can be reversed. Burkholder [1] proved
that the optimal choice for βp in (1.1) is max{p − 1, 1/(p − 1)}; this yields Cr ≥
r − 1 ≥ r/2 for r ≥ 2. Consequently, we obtain that

Cp,q ∼ 21/q inf
r

{
r

(
r

q
+ 3−r

)1/q }
(where `∼' means that the ratio of both sides is bounded from below and from above
by universal constants). It is easy to see that the expression in the parentheses is
an increasing function of r (on the interval [max{p, q, 2},∞)), so the in�mum is
attained for the choice r = max{p, q, 2}. Note that if q is �xed and p goes to
in�nity, then the constant Cp,q is of order O(p1+1/q); this explosion suggests that
the inequality (1.5) in the limit case p =∞ might not hold (i.e., the dependence of
the constant on [w]A∞ might not be linear).

A few words about the proof and the organization of the paper are in order. Our
approach will rest on the Bellman function method: we will deduce the validity of
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(1.3) and (1.5) from the existence of certain special functions, enjoying appropriate
size conditions and concavity. The approach originates from the theory of stochastic
optimal control, and its fruitful connection with probability and harmonic analysis
was �rstly observed by Burkholder in [3], during the study of the sharp version of
(1.1). Following the seminal work [3], Burkholder and others applied the method
in many semimartingale estimates (see the monograph [11] for details). A decisive
step towards wider applications of the technique in harmonic analysis was made by
Nazarov, Treil and Volberg [9, 10], who put the approach in a more modern and
universal form. Since then, the method has been applied in numerous problems
arising in various areas of mathematics (cf. e.g. [13, 14, 17, 18, 19, 20, 21] and
consult references therein).

The Bellman function proof presented in this paper is quite unusual. We start
Section 2 with a standard statement that a successful treatment of the estimates
(1.3) and (1.5) requires the construction of a certain function of six variables. How-
ever, instead of providing an explicit formula for such an object (which is a typical
ingredient of a proof), we propose an abstract two-step reasoning. Namely, �rst
we decrease the dimension of the problem, by showing that �nding appropriate
functions of four variables is su�cient to deduce the desired estimates. Then, in
Section 3, we provide these special four-dimensional objects. Again, we do not
present explicit formulas (which might be quite complicated, and the analysis of
their properties could be delicate). Instead, we manage to get rid of almost all
technicalities and extract the existence of these objects from the validity of the
inequality (1.2).

The �nal part of the paper is devoted to the optimality of the exponents, which
is demonstrated by constructing appropriate examples.

2. On the method of proof

Throughout this section, 1 < p < ∞, 1 ≤ q < ∞ and c ≥ 1 are given and �xed
parameters. Introduce the �hyperbolic� set

Dp,c = {(w,v) ∈ (0,∞)2 : 1 ≤ wvp−1 ≤ c}.

This object arises naturally in the analysis of Ap weights. Next, introduce another
domain Domp,c = R×R× (0,∞)× [0,∞)×Dp,c, pick a function B : Domp,c → R
and consider the following set of requirements.

(i) For any x ∈ R \ {0} and any (w,v) ∈ Dp,c,

(2.1) B(x,±x, |x|, (±x) ∨ 0,w,v) ≤ 0.

(Here and below, a ∨ b = max{a, b}.)
(ii) For any (x,y, z,u,w,v) ∈ Domp,c we have

(2.2) B(x,y, z,u,w,v) = B(x,y, |x| ∨ z,y ∨ u,w,v).

(iii) For any (x,y, z,u,w,v) ∈ Domp,c we have

(2.3) B(x,y, z,u,w,v) ≥ (y ∨ u)qw−
∣∣ϕ(x, |x| ∨ z)∣∣qw,

where ϕ : R × (0,∞) → R is some �xed continuous function depending only on p,
q and c.

