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ADAM OSȨKOWSKI

Abstract. In the paper we determine, for any K > 0 and α ∈ [0, 1], the
optimal constant L(K, α) ∈ (0,∞] for which the following holds. If X is a

nonnegative submartingale and Y is α-strongly differentially subordinate to
X, then

sup
t

E|Yt| ≤ K sup
t

EXt log+ Xt + L(K, α).

Related sharp inequalities for martingales are also established. As an appli-
cation, we obtain logarithmic estimates for smooth functions on Euclidean
domains.

1. Introduction

Let (Ω,F , P) be a probability space, filtered by a nondecreasing family (Fn)n≥0

of sub-σ-fields of F . Let f = (fn), g = (gn) be adapted sequences of integrable
real-valued random variables. The difference sequences df = (dfn), dg = (dgn) are
given by the equalities

fn =

n
∑

k=0

dfk, gn =

n
∑

k=0

dgk, n = 0, 1, 2, . . . .

The following notion of differential subordination is due to Burkholder [2]: we say
that g is differentially subordinate to f , if for any n we have |dgn| ≤ |dfn|. If f ,
g are martingales, then this condition implies many interesting estimates: see [5]
and references therein, and [13], [14], [15] for some recent progress. For example,
we have the following moment inequality, proved by Burkholder in [2]. We use the
notation ||f ||p = supn ||fn||p, p ∈ [1,∞].

Theorem 1.1. Let f , g be two martingales such that g is differentially subordinate
to f . Then for 1 < p < ∞,

(1.1) ||g||p ≤ max{p− 1, (p − 1)−1}||f ||p
and the constant is the best possible.

For p = 1 the inequality does not hold with any finite constant. However, the
author established in [13] the following substitute.

Theorem 1.2. Let f , g be two martingales such that g is differentially subordinate
to f . Then for K > 1,

(1.2) ||g||1 ≤ K sup
n

E|fn| log |fn| + L0(K),
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where

L0(K) =

{

K2

2(K−1) exp(−K−1) if K < 2,

K exp(K−1 − 1) if K ≥ 2.

The constant is the best possible. Furthermore, for K ≤ 1 the inequality does not
hold in general with any universal L0(K) < ∞.

We will work with a wider class of processes to study which we need a domi-
nation stronger than the differential subordination. Let α be a fixed nonnegative
number. Following Choi [7] (see also [6]), we say that the sequence g is α-strongly
differentially subordinate to f (α-subordinate in short), if g is differentially subordi-
nate to f and, in addition, for any n ≥ 1 we have |E(dgn|Fn−1)| ≤ α|E(dfn|Fn−1)|
almost surely.

We have the following extension of Theorem 1.1, established by Choi in [7] and
in the earlier paper [6] by Burkholder in the particular case α = 1.

Theorem 1.3. Assume that α ∈ [0, 1], f is a nonnegative submartingale and g is
α-subordinate to f . Then for 1 < p < ∞,

(1.3) ||g||p ≤ max{(α + 1)p − 1, (p − 1)−1}||f ||p
and the constant is the best possible.

There is a natural question about the submartingale version of Theorem 1.2.
For a fixed α ∈ [0, 1], let K0 = K0(α) be given by (2.1) below. For K > 1, let
c = c(K, α) be given by (2.2) or (2.4), depending on whether K < K0 or K ≥ K0.
Here is one of the main results of the present paper.

Theorem 1.4. Assume that f is a nonnegative submartingale and g is α-subordi-
nate to f . Then for K > 1,

(1.4) ||g||1 ≤ K sup
n

Efn log+ fn + L(K, α),

where

(1.5) L(K, α) =















c

α + 2
+

(α + 1)2

c(2α + 1)2(α + 2)
+

α(2α2 + 5α + 3)

(α + 2)(2α + 1)
if K < K0,

(α + 1)(2α2 + 3α + 2)

(2α + 1)(α + 2)
if K ≥ K0.

