INEQUALITIES FOR MARTINGALES TAKING VALUES IN
2-CONVEX BANACH SPACES

ADAM OSEKOWSKI

ABSTRACT. We study sharp square function inequalities for martingales taking
values in a 2-convex Banach space B. We show that an appropriate weak-type
bound holds true if and only if B is isometric to a Hilbert space.

1. INTRODUCTION

As evidenced in numerous papers, martingale theory is a convenient tool in the
investigation of the structure and the geometry of Banach spaces. See e.g. [2], [3],
[6], [7], [9], [10] and references therein. The purpose of this paper is to establish
a novel characterization of Hilbert spaces in terms of a certain square function
inequality.

We start with introducing the necessary background and notation. Assume that
(B, |]-|]) is a real or complex Banach space and let (£2, F,P) be a probability space,
equipped with (F,)n>0, & nondecreasing sequence of sub-o-algebras of F. Let
f = (fn)n>0 be an adapted martingale taking values in B, with the corresponding
difference sequence d = (d,,)n>0 given by do = fo and d,, = f,, — fr—1 for n > 1. We
say that f is conditionally symmetric if for each n > 1, the conditional distributions
of d,, and —d,, given F,_; coincide. Such martingales arise naturally in several
contexts. We will only mention here one important example, related to the Haar
system h = (hn)n>0 on [0,1]. Suppose that the probability space is the interval
[0, 1] equipped with its Borel subsets and Lebesgue measure, and let (F,, ), >0 be the
natural filtration of h. Then for any coefficients ag, a1, aso, ... from B, the sequence
<ZZ:0 aghi)n>o forms a martingale. Such a process is called a dyadic martingale
or Paley-Walsh martingale, and it is easy to see that it is conditionally symmetric.

We define the square function S(f) associated to f by S(f) = (X0, ||dn||2)1/2

1/2
and, throughout, use the notation Sy (f) = (Zﬁi:o ||dn\|2) for N=0,1,2,....
We will be mainly interested in the weak-type (1, 1) inequality

(1.1) P(S(f) = 1) < BlIfII

under the assumption that f is conditionally symmetric. Here ||f||1 = sup,,~¢ || fnll1
is the first norm of f. There is a natural question about the class of those Banach
spaces B, for which the inequality (1.1) holds true with some absolute §. It follows
from the results of [4] and [10] ([5] is also a convenient reference) that this class
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coincides with the class of 2-convex spaces. Recall that a Banach space B is 2-
convex, if it can be renormed so that for all z, y € B,

llz +yl* + 11z = yll* = 2]|2[]* + 2]ly]|?

for some universal positive £ (cf. [10]). For instance, one can easily show that
L,([0,1]) is 2-convex if and only if 1 < p < 2. What can be said about the optimal
(i.e., the least) value S(B) of the constant $ in (1.1)? [1] proved that

1
BR) < e '/? +/ e 2t = 1.4622 ...
0

and [8] showed that actually we have equality here. We will strengthen this result
as follows.

Theorem 1.1. If B is a Hilbert space, then B(B) = B(R).

It should be pointed out here that this passage from real to Hilbert-space-valued
setting is absolutely not automatic. There are several basic inequalities for square
functions of conditionally symmetric martingales, for which the constants in the
one- and higher-dimensional settings differ. See [11] for a careful analysis of this
phenomenon.

Our second result is the converse to Theorem 1.1.

Theorem 1.2. If B is a Banach space which is not isometric to a Hilbert space,
then there is a dyadic martingale f such that P(S(f) > 1) > B(R)||f]]1-

The two above theorems yield the following characterization: a Banach space B
is a Hilbert space if and only if 5(B) = S(R).

We have organized this note as follows. Theorem 1.1 is established in the next
section. Section 3 is devoted to the proof of Theorem 1.2.

2. SHARP INEQUALITY FOR HILBERT-SPACE-VALUED MARTINGALES

We start by defining ¢ : R — R by the formula

p(s) = e 2y s/ e /24t.
0

Note that ¢(1) = (R) = 1.4622. ... Furthermore, we easily check that
(2.1) o(s) = s¢'(s) + ¢"(s) for s € R.
Introduce U : R x [0,00) — R by

1- 1—y2<p< 'f_y) if 22 +y* <1,

1—p(1)|z] if 2 4+ y? > 1.

U(z,y) =

The function U appears, in a slightly different form, in [1]. One can extract from
that paper (see pages 381 and 382 there) that U has the following property: if z, d
are real numbers and y > 0, then

(2.2) Ul +d,Vy>?+d®) +U(x —d, Vy? + d?) < 2U(z,y).

