INEQUALITIES FOR MARTINGALES TAKING VALUES IN 2-CONVEX BANACH SPACES

ADAM OSĘKOWSKI

ABSTRACT. We study sharp square function inequalities for martingales taking values in a 2-convex Banach space \mathbb{B} . We show that an appropriate weak-type bound holds true if and only if \mathbb{B} is isometric to a Hilbert space.

1. INTRODUCTION

As evidenced in numerous papers, martingale theory is a convenient tool in the investigation of the structure and the geometry of Banach spaces. See e.g. [2], [3], [6], [7], [9], [10] and references therein. The purpose of this paper is to establish a novel characterization of Hilbert spaces in terms of a certain square function inequality.

We start with introducing the necessary background and notation. Assume that $(\mathbb{B}, ||\cdot||)$ is a real or complex Banach space and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, equipped with $(\mathcal{F}_n)_{n\geq 0}$, a nondecreasing sequence of sub- σ -algebras of \mathcal{F} . Let $f = (f_n)_{n\geq 0}$ be an adapted martingale taking values in \mathbb{B} , with the corresponding difference sequence $d = (d_n)_{n\geq 0}$ given by $d_0 = f_0$ and $d_n = f_n - f_{n-1}$ for $n \geq 1$. We say that f is conditionally symmetric if for each $n \geq 1$, the conditional distributions of d_n and $-d_n$ given \mathcal{F}_{n-1} coincide. Such martingales arise naturally in several contexts. We will only mention here one important example, related to the Haar system $h = (h_n)_{n\geq 0}$ on [0, 1]. Suppose that the probability space is the interval [0, 1] equipped with its Borel subsets and Lebesgue measure, and let $(\mathcal{F}_n)_{n\geq 0}$ be the natural filtration of h. Then for any coefficients a_0, a_1, a_2, \ldots from \mathbb{B} , the sequence $(\sum_{k=0}^n a_k h_k)_{n\geq 0}$ forms a martingale. Such a process is called a dyadic martingale or Paley-Walsh martingale, and it is easy to see that it is conditionally symmetric.

We define the square function S(f) associated to f by $S(f) = \left(\sum_{n=0}^{\infty} ||d_n||^2\right)^{1/2}$ and, throughout, use the notation $S_N(f) = \left(\sum_{n=0}^{N} ||d_n||^2\right)^{1/2}$ for $N = 0, 1, 2, \ldots$

We will be mainly interested in the weak-type (1, 1) inequality

(1.1)
$$\mathbb{P}(S(f) \ge 1) \le \beta ||f||_1$$

under the assumption that f is conditionally symmetric. Here $||f||_1 = \sup_{n\geq 0} ||f_n||_1$ is the first norm of f. There is a natural question about the class of those Banach spaces \mathbb{B} , for which the inequality (1.1) holds true with some absolute β . It follows from the results of [4] and [10] ([5] is also a convenient reference) that this class

²⁰¹⁰ Mathematics Subject Classification. 60G42, 46C15.

Key words and phrases. martingale square function Banach space Hilbert space 2-convex space.

coincides with the class of 2-convex spaces. Recall that a Banach space \mathbb{B} is 2-convex, if it can be renormed so that for all $x, y \in \mathbb{B}$,

$$||x+y||^2 + ||x-y||^2 \ge 2||x||^2 + 2\kappa ||y||^2$$

for some universal positive κ (cf. [10]). For instance, one can easily show that $L_p([0,1])$ is 2-convex if and only if $1 \leq p \leq 2$. What can be said about the optimal (i.e., the least) value $\beta(\mathbb{B})$ of the constant β in (1.1)? [1] proved that

$$\beta(\mathbb{R}) \le e^{-1/2} + \int_0^1 e^{-t^2/2} \mathrm{d}t = 1.4622\dots$$

and [8] showed that actually we have equality here. We will strengthen this result as follows.

Theorem 1.1. If \mathbb{B} is a Hilbert space, then $\beta(\mathbb{B}) = \beta(\mathbb{R})$.

It should be pointed out here that this passage from real to Hilbert-space-valued setting is absolutely not automatic. There are several basic inequalities for square functions of conditionally symmetric martingales, for which the constants in the one- and higher-dimensional settings differ. See [11] for a careful analysis of this phenomenon.