(iv) The function B is midpoint concave in the following sense. Suppose that the
points (x, y, w, v), (x±,y±,w±,v±) ∈ R×R×Dp,c satisfy the conditions |x| ≤ z,
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y ≤ u,

(x, y, w, v) =
(x+,y+,w+,v+) + (x−,y−,w−,v−)

2
and |x+ − x−| = |y+ − y−|. Then

(2.4) B(x,y, z,u,w,v) ≥
B(x+,y+, z,u,v+,w+) +B(x−,y−, z,u,v−,w−)

2
.

The statement below presents the connection between the list of the above con-
ditions with the validity of certain maximal inequalities.

Theorem 2.1. If there exists a function B satisfying the conditions (i)-(iv), then
we have the estimate∥∥∥∥∥ max

0≤n≤N

∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∥∥∥∥∥
Lq(w)

≤ 21/q

∥∥∥∥∥ϕ
(

N∑
k=0

akhk, max
0≤n≤N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
)∥∥∥∥∥

Lq(w)

for all N ≥ 0, all sequences a0, a1, . . ., aN ∈ R, ε0, ε1, . . ., εN ∈ {−1, 1} and all
dyadic Ap weighs w satisfying [w]Ap

≤ c.

Remark 2.2. In the considerations below, we will take ϕ(x, z) = Kx or ϕ(x, z) =
Kz, for some constant K: then the assertion corresponds to the estimates (1.3) or
(1.5), respectively.

Proof. It is convenient to split the reasoning into three parts.

Step 1. Some reductions and notation. By standard limiting arguments (Fatou's
lemma and Lebesgue's dominated convergence theorem), we may and do assume
that a0 6= 0 (recall that ϕ is assumed to be continuous). Note that it is enough to
show the one-sided estimates∥∥∥∥∥∥ max

0≤n≤N

(
n∑
k=0

εkakhk

)
+

∥∥∥∥∥∥
Lq(w)

≤

∥∥∥∥∥ϕ
(

N∑
k=0

akhk, max
0≤n≤N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
)∥∥∥∥∥

Lq(w)

,

∥∥∥∥∥∥ max
0≤n≤N

(
n∑
k=0

(−εk)akhk

)
+

∥∥∥∥∥∥
Lq(w)

≤

∥∥∥∥∥ϕ
(

N∑
k=0

akhk, max
0≤n≤N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
)∥∥∥∥∥

Lq(w)

(where a+ = max{a, 0}), since if we rise their sides to power q and add them, we
obtain an estimate which is stronger than the assertion. Furthermore, switching
from (εk)k≥0 to (−εk)k≥0, we see that it is enough to focus on the �rst bound. For
n ≥ 0, introduce the notation

fn =

n∑
k=0

akhk, gn =

n∑
k=0

εkakhk, |f |∗n = max
0≤k≤n

|fk|, g∗n = max
0≤k≤n

(gk)+

and let wn, vn denote the projections of w and w−1/(p−1) on the space generated
by the �rst n + 1 Haar functions. That is, if w =

∑∞
k=0 bkhk and w−1/(p−1) =∑∞

k=0 ckhk, then wn =
∑n
k=0 bkhk and vn =

∑n
k=0 ckhk. Since [w]Ap

≤ c, one
easily checks that for any n the pair (wn, vn) takes values in the set Dp,c.

Step 2. Monotonicity property. The main part of the proof is to show that for
0 ≤ n ≤ N − 1 we have∫ 1

0

B(fn, gn, |fn|∗, g∗n, wn, vn)ds ≥
∫ 1

0

B(fn+1, gn+1, |fn+1|∗, g∗n+1, wn+1, vn+1)ds.
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Note that the integrands are well-de�ned: as have already observed above, the pairs
(w, v) take values in Dp,c and the assumption a0 6= 0, imposed at the beginning,
guarantees that |fn|∗ ≥ |f0| > 0.