Furthermore, we easily check that

(2.3) L= o] = Ulw,y) = 1o pyes1y — e(Dlal



INEQUALITIES FOR MARTINGALES TAKING VALUES IN 2-CONVEX BANACH SPACES 3

Indeed, if 22 + y2 > 1, then we have equality throughout; if z? + y? < 1, the
inequality can be rewritten in the form

R S I WO
Z ¢ - = U.
V1—y V1—12 Vi—y
However, the function s — ¢(s) —¢(1)s is decreasing on [0, 1]: its derivative equals
- fsl e=t*/2dt — e=1/2. Consequently,

! >1=¢(0) >
=2 pl) =z

i )_wum| o(1) - o(1) = 0.

>
1—92 V1—192 "
The key ingredient of the proof is the following vector-valued version of (2.2).

Lemma 2.1. Suppose that B is a Hilbert space. Pick x,d € B and y > 0. Then

(2.4) U(llz +dlf, vVy? + [ldI?) + U(llz = dl|, vy* + [|d][?) < 20 ([[]], y)-

Proof. Tt is convenient to split the reasoning into a few parts.
Step 1. Assume that ||z||? +y? > 1. Using the left bound in (2.3), we may write

U(llz +dll, vy? + [1dl[*) + U(llz = dll, vy + [|1d]]?)
<2—p@)[lle+dl| + |z - dl]] <2 - 20(1)|lz]| = 20(]|2]],y).

Step 2. Now, assume that ||z||? + y? < 1 and ||z £d||* + y* + ||d||*> < 1. The
left-hand side of (2.4) can be rewritten in the form F(20R(z,d)), where

F(s) = UWVA+ s,V +[1dI2) + UNVA = s, /y? + [|d]?)

and A = [|z||? + ||d||>. The function F is nondecreasing on [0,2||z|| - ||d||]; to see
this, take s > 0 and compute that

F/(s) = Us(VA+ 5,/ +[[d[?)  Us(VA=s,1/y? + [|d][})
B 2VAT s 2V/A— s '

Now, we have F’(0) = 0; in addition, if u, v are positive numbers satisfying u?+v? <
1, and we denote the ratio u/v1 — v? by z, then

d
du

(Up(u,v) /1) = (ulpzge(u,v) — Uy (u,v))u"?

=(—2¢" (2) + ¢ (2))u™% = (/0 et 2qt — ze‘z2/2> w2 >0,

since t > e /2 is nonincreasing. This shows that F'(s) > 0 for positive s. Fur-
thermore, F is even; thus, it suffices to prove (2.4) for R(x,d) = £||z|| - ||d||, i-e. in
the case when x and d are linearly dependent. This follows immediately from the
real-valued version (2.2).

Step 3. Next, suppose that ||z||? +y? < 1 and that exactly one of the inequalities

lo —dl +y* + ldl* > 1, lz +d|* +y* +[]d|]* > 1

holds true. We may assume that the first of them is true, replacing z by —x if
necessary. Furthermore, we may assume that y = 0: otherwise we divide throughout
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by /1 — y? and substitute X = x/+/1 — 42, D = d/+/1 — y?. The inequality (2.4)

takes the form

[z +d||
1—1|d|]Pe | ————= ||z —d 2¢(||x|])-
V=Tl @( ﬁw)”( e = di = 2¢(l«])

Carry out the following optimization procedure. Fix ||z||, ||z —d||, put s = ||d|| and
minimize the left-hand side over s. By parallelogram identity, we have ||z + d|| =
V27|24 252 — ||z — d]|2, so the derivative with respect to s of the left-hand side
is

N \/18_ = #(X) + 12)_(82*<P/(X) &

- W%[—@(X)X-‘r(ﬂ/(x)(xz +2)],

where X = /(2[[z|]2 + 252 — ||z — d|[?)/(1 — s2) € [0,1]. But the expression in the
square brackets is nonnegative: indeed, it equals 0 for X = 0, and its derivative is

2||2||* +2 — [lz — d|*)
(1—s2)2

P"(X)(X? +2) + ¢ (X)X — p(X) = ¢"(X)(X* +1) > 0,

in view of (2.1). Consequently, to prove the desired estimate (2.4), it suffices to
consider the smallest possible ||d|| (for which the assumptions of Step 3 are valid).
That is, we must prove the claim for d such that ||d|| = ||z — d|| — ||=|| or such that
[z — d||? + ||d||*> = 1. In the first case, we get that x and d are linearly dependent,
50 (2.4) follows from its real version (2.2); the second case follows immediately from
continuity and Step 2 above.

Step 4. Finally, assume that ||z||* + y* < 1 and ||z £d||* + y* + ||d||* > 1. As
previously, it suffices to establish the desired bound for y = 0 only; it reads

Wz + dl| + e(D|x — d|| = 2¢(]|]]).