Our second result is the converse to Theorem 1.1.

Theorem 1.2. If \mathbb{B} is a Banach space which is not isometric to a Hilbert space, then there is a dyadic martingale f such that $\mathbb{P}(S(f) \ge 1) > \beta(\mathbb{R})||f||_1$.

The two above theorems yield the following characterization: a Banach space \mathbb{B} is a Hilbert space if and only if $\beta(\mathbb{B}) = \beta(\mathbb{R})$.

We have organized this note as follows. Theorem 1.1 is established in the next section. Section 3 is devoted to the proof of Theorem 1.2.

2. Sharp inequality for Hilbert-space-valued martingales

We start by defining $\varphi : \mathbb{R} \to \mathbb{R}$ by the formula

$$\varphi(s) = e^{-s^2/2} + s \int_0^s e^{-t^2/2} \mathrm{d}t.$$

Note that $\varphi(1) = \beta(\mathbb{R}) = 1.4622...$ Furthermore, we easily check that

(2.1)
$$\varphi(s) = s\varphi'(s) + \varphi''(s) \quad \text{for } s \in \mathbb{R}.$$

Introduce $U : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ by

$$U(x,y) = \begin{cases} 1 - \sqrt{1 - y^2} \varphi\left(\frac{|x|}{\sqrt{1 - y^2}}\right) & \text{if } x^2 + y^2 \le 1, \\ 1 - \varphi(1)|x| & \text{if } x^2 + y^2 > 1. \end{cases}$$

The function U appears, in a slightly different form, in [1]. One can extract from that paper (see pages 381 and 382 there) that U has the following property: if x, d are real numbers and $y \ge 0$, then

(2.2)
$$U(x+d,\sqrt{y^2+d^2}) + U(x-d,\sqrt{y^2+d^2}) \le 2U(x,y).$$

Furthermore, we easily check that

(2.3)
$$1 - \varphi(1)|x| \ge U(x,y) \ge \mathbf{1}_{\{x^2 + y^2 \ge 1\}} - \varphi(1)|x|.$$

Indeed, if $x^2 + y^2 \ge 1$, then we have equality throughout; if $x^2 + y^2 < 1$, the inequality can be rewritten in the form

$$\frac{1}{\sqrt{1-y^2}} \ge \varphi\left(\frac{|x|}{\sqrt{1-y^2}}\right) - \frac{\varphi(1)|x|}{\sqrt{1-y^2}} \ge 0.$$

However, the function $s \mapsto \varphi(s) - \varphi(1)s$ is decreasing on [0, 1]: its derivative equals $-\int_s^1 e^{-t^2/2} dt - e^{-1/2}$. Consequently,

$$\frac{1}{\sqrt{1-y^2}} \ge 1 = \varphi(0) \ge \varphi\left(\frac{|x|}{\sqrt{1-y^2}}\right) - \frac{\varphi(1)|x|}{\sqrt{1-y^2}} \ge \varphi(1) - \varphi(1) = 0.$$

The key ingredient of the proof is the following vector-valued version of (2.2).

Lemma 2.1. Suppose that \mathbb{B} is a Hilbert space. Pick $x, d \in \mathbb{B}$ and $y \ge 0$. Then

(2.4)
$$U(||x+d||, \sqrt{y^2 + ||d||^2}) + U(||x-d||, \sqrt{y^2 + ||d||^2}) \le 2U(||x||, y).$$

Proof. It is convenient to split the reasoning into a few parts.

Step 1. Assume that $||x||^2 + y^2 \ge 1$. Using the left bound in (2.3), we may write

$$\begin{aligned} U(||x+d||, \sqrt{y^2} + ||d||^2) + U(||x-d||, \sqrt{y^2} + ||d||^2) \\ &\leq 2 - \varphi(1) \big[||x+d|| + ||x-d|| \big] \leq 2 - 2\varphi(1) ||x|| = 2U(||x||, y). \end{aligned}$$