To check the above estimate, let I be the support of hn+1. The functions
(fn, gn, |fn|∗, g∗n, wn, vn) and (fn+1, gn+1, |fn+1|∗, g∗n+1, wn+1, vn+1) coincide outside
I, so it is enough to show that∫

I

B(fn, gn, |fn|∗, g∗n, wn, vn)ds ≥
∫
I

B(fn+1, gn+1, |fn+1|∗, g∗n+1, wn+1, vn+1)ds

=

∫
I

B(fn+1, gn+1, |fn|∗, g∗n, wn+1, vn+1)ds,

where in the latter passage we have exploited (2.2) and the trivial identities |f∗n+1| =
|fn+1|∨ |fn|∗, g∗n+1 = gn+1∨g∗n. However, fn, gn, |fn|∗, g∗n, wn and vn are constant
on I; denote the appropriate values by x, y, z, u, w and v, respectively. Then, on
I, we have fn+1 = x+an+1hn+1, gn+1 = y+εn+1an+1hn+1, wn+1 = w+bn+1hn+1

and vn+1 = v + cn+1hn+1. We see that these four functions, restricted to I, take
values in two-point sets: there are two points x± with x = (x− + x+)/2 such
that fn+1 ∈ {x−,x+}; there are two points y± with y = (y− + y+)/2 such that
gn+1 ∈ {y−,y+}, and similarly for wn+1 and vn+1. Plugging this observation
above, we see that the monotonicity property reduces to the condition (2.4).

Step 3. Completion of the proof. Now, applying (2.3), we get∥∥∥∥∥∥ max
0≤n≤N

(
n∑
k=0

εkakhk

)
+

∥∥∥∥∥∥
q

Lq(w)

−

∥∥∥∥∥ϕ
(

N∑
k=0

akhk, max
0≤n≤N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
)∥∥∥∥∥

q

Lq(w)

=

∫ 1

0

(
(g∗N )q − ϕ(fN , |fN |∗)q

)
wds

=

∫ 1

0

(
(g∗N )q − ϕ(fN , |fN |∗)q

)
wNds

≤
∫ 1

0

B(fN , gN , |fN |∗, g∗N , wN , vN )ds

≤
∫ 1

0

B(f0, g0, |f0|∗, g∗0 , w0, v0)ds

and it remains to note that the latter integrand is nonpositive, due to (2.1). �

Therefore, we have reduced the problem of showing (1.5) to the construction
of an appropriate function of six variables. This seems to be a di�cult task; the
following theorem allows to decrease the number of variables to four.

Theorem 2.3. Let r ≥ q and L > 0 be �xed. Suppose that U : R× R×Dp,c → R
satis�es the majorizations

(2.5) U(x,±x,w,v) ≤ 0 for all x ∈ R, w,v ∈ Dp,c,

(2.6) U(x,y,w,v) ≥ |y|rw − Lr|x|rw for all (x,y,w,v) ∈ R× R×Dp,c,

(2.7) U(x,y,w,v) ≥ U(x,0,w,v) for all (x,y,w,v) ∈ R× R×Dp,c,
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and the following concavity inequality. If the points (x,y,w,v), (x±,y±,w±,v±) ∈
R× R×Dp,c satisfy the conditions

(x,y,w,v) =
(x+,y+,w+,v+) + (x−,y−,w−,v−)

2

and |x+ − x−| = |y+ − y−|, then

(2.8) U(x,y,w,v) ≥
U(x+,y+,w+,v+) + U(x−,y−,w−,v−)

2
.

Then the function

B(x,y,z,u,w,v)

= 2q−1 · U(x,y,w,v) + U(x, (u− y) ∨ 0, w,v)

(3L)r−q(|x| ∨ z)r−q
− r − q

q
· (6L)q(|x| ∨ z)qw

satis�es the conditions (i)-(iv) with

ϕ(x,z) =

{
2Lx if r = q,

6L · (r/q + 3−r)
1/q
z if r > q.