The constant L(K, α) is the best possible. Furthermore, for K ≤ 1 the inequality
does not hold in general with any universal L(K, α) < ∞.

Therefore, as in Theorem 1.2, there are two different expressions for the constants
L(K, α) depending on whether K is small or large. However, comparing (1.2) and
(1.4), we see a slight difference: in the second estimate we have the positive part of
the logarithm. We have not been able to find optimal constant without this small
change. On the other hand, we can show the following “Log+” version of Theorem
1.2. Here the process f may take negative values.

Theorem 1.5. Let f , g be two martingales such that g is differentially subordinate
to f . Then for K > 1,

(1.6) ||g||1 ≤ K sup
n

E|fn| log+ |fn| + L(K, 0).

The constant L(K, 0) is the best possible. Furthermore, for K ≤ 1 the inequality
does not hold in general with any universal L(K) < ∞.
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The next result we obtain is the following sharp logarithmic inequality for one-
sided maximal function of g. Let g∗n = sup0≤k≤n gk and g∗ = supn g∗n. Let K1 be
the solution to the equation K1 − 3 + log(K1 − 1) = 0.

Theorem 1.6. Let f , g be two martingales such that g is differentially subordinate
to f . Then for K > 1,

(1.7) ||g∗||1 ≤ K sup
n

E|fn| log+ |fn| + L∗(K),

where

(1.8) L∗(K) =



















c(K, 0) + (2c(K, 0))−1 if 1 < K ≤ K0(0),

1 +
c(K, 0)

2
+

c(K, 0)(log c(K, 0))2

2
if K0(0) ≤ K ≤ K1,

1 + e−1 if K > K1.

The constant L∗(K) is the best possible. Furthermore, for K ≤ 1 the inequality
does not hold in general with any universal L∗(K) < ∞.

In fact, we will prove the theorems above in a more general continuous-time
setting. Assume that (Ω,F , P) is complete, equipped with a filtration (Ft)t≥0, and
let X , Y be two real-valued right-continuous semimartingales with limits from the
left. Set X0− = Y0− = 0. Let [X, X ] and [X, Y ] stand for the quadratic variance of
X and quadratic covariance process of X , Y , respectively; see e.g. Dellacherie and
Meyer [9]. Following [1] and [16], we say that Y is differentially subordinate to X ,
if the process [X, X ] − [Y, Y ] is nonnegative and nondecreasing. This is consistent
with the previous definition: if f , g are discrete-time sequences and we treat them
as continuous-time semimartingales (via Xt = f⌊t⌋, Yt = g⌊t⌋, t ≥ 0), then

[X, X ]t − [Y, Y ]t =

⌊t⌋
∑

k=0

(|dfk|2 − |dgk|2)

is nonnegative and nondecreasing if and only if |dgn| ≤ |dfn| for all n.
We will now explain how to extend the notion of α-subordination to the continuous-

time setting. Write the Doob-Meyer decomposition for X and Y :

(1.9) Xt = X0 + Mt + At, Yt = Y0 + Nt + Bt, t ≥ 0,

where M , N are local martingales and A, B are the finite variation processes.
If X is a submartingale, we assume that A is predictable (determined uniquely).
In general, the decompositions may not be unique. We say that Y is α-strongly
differentially subordinate to X , if Y is differentially subordinate to X and there
is such a decomposition (1.9), for which the process (α|A|t − |B|t) is nonnegative
and nondecreasing. Here |A|t denotes the total variation of A on the interval [0, t].
Again, one easily checks that in the discrete-time case, this reduces to the previous
definition of α-subordination.

Let us reformulate the results of the present paper in our new, more general
setting. We use the notation ||X ||1 = supt ||Xt||1 and X∗

t = sup0≤s≤t Xs, X∗ =
supt X∗

t .

Theorem 1.7. (i) If X is a nonnegative submartingale and Y is α-subordinate to
X, then for K > 1,

(1.10) ||Y ||1 ≤ K sup
t

EXt log+ Xt + L(K, α),
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and the constant L(K, α) is the best possible. For K ≤ 1 there is no L(K, α) < ∞
for which (1.10) is valid in general.