Step 2. Now, assume that $||x||^2 + y^2 < 1$ and $||x \pm d||^2 + y^2 + ||d||^2 < 1$. The left-hand side of (2.4) can be rewritten in the form $F(2\Re\langle x, d\rangle)$, where

$$F(s) = U(\sqrt{A+s}, \sqrt{y^2 + ||d||^2}) + U(\sqrt{A-s}, \sqrt{y^2 + ||d||^2})$$

and $A = ||x||^2 + ||d||^2$. The function F is nondecreasing on $[0, 2||x|| \cdot ||d||]$; to see this, take s > 0 and compute that

$$F'(s) = \frac{U_x(\sqrt{A+s}, \sqrt{y^2 + ||d||^2})}{2\sqrt{A+s}} - \frac{U_x(\sqrt{A-s}, \sqrt{y^2 + ||d||^2})}{2\sqrt{A-s}}.$$

Now, we have F'(0) = 0; in addition, if u, v are positive numbers satisfying $u^2 + v^2 < 1$, and we denote the ratio $u/\sqrt{1-v^2}$ by z, then

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}u} (U_x(u,v)/u) &= (uU_{xx}(u,v) - U_x(u,v))u^{-2} \\ &= (-z\varphi''(z) + \varphi'(z))u^{-2} = \left(\int_0^z e^{-t^2/2} \mathrm{d}t - ze^{-z^2/2}\right)u^{-2} \ge 0, \end{aligned}$$

since $t \mapsto e^{-t^2/2}$ is nonincreasing. This shows that F'(s) > 0 for positive s. Furthermore, F is even; thus, it suffices to prove (2.4) for $\Re(x, d) = \pm ||x|| \cdot ||d||$, i.e. in the case when x and d are linearly dependent. This follows immediately from the real-valued version (2.2).

Step 3. Next, suppose that $||x||^2 + y^2 < 1$ and that exactly one of the inequalities

$$||x - d||^2 + y^2 + ||d||^2 \ge 1, \qquad ||x + d||^2 + y^2 + ||d||^2 \ge 1$$

holds true. We may assume that the first of them is true, replacing x by -x if necessary. Furthermore, we may assume that y = 0: otherwise we divide throughout

by $\sqrt{1-y^2}$ and substitute $X = x/\sqrt{1-y^2}$, $D = d/\sqrt{1-y^2}$. The inequality (2.4) takes the form

$$\sqrt{1 - ||d||^2} \varphi\left(\frac{||x + d||}{\sqrt{1 - ||d||^2}}\right) + \varphi(1)||x - d|| \ge 2\varphi(||x||).$$

Carry out the following optimization procedure. Fix ||x||, ||x-d||, put s = ||d|| and minimize the left-hand side over s. By parallelogram identity, we have $||x + d|| = \sqrt{2||x||^2 + 2s^2 - ||x - d||^2}$, so the derivative with respect to s of the left-hand side is

$$-\frac{s}{\sqrt{1-s^2}}\varphi(X) + \frac{\sqrt{1-s^2}}{2X}\varphi'(X) \cdot \frac{s(2||x||^2 + 2 - ||x-d||^2)}{(1-s^2)^2}$$
$$= \frac{s}{X\sqrt{1-s^2}} \Big[-\varphi(X)X + \varphi'(X)(X^2 + 2) \Big],$$

where $X = \sqrt{(2||x||^2 + 2s^2 - ||x - d||^2)/(1 - s^2)} \in [0, 1]$. But the expression in the square brackets is nonnegative: indeed, it equals 0 for X = 0, and its derivative is

$$\varphi''(X)(X^2 + 2) + \varphi'(X)X - \varphi(X) = \varphi''(X)(X^2 + 1) \ge 0,$$

in view of (2.1). Consequently, to prove the desired estimate (2.4), it suffices to consider the smallest possible ||d|| (for which the assumptions of Step 3 are valid). That is, we must prove the claim for d such that ||d|| = ||x - d|| - ||x|| or such that $||x - d||^2 + ||d||^2 = 1$. In the first case, we get that x and d are linearly dependent, so (2.4) follows from its real version (2.2); the second case follows immediately from continuity and Step 2 above.