Proof. We start with (2.1). Observe that a∨0−a = (−a)∨0, so by (2.5) and (2.7),

B(x,±x, |x|, (±x) ∨ 0,w,v) ≤ 2q−1 · U(x,±x,w,v) + U(x, (∓x) ∨ 0,w,v)

(3L)r−q|x|r−q

≤ 2q−1 · U(x,±x,w,v) + U(x,∓x,w,v)
(3L)r−q|x|r−q

≤ 0.

The condition (2.2) is evident. To show (2.3), suppose �rst that r = q. Then,
directly from (2.6) and the elementary estimate (a+ b)r ≤ 2r−1(ar + br),

B(x,y, z,u,w,v) ≥ 2r−1
(
|y|rw+ ((u− y) ∨ 0)rw− 2Lr|x|rw

)
≥ (y ∨ u)rw− (2L)r|x|rw.

In the case r > q, note that for any nonnegative numbers A1, A2 we have the
estimate Ar1A2 + A2 ≥ Aq1A2. If we plug A1 = (((u − y) ∨ 0)/(3L(|x| ∨ z)) and

A2 =
(
3L(|x| ∨ z)

)q
w, we get

(((u− y) ∨ 0)rw

(3L)r−q(|x| ∨ z)r−q
+
(
3L(|x| ∨ z)

)q
w ≥

(
(u− y) ∨ 0

)q
w.

Similarly, one shows that

|y|rw
(3L)r−q(|x| ∨ z)r−q

+
(
3L(|x| ∨ z)

)q
w ≥ |y|qw.

Multiply these inequalities throughout by 2q−1, add them and apply the elementary
estimate (a+ b)q ≤ 2q−1(aq + bq) to obtain

2q−1 · |y|
rw+ (((u− y) ∨ 0)rw

(3L)r−q(|x| ∨ z)r−q
≥ (y ∨ u)qw−

(
6L(|x| ∨ z)

)q
w.

Consequently, (2.6) gives

B(x,y, z,u,w,v)

≥ 2q−1 · |y|
rw+ ((u− y) ∨ 0)rw− 2Lr|x|rw

(3L)r−q(|x| ∨ z)r−q
− r − q

q
(6L)q(|x| ∨ z)qw

≥ (y ∨ u)qw−
(
r/q + 3−r

)
(6L)q(|x| ∨ z)qw.
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It remains to verify the concavity inequality (2.4). Fix parameters x, y, z, . . . as
in the statement of (iv); by symmetry, we may assume that |x+| ≥ |x−|. Observe
�rst that by (2.6),

∂

∂s

(
2q−1 · U(x, y, w, v) + U(x, (u− y) ∨ 0, w, v)

(3L)r−qsr−q
− r − q

q
· (6L)qsqw

)
= −2q−1(r − q)U(x, y, w, v) + U(x, (u− y) ∨ 0, w, v)

(3L)r−qsr−q+1
− (r − q) · (6L)qsq−1w

≤ (r − q)(6L)qsq−1w ·
((
|x|
3s

)r
− 1

)
,

which is nonpositive for |x| ≤ 3s. This calculation will allow us to change appropri-
ately the terms |x|∨z in the formula for B, sometimes with values smaller than |x|.
The �rst consequence is that we may assume that |x−| ≤ z. Indeed, if both |x+|,
|x−| are larger than z, then replacing z by |x−| does not change the right-hand side
of (2.4) and does not increase the left-hand side, making the inequality stronger.
Our next step is to note that since |x−| ≤ z, we have

|x+| ≤ |x+ − x|+ |x| = |x− x−|+ |x| ≤ 2|x|+ |x−| ≤ 3z

and hence, by the above bound for the partial derivative ∂/∂s, we conclude that

B(x±,y±, z,u,w±,v±)

≤ 2q−1 ·
U(x±,y±,w±,v±) + U(x±, (u− y±) ∨ 0,w±,v±)

(3L)r−qzr−q

− r − q
q

(6L)qzqw.