Observe that the function G(s) = ||z + ds|| + ||z — ds]| is nondecreasing on [0, 1]:
this follows immediately from the triangle inequality. Consequently, we may write

e[z +dl| + o(1)|lz — dI| = e(1)[|z + dsol| + ¢(1)]|z — dsoll,
where sq is the largest number such that at least one of the inequalities
|z —dsol[” + [ldso|[* <1, ||z + dsol|* + [|dso[* < 1

holds true. It remains to note that the inequality o (1)||z + dso||+ @(1)||z — dsol|| >
2¢(||z]|) has been already established in Step 2 or Step 3 above. O

Proof. Tt suffices to show that 8(B) < ¢(1); the sharpness of this bound has been
proved in [8]. By easy approximation, we will be done if we show the bound for
simple martingales (a martingale f is simple, if for any n the random variable
fn takes only a finite number of values and there is a deterministic N such that
N =fNt1=fni2=... = foo). We will prove a slightly stronger statement

P(Su(f)? +[1full® 2 1) < o)l fallr,  n=0,1,2,....
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The key observation is that the process (U(||fnl|, Sn(f))n>0 is a supermartingale:
indeed, by the conditional symmetry of f,

E[U(|fas1ll, Snrr(F)IFa] = E[U (1 fn + dnsall, V/SZ(F) + [[dn1 ]2 Fn]

= B[O + s | VST i P

2
+ E[U(|Ifn = dusall, SEO) + [dn 1 [E170] }
< U(Ifnll, Sn(£));
where in the last passage we have exploited (2.4). So, by the right bound in (2.3),
P(SZ(F) + Il > 1) —oW)|| full = E{l{é‘%(f)ﬂ\fnll?zl} - 90(1)||fn||}
< EU([[fall, Sn(f))
< EU(|| foll, So(£))

— SE{UAl1 So() + U1 - Soll: Sol)}

< U(0,0) =0,

where in the last inequality we used (2.4) again. This completes the proof. (]

3. CHARACTERIZATION OF HILBERT SPACES

Throughout this section, we assume that the underlying probability space is the
interval [0, 1] equipped with its Borel subsets and Lebesgue measure. Let (B, || - ||)
be a Banach space such that for any dyadic B-valued martingale f,

(3.1) P(S(f) = 1) < oM f]1-

For z € B and y > 0, let M(x,y) denote the class of all simple dyadic B-valued
martingales f satisfying fo =z and

(3.2) y? — ||z])> + S2(f) > 1 almost surely.

Here the filtration may vary. Consider the function U° : B x [0, 00) — R, given by

U (x,y) = inf{E[| foo I},

where the infimum is taken over all f € M(z,y) and fo is the pointwise limit of f.

Lemma 3.1. The function U° enjoys the following properties.

1° For any x € B and y > 0 we have U°(z,y) > ||z||.
2° For any x,d € B and y > 0 we have

1
(33) 5 [U@+d Vi H P+ U —d, P+ dP)] = U, y).
3° For any x € B we have U°(x, ||z|]) > (1)~ 1.
Proof. The first property is obvious: if f € M(xz,y), then ||fa.|l1 > [|foll1 = ||z]]

for all n. To establish 2°, we exploit the so-called ”splicing argument”: see e.g.
[3]. Pick a martingale f* from the class M (x+d, \/y2 + ||d||?) and define a simple
sequence f by fo =z and

_ ) faa(2w) if we [0,1/2],
) = {fi_l(% -1) ifwe(1/2,1].
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Then f is a dyadic martingale. Furthermore, if w € [0,1/2], then
y? = llal]* + S2(F)w) = y* + 1l — llz = d|* + S*(f7)(2w) > 1

unless w belongs to a set of probability 0: this is due to f~ € M(z—d, \/y? + ||d]|?).
Similarly, y* — ||z||? + S%(f)(w) > 1 for almost all w € (1/2,1]. Therefore (3.2)
holds, so by the definition of U°, we have || foo|l1 > U°(x,y). However, the left hand
side equals 1||f%|l1 + %[|f%|]1, which, by the proper choice of f*, can be made
arbitrarily close to the left hand side of (3.3). This gives 2°. Finally, the condition
3° follows at once from (3.1) and the definition of U°. O

The further properties of U are studied in the next lemma.

Lemma 3.2. (i) The function U° has the homogeneity-type property

U%(z,y) = /1 —52U° <\/1x72,0> for allz € B and y € [0,1).
-y

(ii) The function U° is continuous on B x [0,1).