Step 4. Finally, assume that $||x||^2 + y^2 < 1$ and $||x \pm d||^2 + y^2 + ||d||^2 > 1$. As previously, it suffices to establish the desired bound for y = 0 only; it reads

$$\varphi(1)||x+d|| + \varphi(1)||x-d|| \ge 2\varphi(||x||)$$

Observe that the function G(s) = ||x + ds|| + ||x - ds|| is nondecreasing on [0, 1]: this follows immediately from the triangle inequality. Consequently, we may write

$$\varphi(1)||x+d|| + \varphi(1)||x-d|| \ge \varphi(1)||x+ds_0|| + \varphi(1)||x-ds_0||$$

where s_0 is the largest number such that at least one of the inequalities

$$||x - ds_0||^2 + ||ds_0||^2 \le 1, \qquad ||x + ds_0||^2 + ||ds_0||^2 \le 1$$

holds true. It remains to note that the inequality $\varphi(1)||x + ds_0|| + \varphi(1)||x - ds_0|| \ge 2\varphi(||x||)$ has been already established in Step 2 or Step 3 above.

Proof. It suffices to show that $\beta(\mathbb{B}) \leq \varphi(1)$; the sharpness of this bound has been proved in [8]. By easy approximation, we will be done if we show the bound for simple martingales (a martingale f is simple, if for any n the random variable f_n takes only a finite number of values and there is a deterministic N such that $f_N = f_{N+1} = f_{N+2} = \ldots = f_{\infty}$). We will prove a slightly stronger statement

$$\mathbb{P}(S_n(f)^2 + ||f_n||^2 \ge 1) \le \varphi(1)||f_n||_1, \qquad n = 0, 1, 2, \dots$$

4

The key observation is that the process $(U(||f_n||, S_n(f))_{n\geq 0})$ is a supermartingale: indeed, by the conditional symmetry of f,

$$\begin{split} \mathbb{E}\big[U(||f_{n+1}||, S_{n+1}(f))|\mathcal{F}_n\big] &= \mathbb{E}\big[U(||f_n + d_{n+1}||, \sqrt{S_n^2(f) + ||d_{n+1}||^2}|\mathcal{F}_n\big] \\ &= \frac{1}{2}\Big\{\mathbb{E}\big[U(||f_n + d_{n+1}||, \sqrt{S_n^2(f) + ||d_{n+1}||^2}|\mathcal{F}_n\big] \\ &+ \mathbb{E}\big[U(||f_n - d_{n+1}||, \sqrt{S_n^2(f) + ||d_{n+1}||^2}|\mathcal{F}_n\big]\Big\} \\ &\leq U(||f_n||, S_n(f)), \end{split}$$

where in the last passage we have exploited (2.4). So, by the right bound in (2.3),

$$\begin{split} \mathbb{P}(S_n^2(f) + ||f_n||^2 \ge 1) - \varphi(1)||f_n||_1 &= \mathbb{E}\Big\{\mathbf{1}_{\{S_n^2(f) + ||f_n||^2 \ge 1\}} - \varphi(1)||f_n||\Big\} \\ &\leq \mathbb{E}U(||f_n||, S_n(f)) \\ &\leq \mathbb{E}U(||f_0||, S_0(f)) \\ &= \frac{1}{2}\mathbb{E}\Big\{U(||f_0||, S_0(f)) + U(|| - f_0||, S_0(f))\Big\} \\ &\leq U(0, 0) = 0, \end{split}$$

where in the last inequality we used (2.4) again. This completes the proof.

3. CHARACTERIZATION OF HILBERT SPACES

Throughout this section, we assume that the underlying probability space is the interval [0, 1] equipped with its Borel subsets and Lebesgue measure. Let $(\mathbb{B}, || \cdot ||)$ be a Banach space such that for any dyadic \mathbb{B} -valued martingale f,

(3.1)
$$\mathbb{P}(S(f) \ge 1) \le \varphi(1) ||f||_1.$$

For $x \in \mathbb{B}$ and $y \ge 0$, let M(x, y) denote the class of all simple dyadic \mathbb{B} -valued martingales f satisfying $f_0 \equiv x$ and

(3.2)
$$y^2 - ||x||^2 + S^2(f) \ge 1$$
 almost surely.

Here the filtration may vary. Consider the function $U^0: \mathbb{B} \times [0, \infty) \to \mathbb{R}$, given by

$$U^{0}(x,y) = \inf\{\mathbb{E}||f_{\infty}||\},\$$

where the infimum is taken over all $f \in M(x, y)$ and f_{∞} is the pointwise limit of f.