(2.9)

Now, we obviously have zqw = (zqw+ + zqw−)/2 and, by the midpoint concavity
of U assumed in the statement of the theorem, we know that

U(x,y,w,v) ≥
U(x+,y+,w+,v+) + U(x−,y−,w−,v−)

2
.

Finally, the inequality (2.7) implies

U(x±, (u− y±) ∨ 0,w±,v±) ≤ U(x±,u− y±,w±,v±)

and hence, applying the concavity of U again,

U(x,u− y,w,v) ≥
U(x+, (u− y+) ∨ 0,w+,v+) + U(x−, (u− y−) ∨ 0,w−,v−)

2
.

Combining these observations with (2.9) establishes the desired estimate (2.4). �

3. An abstract Bellman function of four variables

As we have seen in the previous section, having constructed an appropriate spe-
cial function immediately gives us a desired inequality for the Haar system. A
well-known fact in the general Bellman function theory is that this implication can
be reversed: the validity of a given estimate implies the existence of the corre-
sponding abstract Bellman function. Our argumentation depends heavily on this
phenomenon: the four dimensional U we search for will be extracted from the
estimate (1.2).
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To state things precisely, we �x, throughout this section, the parameters 1 <
p < ∞ and 1 ≤ q < ∞. Pick c ≥ 1 and take r ≥ p. We have [w]Ar ≤ [w]Ap and
hence (1.2) implies

(3.1)

∥∥∥∥∥
n∑
k=0

εkakhk

∥∥∥∥∥
Lr(w)

≤ Cr[w]max{1,1/(r−1)}
Ap

∥∥∥∥∥
n∑
k=0

akhk

∥∥∥∥∥
Lr(w)

,

for n = 0, 1, 2, . . .. De�ne U = Up,r,c : R× R×Dp,c → R by the formula

U(x,y,w,v)

= sup


∣∣∣∣∣
∣∣∣∣∣y+

n∑
k=1

εkakhk

∣∣∣∣∣
∣∣∣∣∣
r

Lr(w)

− Crr cmax{r,r/(r−1)}

∣∣∣∣∣
∣∣∣∣∣x+

n∑
k=1

akhk

∣∣∣∣∣
∣∣∣∣∣
r

Lr(w)

 ,

where the supremum is taken over all n, all sequences a1, a2, . . ., an of real numbers,
all sequences ε1, ε2, . . ., εn of signs and all dyadic Ap weights w satisfying [w]Ap

≤ c,∫ 1

0
w = w and

∫ 1

0
w−1/(p−1) = v. To see that the de�nition makes sense (the

supremum is taken over a nonempty set), we need the following.

Lemma 3.1. For any (w,v) ∈ Dp,c there is a dyadic Ap weight w on [0, 1) with

[w]Ap
≤ c,

∫ 1

0
w = w and

∫ 1

0
w−1/(p−1) = v.

Proof. It is easy to show, using a Darboux property, that there are two points
P1 = (x1, y1), P2 = (x2, y2) lying at the lower boundary of Dp,c (i.e., satisfying

x1y
p−1
1 = x2y

p−1
2 = 1) such that (w,v) is the middle of the line segment P1P2.

De�ne w on [0, 1) by setting

w(s) =

{
x1 if s < 1/2,

x2 if s ≥ 1/2.

Then
∫ 1

0
w = (x1 + x2)/2 = w and

∫ 1

0
w−1/(p−1) = (x

−1/(p−1)
1 + x

−1/(p−1)
2 )/2 =

(y1 + y2)/2 = v. It remains to verify that [w]Ap ≤ c. By the above calculation,(∫ 1

0

w

)(∫ 1

0

w−1/(p−1)
)p−1

= wvp−1 ≤ c,

and if I is an arbitrary dyadic, proper subinterval of [0, 1), then w is constant on
I, so (

1

|I|

∫
I

w

)(
1

|I|

∫
I

w−1/(p−1)
)p−1

= 1 ≤ c.