(ii) If X is a martingale and Y is differentially subordinate to X, then for K > 1,

(1.11) ||Y ||1 ≤ K sup
t

E|Xt| log+ |Xt| + L(K, 0),

and the constant L(K, 0) is the best possible. For K ≤ 1 there is no L(K) < ∞ for
which (1.11) is valid in general.

(iii) If X is a martingale and Y is differentially subordinate to X, then for
K > 1,

(1.12) ||Y ∗||1 ≤ K sup
t

E|Xt| log+ |Xt| + L∗(K),

and the constant L∗(K) is the best possible. For K ≤ 1 there is no L∗(K) < ∞ for
which (1.12) is valid in general.

The paper depends heavily on the techniques invented by Burkholder (see e.g.
[5] and [6]): the announced inequalities will be established exploiting some special
functions, which have certain convexity-type properties. These functions are intro-
duced and studied in the next section. Then, in Section 3, we provide the proofs
of the estimates (1.10), (1.11), (1.12), and show the optimality of the constants in
Section 4. The final part of the paper is devoted to some applications concerning
smooth functions on Euclidean domains.

2. Special functions

Let us start with some technical lemma to be needed later.

Lemma 2.1. Let α be a fixed number belonging to [0, 1].
(i) There is a unique K0 = K0(α) ∈ (1,∞) such that

(2.1) K0 + log(K0 − 1) = α + 1 + log

(

2α + 1

α + 1

)

.

(ii) If K ∈ (1, K0), then there is a unique c = c(K, α) ∈ ( α+1
2α+1 , (K − 1)−1)

satisfying

(2.2) α +
α + 1

2α + 1
· 1

c
− log(c(K − 1)) − K = 0.

Proof. (i) As a function of K0 ∈ (1,∞), the left-hand side of (2.1) is increasing and
tends to −∞ as K0 → 1− and to ∞ as K0 → ∞.

(ii) Denoting the left-hand side of (2.2) by F (c), we see that the function F is
continuous, decreasing on (0,∞), limc→∞ F (c) = −∞ and, by (2.1),

F ((α + 1)/(2α + 1)) = α + 1 − log
α + 1

2α + 1
− log(K − 1) − K

= log(K0 − 1) + K0 − log(K − 1) − K > 0.

Hence there is unique c such that F (c) = 0. The bound c < (K − 1)−1 follows
directly from the estimate

F ((K − 1)−1) = (2α2 − 1 − αK)/(2α + 1) < 0. �
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Let VK : [0,∞) × R → R be given by

(2.3) VK(x, y) = |y| − Kx log+ x.

Now we will introduce the special functions corresponding to the inequality (1.4).
Suppose α ∈ [0, 1] is fixed and assume first that 1 < K < K0(α). Consider the
following subsets of [0,∞) × R:

D1 = {(x, y) : x + |y| ≤ c − (2α + 1)−1},
D2 = {(x, y) : x + |y| > c − (2α + 1)−1, x ≤ α/(2α + 1)},
D3 = {(x, y) : −x + |y| ≥ c − 1, α/(2α + 1) < x ≤ 1},
D4 = {(x, y) : −x + |y| < c − 1, c − (2α + 1)−1 ≤ x + |y| ≤ c + 1},
D5 = {(x, y) : c + 1 < x + |y| ≤ K/(K − 1)},
D6 = {(x, y) : K/(K − 1) − x < |y| ≤ x/(K − 1)},
D0 = [0,∞) × R \ (D1 ∪ D2 ∪ . . . ∪ D6)

(see Figure 1). Note that D5 is nonempty, due to Lemma 2.1 (ii). Let

p = pK,α =
α + 1

c(α + 2)

(

c − 1

2α + 1

)α/(α+1)

,

λ =
α + 1

c(2α + 1)
exp

(

−1 +
2α + 1

α + 1

)