Lemma 3.1. The function U^0 enjoys the following properties.

- $1^{\circ} \ \ \textit{For any} \ x \in \mathbb{B} \ \ \textit{and} \ y \geq 0 \ \ \textit{we have} \ \ U^0(x,y) \geq ||x||.$
- $2^\circ \ \textit{ For any } x, \, d \in \mathbb{B} \ \textit{ and } y \geq 0 \ \textit{ we have }$

(3.3)
$$\frac{1}{2} \left[U^0(x+d,\sqrt{y^2+||d||^2}) + U^0(x-d,\sqrt{y^2+||d||^2})) \right] \ge U^0(x,y).$$

 3° For any $x \in \mathbb{B}$ we have $U^0(x, ||x||) \ge \varphi(1)^{-1}$.

Proof. The first property is obvious: if $f \in M(x, y)$, then $||f_n||_1 \ge ||f_0||_1 = ||x||$ for all n. To establish 2°, we exploit the so-called "splicing argument": see e.g. [3]. Pick a martingale f^{\pm} from the class $M(x \pm d, \sqrt{y^2 + ||d||^2})$ and define a simple sequence f by $f_0 \equiv x$ and

$$f_n(\omega) = \begin{cases} f_{n-1}^-(2\omega) & \text{if } \omega \in [0, 1/2], \\ f_{n-1}^+(2\omega - 1) & \text{if } \omega \in (1/2, 1]. \end{cases}$$

Then f is a dyadic martingale. Furthermore, if $\omega \in [0, 1/2]$, then

$$y^2 - ||x||^2 + S^2(f)(\omega) = y^2 + ||d||^2 - ||x - d||^2 + S^2(f^-)(2\omega) \ge 1$$

unless ω belongs to a set of probability 0: this is due to $f^- \in M(x-d, \sqrt{y^2 + ||d||^2})$. Similarly, $y^2 - ||x||^2 + S^2(f)(\omega) \ge 1$ for almost all $w \in (1/2, 1]$. Therefore (3.2) holds, so by the definition of U^0 , we have $||f_{\infty}||_1 \ge U^0(x, y)$. However, the left hand side equals $\frac{1}{2}||f_{\infty}^-||_1 + \frac{1}{2}||f_{\infty}^+||_1$, which, by the proper choice of f^{\pm} , can be made arbitrarily close to the left hand side of (3.3). This gives 2°. Finally, the condition 3° follows at once from (3.1) and the definition of U^0 .

The further properties of U^0 are studied in the next lemma.

Lemma 3.2. (i) The function U^0 has the homogeneity-type property

$$U^{0}(x,y) = \sqrt{1-y^{2}}U^{0}\left(\frac{x}{\sqrt{1-y^{2}}},0\right)$$
 for all $x \in \mathbb{B}$ and $y \in [0,1)$.

(ii) The function U^0 is continuous on $\mathbb{B} \times [0,1)$.

Proof. (i) This follows immediately from the definition of U^0 and the fact that $f \in M(x,y)$ if and only if $f/\sqrt{1-y^2} \in M(x/\sqrt{1-y^2},0)$.

(ii) If $f \in M(x, y)$ and $\bar{x} \in \mathbb{B}$, then $\bar{x} - x + f \in M(\bar{x}, y)$ and

 $||\bar{x} - x|| \ge \mathbb{E}[||\bar{x} - x + f_n|| - ||f_n||] \ge U^0(\bar{x}, y) - \mathbb{E}||f_n||,$

so taking infimum over f gives $U^0(\bar{x}, y) - U^0(x, y) \leq ||\bar{x} - x||$. By the symmetry of x and \bar{x} , we see that for a fixed y, the function $U^0(\cdot, y)$ is Lipschitz. An application of (i) yields the desired continuity.

Now, put $\psi(x) = U^0(x,0)$ for $x \in \mathbb{B}$. The next step is to prove the following.

Lemma 3.3. We have $\varphi(1)\psi(x) = \varphi(||x||)$ for all $x \in \mathbb{B}$ with $||x|| \leq 1$.

Proof. It is convenient to split the reasoning into a few parts.