Hence w has all the desired properties. �

Now we will show that the abstract function U above possesses all the properties
required in Theorem 2.3.

Lemma 3.2. The function U satis�es (2.5), (2.6) with L = Crc
max{1,1/(r−1)}, (2.7)

and the midpoint concavity (2.8).

Proof. The �rst condition follows directly from (3.1): all the expressions appearing
under the supremum de�ning U(x,±x,w,v) are nonpositive. The majorization
(2.6) is obtained by considering the sequence a1 = a2 = . . . = 0 in the de�nition of
U(x,y,w,v). To check (2.7), we will prove that U(x,y,w,v) = U(x,−y,w,v) and
that the function y 7→ U(x,y,w,v) is convex. Both these facts are simple. The �rst
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of them follows by switching from (εk) to (−εk) in the de�nition of U(x,y,w,v);
then it is clear that the suprema de�ning U(x,±y,w,v) are the same. To prove
the convexity of U(x, ·,w,v), pick α ∈ (0, 1), two real numbers y1, y2 and set
y = αy1 + (1− α)y2. If n is a nonnegative integer, a1, a2, . . ., an is a sequence of
real numbers and ε1, ε2, . . ., εn is an arbitrary sequence of signs, then the de�nition
of U and the convexity of the function t 7→ |t|r implies that∥∥∥∥∥y+

n∑
k=1

εkakhk

∥∥∥∥∥
r

Lr(w)

− Crr cmax{r,r/(r−1)}

∥∥∥∥∥x+

n∑
k=1

akhk

∥∥∥∥∥
r

Lr(w)

≤ α

∥∥∥∥∥y1 +
n∑
k=1

εkakhk

∥∥∥∥∥
r

Lr(w)

+ (1− α)

∥∥∥∥∥y2 +
n∑
k=1

εkakhk

∥∥∥∥∥
r

Lr(w)

− Crr cmax{r,r/(r−1)}

∥∥∥∥∥x+

n∑
k=1

akhk

∥∥∥∥∥
r

Lr(w)

≤ αU(x,y1,w,v) + (1− α)U(x,y2,w,v).

Therefore, taking the supremum over all n and all sequences (ak), (εk) gives the
convexity of U(x, ·,w,v), and hence (2.7) is established.

It remains to show (2.8). Fix points (x,y,w,v), (x±,y±,w±,v±) ∈ R×R×Dp,c
as in the statement. Let a±1 , a

±
2 , . . . , a

±
n , ε

+
1 , ε

+
2 , . . . , ε

±
n , w

± be as in the de�nition
of U(x±,y±,w±,v±) (we may assume that the lengths of the sequences a+1 , a

+
2 , . . .

and a−1 , a
−
2 , . . . are the same, adding some zeros if necessary). Let us splice these

objects using the following procedure: consider the function f : [0, 1)→ R given by

f(s) =

{
x+ +

∑n
k=1 a

+
k hk(2s) if s < 1/2,

x− +
∑n
k=1 a

−
k hk(2s− 1) if s ≥ 1/2.

Using the self-similarity of the Haar system, we see that

f =
x1 + x2

2
+

N∑
k=1

akhk = x+

N∑
k=1

akhk,

for some N and some sequence (ak)
N
k=1: we have a1 = x+−x = (x+−x−)/2 and all

remaining terms aj are either zero or belong to the set {a±1 , a
±
2 , . . . , a

±
n }. We can do

the same splicing procedure with the functions y±+
∑n
k=1 ε

±
k a
±
k hk, arriving at the

function y+
∑N
k=1 εkakhk, where N and ak are the same as above, and ε1, ε2, . . .,

εN take values in {−1, 1} (here we have used the assumption |x+−x−| = |y+−y−|:
it implies that ε1 ∈ {−1, 1}). Similarly, we �glue� the weights w+ and w− into one
weight in [0, 1), setting

w(s) =

{
w+(2s) if s < 1/2,

w−(2s− 1) if s ≥ 1/2.