Proof. (i) This follows immediately from the definition of UY and the fact that

f € M(z,y) if and only if f/\/1—y% € M(z//1—y2,0).
(ii) If f € M(z,y) and T € B, then & — x + f € M(Z,y) and

Hj_IH Z]E[HE—I—F]""H - ||fn|” > Uo(i‘7y) _E||fn||7

so taking infimum over f gives U%(Z,y) — U°(z,y) < ||Z — z||. By the symmetry of
x and 7, we see that for a fixed y, the function U°(-,y) is Lipschitz. An application
of (i) yields the desired continuity. ]

Now, put ¥ (z) = U°(x,0) for z € B. The next step is to prove the following.
Lemma 3.3. We have ¢(1)y(z) = ¢(||z||) for all z € B with ||z|| < 1.

Proof. 1t is convenient to split the reasoning into a few parts.

Step 1. First we will show that if ||z|| = 1, then U°(x,0) = 1. Indeed, the
inequality “>” follows directly from part 1° of Lemma 3.1; to get the reverse,
consider the dyadic martingale f given by fo = x and f1 = fo = ... = 22-1jg,1/9). It
satisfies —||z||? + S2(f) = ||=||* > 1 almost surely; thus f € M(x,0) and U°(z,0) <
E[| f1ll = 1. So, ¢(1)d(z) = @)U (z,0) = ¢(1) = (|[z]]).

Step 2. Next we will show that ¢(1)¥(x) < (||z]|) for ||z]] < 1. If f is a
conditionally symmetric martingale with fy = x, then

EU (fo, V=2l + $2(f)) = U°(x,0).

To see this, use (3.3) and repeat the argumentation from the end of Section 2.
By a straightforward approximation and Lemma 3.2 (ii), the bound above leads
to the following inequality for Brownian motion B. Namely, pick a stopping time
7 satisfying 7 < 1 almost surely and let x € B. Apply the above bound to the
conditionally symmetric martingale (z + BT/\kQ—N)iZO and let N — oo to get
EU°(z + 2'B;,/7) > U°(x,0), or, by Lemma 3.2 (i),

(3.4) b(x) < EVI— 7o (%) .

If we put 7 = inf{t : ||z + 2’B;|| = v/1 —t}, then by Step 1 we obtain (z) <
E+1 — 7. On the other hand, by (2.1), the function V' : R x (—1,1) — R given by
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V(s,t) = /1 —tp(s/v/1—1t) satisfies the heat equation V; + 3V, = 0. Therefore,
by Itd’s formula, if 7 is as above, we get
z|| + B;
el = V(lell.0) = BV (lall+5,,7) = BV T=7¢ (15220 ) — piaypvT=.
Vi—T1
This yields the claimed bound ¢(1)¢(z) < o(||z]])-

Step 3. Suppose now that there is a vector z of norm smaller than 1 for which
we have the strict estimate ¢(1)y(z) < ¢(]|z||). By the property 3° of Lemma 3.1
(used with = 0), we must have z # 0. Consider the stopping time 7 = inf{¢ :
|Bt| = ||2||v/1 — t} and apply (3.4) with z = 0 (as 2/, take the vector z’) to get

©(1)1(0) < e(D)EVT — 74p(2) < o(||2])EVI = 7.

However, as previously, It6’s formula gives

B-
¢(0) = V(0,0) = EV(B,,7) =EV1 - 7¢ (m> = o(||z|)EvVI = 7.
Therefore ¢(1)1(0) < ¢(0) = 1, which contradicts part 3° of Lemma 3.1. O

We are ready to establish the main result.

Proof. Assume B is a Banach space for which the weak-type constant for the dyadic
square function equals ¢(1). By Lemmas 3.2 and 3.3, we have

provided [|z||> + y? < 1. Pick vectors z, d € B and a small positive number ¢ (so
that ||z £d||? + ||d||> < t~2). By (3.3), applied to txz, td and y = 0, we get

]z — dl| tla + dl|
20 (t|z 1=2)ld|? (¢ | == Ji—ende /)|
e(tllall) < vI-2[d] F( 1_ﬂww>+¢< 1—ﬁww>]

This can be rewritten in the form
2¢(t[x|]) — 2¢(0)

tllx—d tllx +d
(3.5) < V1-2|d|]? lw <\/ﬁ> + <\/%) - 2@(0)]
+20(0) (V1 —#2[|d]]> - 1).
Divide throughout by t? and let ¢ — 0. Then
2¢(t||z]]) = 20(0) _ @(t]lx]]) + e(=tllz])) — 2¢(0)
t2 B t2
and similarly, the right-hand side of (3.5) tends to % [||z — d||? + ||z + d[|?] — ||d||*.
So,

= ¢"(0)l]2]]* = [|=|I?,

llz = dlf* + [le + d||* > 2||=]]* + 2[|d||%,
and replacing x, d by « 4+ d and x — d yields the reverse bound. Consequently,
parallelogram identity holds and hence B is isomeric to a Hilbert space. O
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