Step 1. First we will show that if ||x|| = 1, then $U^0(x,0) = 1$. Indeed, the inequality " \geq " follows directly from part 1° of Lemma 3.1; to get the reverse, consider the dyadic martingale f given by $f_0 \equiv x$ and $f_1 = f_2 = \ldots = 2x \cdot 1_{[0,1/2]}$. It satisfies $-||x||^2 + S^2(f) = ||x||^2 \geq 1$ almost surely; thus $f \in M(x,0)$ and $U^0(x,0) \leq \mathbb{E}||f_1|| = 1$. So, $\varphi(1)\psi(x) = \varphi(1)U^0(x,0) = \varphi(1) = \varphi(||x||)$.

Step 2. Next we will show that $\varphi(1)\psi(x) \leq \varphi(||x||)$ for ||x|| < 1. If f is a conditionally symmetric martingale with $f_0 \equiv x$, then

$$\mathbb{E}U^0(f_n, \sqrt{-||x||^2 + S^2(f)}) \ge U^0(x, 0).$$

To see this, use (3.3) and repeat the argumentation from the end of Section 2. By a straightforward approximation and Lemma 3.2 (ii), the bound above leads to the following inequality for Brownian motion *B*. Namely, pick a stopping time τ satisfying $\tau < 1$ almost surely and let $x \in \mathbb{B}$. Apply the above bound to the conditionally symmetric martingale $(x + x'B_{\tau \wedge k2^{-N}})_{k=0}^{2^N}$ and let $N \to \infty$ to get $\mathbb{E}U^0(x + x'B_{\tau}, \sqrt{\tau}) \geq U^0(x, 0)$, or, by Lemma 3.2 (i),

(3.4)
$$\psi(x) \le \mathbb{E}\sqrt{1-\tau}\psi\left(\frac{x+x'B_{\tau}}{\sqrt{1-\tau}}\right).$$

If we put $\tau = \inf\{t : ||x + x'B_t|| = \sqrt{1-t}\}$, then by Step 1 we obtain $\psi(x) \leq \mathbb{E}\sqrt{1-\tau}$. On the other hand, by (2.1), the function $V : \mathbb{R} \times (-1, 1) \to \mathbb{R}$ given by

 $V(s,t) = \sqrt{1-t}\varphi(s/\sqrt{1-t})$ satisfies the heat equation $V_t + \frac{1}{2}V_{ss} = 0$. Therefore, by Itô's formula, if τ is as above, we get

$$\varphi(||x||) = V(||x||, 0) = \mathbb{E}V(||x|| + B_{\tau}, \tau) = \mathbb{E}\sqrt{1 - \tau}\varphi\left(\frac{||x|| + B_{\tau}}{\sqrt{1 - \tau}}\right) = \varphi(1)\mathbb{E}\sqrt{1 - \tau}.$$

This yields the claimed bound $\varphi(1)\psi(x) \leq \varphi(||x||)$.

Step 3. Suppose now that there is a vector z of norm smaller than 1 for which we have the strict estimate $\varphi(1)\psi(z) < \varphi(||z||)$. By the property 3° of Lemma 3.1 (used with x = 0), we must have $z \neq 0$. Consider the stopping time $\tau = \inf\{t : |B_t| = ||z||\sqrt{1-t}\}$ and apply (3.4) with x = 0 (as x', take the vector z') to get

$$\varphi(1)\psi(0) \le \varphi(1)\mathbb{E}\sqrt{1-\tau}\psi(z) < \varphi(||z||)\mathbb{E}\sqrt{1-\tau}.$$

However, as previously, Itô's formula gives

$$\varphi(0) = V(0,0) = \mathbb{E}V(B_{\tau},\tau) = \mathbb{E}\sqrt{1-\tau}\varphi\left(\frac{B_{\tau}}{\sqrt{1-\tau}}\right) = \varphi(||z||)\mathbb{E}\sqrt{1-\tau}.$$

Therefore $\varphi(1)\psi(0) < \varphi(0) = 1$, which contradicts part 3° of Lemma 3.1.

We are ready to establish the main result.