This new weight satis�es
∫ 1

0
w =

∫ 1/2

0
w+(2s)ds+

∫ 1

1/2
w−(2s−1)ds = (w++w−)/2

and, analogously,
∫ 1

0
w−1/(p−1) = v. Furthermore, we have [w]Ap

≤ c. Indeed, �rst
note that (∫ 1

0

w

)(∫ 1

0

w−1/(p−1)
)p−1

= wvp−1 ≤ c.
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Next, if I is a dyadic subinterval of [0, 1/2), then(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w−1/(p−1)
)p−1

=

(
1

|2I|

∫
2I

w+

)(
1

|2I|

∫
2I

(w+)−1/(p−1)
)p−1

≤ c,

since [w+]Ap
≤ c; the case when I is a dyadic subinterval of [1/2, 1) is dealt with

similarly. Thus, by the very de�nition of U(x,y,w,v), we have

U(x,y,w,v)

≥

∥∥∥∥∥y+

N∑
k=1

εkakhk

∥∥∥∥∥
r

Lr(w)

− Crr cmax{r,r/(r−1)}

∥∥∥∥∥x+

N∑
k=1

akhk

∥∥∥∥∥
r

Lr(w)

=
1

2

[∥∥∥∥∥y+ +

n∑
k=1

ε+k a
+
k hk

∥∥∥∥∥
r

Lr(w+)

− Crr cmax{r,r/(r−1)}

∥∥∥∥∥x+ +

n∑
k=1

a+k hk

∥∥∥∥∥
r

Lr(w+)

+

∥∥∥∥∥y− +

n∑
k=1

ε−k a
−
k hk

∥∥∥∥∥
r

Lr(w−)

− Crr cmax{r,r/(r−1)}

∥∥∥∥∥x− +

n∑
k=1

a−k hk

∥∥∥∥∥
r

Lr(w−)

]
.

Since a±1 , a
±
2 , . . ., ε

±
1 , ε

±
2 , . . ., w

± were arbitrary, the inequality (2.8) follows. �

We are ready to establish the inequalities announced in the introductory section.

Proof of (1.3). Fix 1 < p < ∞, a weight w and let c = [w]Ap
. Apply Lemma

3.2 with r = p to obtain an appropriate function U with the majorizing constant
Cpc

max{1,1/(p−1)}. Plug this function into Theorem 2.3 with q = p to get the

Bellman function B with the majorizing function ϕ(x, z) = 2Cpc
max{1,1/(p−1)}x.

This function, used in Theorem 2.1, yields the assertion with the desired constant
21/p · 2Cpcmax{1,1/(p−1)}. �

Proof of (1.5). Fix 1 ≤ p < ∞ and 1 ≤ q < ∞, take an Ap weight w and set
c = [w]Ap . Suppose further that r ≥ p and r > q. Then Lemma 3.2, applied
with this value of r, yields an appropriate function U with the majorizing con-
stant Crc

max{1,1/(r−1)}. This function can be used in Theorem 2.3 to obtain the
Bellman function B with the majorizing function ϕ(x, z) = 6Crc

max{1,1/(r−1)} ·
(r/q + 3−r)

1/q
z. This Bellman function, used in Theorem 2.1, yields the estimate

(1.5) with the constant 21/q · 6Cr · (r/q + 3−r)
1/q

cmax{1,1/(r−1)}. To sharpen the
dependence of the constant on the characteristic c = [w]Ap

, we impose the addi-
tional assumption r ≥ 2. This leads us precisely to the claim, with the constant
Cp,q given by (1.6). �

4. Sharpness of the exponent in (1.5)

Since [w]Ap
≤ [w]A1

for any p ≥ 1, it is enough to show the optimality of the
exponent for p = 1. For the sake of clarity, we split the reasoning into three parts.
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Step 1. Construction. Let N be a positive integer. De�ne the coe�cients a0, a1,
. . ., a2N by

2N∑
k=0

akhk := h0 − 2h1 + 2h2 − 2h4 + 2h8 − . . .+ 2 · (−1)N−1h2N

and the signs ε0, ε1, ε2, . . ., ε2N by requiring that

2N∑
k=0

εkakhk := h0 + 2h1 + 2h2 + 2h4 + 2h8 + . . .+ 2h2N .