Proof. Assume \mathbb{B} is a Banach space for which the weak-type constant for the dyadic square function equals $\varphi(1)$. By Lemmas 3.2 and 3.3, we have

$$U^{0}(x,y) = \varphi(1)^{-1}\sqrt{1-y^{2}}\varphi\left(\frac{||x||}{\sqrt{1-y^{2}}}\right)$$

provided $||x||^2 + y^2 < 1$. Pick vectors $x, d \in \mathbb{B}$ and a small positive number t (so that $||x \pm d||^2 + ||d||^2 < t^{-2}$). By (3.3), applied to tx, td and y = 0, we get

$$2\varphi(t||x||) \le \sqrt{1 - t^2 ||d||^2} \left[\varphi\left(\frac{t||x - d||}{\sqrt{1 - t^2 ||d||^2}}\right) + \varphi\left(\frac{t||x + d||}{\sqrt{1 - t^2 ||d||^2}}\right) \right]$$

This can be rewritten in the form

 $2\varphi(t||x||) - 2\varphi(0)$

(3.5)
$$\leq \sqrt{1-t^2||d||^2} \left[\varphi\left(\frac{t||x-d||}{\sqrt{1-t^2||d||^2}}\right) + \varphi\left(\frac{t||x+d||}{\sqrt{1-t^2||d||^2}}\right) - 2\varphi(0) \right] + 2\varphi(0)\left(\sqrt{1-t^2||d||^2} - 1\right).$$

Divide throughout by t^2 and let $t \to 0$. Then

$$\frac{2\varphi(t||x||) - 2\varphi(0)}{t^2} = \frac{\varphi(t||x||) + \varphi(-t||x||) - 2\varphi(0)}{t^2} \to \varphi''(0)||x||^2 = ||x||^2,$$

and similarly, the right-hand side of (3.5) tends to $\frac{1}{2} \left[||x - d||^2 + ||x + d||^2 \right] - ||d||^2$. So,

$$||x - d||^2 + ||x + d||^2 \ge 2||x||^2 + 2||d||^2,$$

and replacing x, d by x + d and x - d yields the reverse bound. Consequently, parallelogram identity holds and hence \mathbb{B} is isomeric to a Hilbert space.

Acknowledgments

The research was partially supported by Polish Ministry of Science and Higher Education (MNiSW) grant IP2011 039571 'Iuventus Plus'.

References

- [1] Bollobás, B., 1980. Martingale inequalities. Math. Proc. Cambridge Phil. Soc. 87, 377–382.
- [2] Bourgain, J., 1983. Some remarks on Banach spaces in which martingale difference sequences
- are unconditional. Ark. Mat. 21, 163–168. [3] Burkholder, D. L., 1981b. A geometrical characterization of Banach spaces in which martin-
- gale difference sequences are unconditional. Ann. Probab. 9, 997-1011.
- [4] Burkholder, D. L., 1989. On the number of escapes of a martingale and its geometrical significance. In "Almost Everywhere Convergence", edited by Gerald A. Edgar and Louis Sucheston. Academic Press, New York, 159–178.
- [5] Burkholder, D. L., 1991. Explorations in martingale theory and its applications. École d'Éte de Probabilités de Saint-Flour XIX—1989, pp. 1–66, Lecture Notes in Math., 1464, Springer, Berlin.
- [6] Figiel, T., 1990. Singular integral operators: a martingale approach. Geometry of Banach spaces (Strobl, Austria, 1989), London Math. Soc. Lecture Notes Series 158, Cambridge University Press, Cambridge, 95–110.
- [7] Godefroy, G., 2001. Renorming of Banach spaces. Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds. Elsevier, Amsterdam, 781–835.
- [8] Osękowski, A., 2009. On the best constant in the weak type inequality for the square function of a conditionally symmetric martingale. Statist. Probab. Lett. 79, 1536–1538.
- [9] McConnell, T. R., 1984. On Fourier multiplier transformations of Banach-valued functions. Trans. Amer. Math. Soc. 285, 739–757.
- [10] Pisier, G., 1975. Martingales with values in uniformly convex spaces. Israel J. Math. 20, 326–350.
- [11] Wang, G., 1991. Sharp Square-Function Inequalities for Conditionally Symmetric Martingales. Trans. Amer. Math. Soc., 328, 393–419.

 $E\text{-}mail\ address: \texttt{ados@mimuw.edu.pl}$

DEPARTMENT OF MATHEMATICS, INFORMATICS AND MECHANICS, UNIVERSITY OF WARSAW, BANACHA 2, 02-097 WARSAW, POLAND