Observe that |
∑2N

k=0 akhk| ≤ 3 almost everywhere (one easily checks the identity

|
∑2N

k=0 akhk| = χ[0,2−N−1) + 3χ[2−N−1,1)) and hence also

(4.1) max
0≤n≤2N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣ ≤ 3 almost everywhere.

In addition, we see that

(4.2)

2N∑
k=0

εkakhk

∣∣∣∣∣
[0,2−N−1)

= 1 + 2(N + 1) ≥ 2(N + 1).

Next, set a = N/(N + 1) and consider the weight w on [0, 1), given by

w = h0 + ah1 + (1 + a)ah2 + (1 + a)2ah4 + . . .+ (1 + a)Nah2N

= (1 + a)N+1χ[0,2−N−1) +

N∑
k=0

(1 + a)k(1− a)χ[2−k−1,2−k).

Step 2. Verifying an A1 condition. We will prove that w is an A1 weight
satisfying [w]A1

= (1−a)−1 = N+1. To this end, �x a dyadic interval I ⊆ [0, 1). If
|I| ≤ 2−N−1, then w is constant on I and hence 1

|I|
∫
I
w/ essinf w = 1 ≤ (1− a)−1.

So, suppose that the length of I is at least 2−N ; then there is a nonnegative integer
m ≤ N and k ∈ {0, 1, 2, . . . , 2m − 1} such that I = [k · 2−m, (k + 1) · 2−m). If
k = 1, then w is constant on I and hence 1

|I|
∫
I
w/ essinfI w = 1 ≤ (1 − a)−1, as

previously. If k = 0, then essinfI w = (1 + a)m(1− a) and

1

|I|

∫
I

w = 2m

[
(1 + a)N+12−N−1 +

N∑
k=m

(1 + a)k(1− a)2−k−1
]
= (1 + a)m,

so 1
|I|
∫
I
w/ essinfI w = (1 − a)−1. Finally, if k ≥ 2, then there is a unique ` such

that I ⊂ [2−`−1, 2−`). Since w is constant on this larger interval and nondecreasing
on [0, 1), we get essinfI w = essinf [0,2−`) w and

1

|I|

∫
I

w =
1∣∣[2−`−1, 2−`)∣∣

∫
[2−`−1,2−`)

w ≤ 1∣∣[0, 2−`)∣∣
∫
[0,2−`)

w,

so the estimate 1
|I|
∫
I
w/ essinfI w ≤ (1−a)−1 follows from the case k = 0 considered

above (replace k by ` there).

Step 3. Completion of the proof. By the elementary bound ex ≥ 1 + x, we get(
1 + a

2

)N+1

=

(
1 +

1− a
1 + a

)−N−1
≥ exp

(
−(N + 1)

1− a
1 + a

)
≥ e−1.
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Therefore, if we �x q ≥ 1 and apply (4.1), (4.2), we obtain∥∥∥∥∥ max
0≤n≤2N

∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∥∥∥∥∥
Lq(w)

≥

∥∥∥∥∥ max
0≤n≤2N

∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∥∥∥∥∥
L1(w)

≥

∥∥∥∥∥∥
2N∑
k=0

εkakhk

∥∥∥∥∥∥
L1(w)

≥ 2−N−1 · 2(N + 1) · (1 + a)N+1

= [w]A1 · 2(N + 1)(1− a) ·
(
1 + a

2

)N+1

≥ [w]A1
· 2e−1

≥ 2

3
e−1[w]A1

∥∥∥∥∥ max
0≤n≤2N

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
∥∥∥∥∥
Lq(w)

.

The proof is complete.
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