,

and introduce U = UK,α : [0,∞) × R → R by

U(x, y)=























































pK,α(x + |y|)1/(α+1)(−(α + 1)x + |y|) + L(K, α) on D1,

−αx + |y| + α + λ exp
[

− 2α+1
α+1

(

x + |y| − α
2α+1

)](

x + 1
2α+1

)

on D2,

−αx + |y| + α + λ exp
[

− 2α+1
α+1

(

− x + |y| + α
2α+1

)]

(1 − x) on D3,

|y|2−x2

2c + (1
c − log(c(K − 1)) − K)(x − 1) + c

2 + 1
2c on D4,

|y| − (x − 1)[log(x + |y| − 1) + K + log(K − 1)] on D5,

K|y| − x − Kx log[(K − 1)(x + |y|)/K] on D6,

|y| − Kx log x on D0.

Now assume that K ≥ K0(α) and let

(2.4) c = c(K, α) =

[

exp(α + 1 − K)
α + 1

(2α + 1)(K − 1)

]1/2

.

Consider the following subsets of [0,∞) × R:

D1 = {(x, y) : x + |y| ≤ α/(2α + 1)},
D2 = {(x, y) : x + |y| > α/(2α + 1), x ≤ α/(2α + 1)},
D3 = {(x, y) : −x + |y| ≥ α/(2α + 1), α/(2α + 1) < x ≤ 1},
D4 = {(x, y) : c − 1 ≤ −x + |y| < α/(2α + 1), x ≤ 1},
D5 = {(x, y) : |x − 1| + |y| < c},
D6 = {(x, y) : c + 1 ≤ x + |y| ≤ K/(K − 1)},
D7 = {(x, y) : K/(K − 1) − x < |y| ≤ x/(K − 1)},
D0 = [0,∞) × R \ (D1 ∪ D2 ∪ . . . ∪ D7)

(see Figure 1). Set

p = pK,α = αα/(α+1)(2α + 1)1/(α+1)(α + 2)−1
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D5

D1

D2 D3

D0

D4

D6

D7

D1

D2 D3

D4

D6D5

D0

Figure 1. The sets Di, intersected with R
2
+, in case 1 < K < K0

(upper picture) and K ≥ K0 (lower picture).

(with the convention 00 = 1) and let U = UK,α : [0,∞) × R → R be given by

U(x, y) =



































































pK,α(x + |y|)1/(α+1)(−(α + 1)x + |y|) + L(K, α) on D1,

−αx + |y| + α + exp
[

− 2α+1
α+1

(

x + |y| − α
2α+1

)](

x + 1
2α+1

)

on D2,

−αx + |y| + α + exp
[

− 2α+1
α+1

(

− x + |y| + α
2α+1

)]

(1 − x) on D3,

−(1 − x) log
[

2α+1
α+1 (1 − x + |y|)

]

+ (α + 1)(1 − x) + |y| on D4,

|y|2−x2

2c + (1
c − log(c(K − 1)) − K)(x − 1) + c

2 + 1
2c on D5,

|y| − (x − 1)[log(x + |y| − 1) + K + log(K − 1)] on D6,

K|y| − x − Kx log[(K − 1)(x + |y|)/K] on D7,

|y| − Kx log x on D0.
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Wherever possible, we will skip the lower indices and write U , V instead of UK,α,
VK ; usually it will be clear from the context which K and α we are working with.
In the sequence of lemmas below, we present the key properties of the function U .

Lemma 2.2. Let α ∈ [0, 1], K > 1. The function U is continuous on [0,∞) × R.
Furthermore, the partial derivative Uy is continuous on (0,∞) × R and the partial
derivative Ux is continuous on (0,∞) × R \ {(x, y) : x = 1, |y| ≥ c}.

Proof. We omit the tedious calculations. One easily verifies the continuity in the
interiors of Di and hence one needs to check that the functions agree at the common
boundaries. �

Lemma 2.3. Let α ∈ [0, 1], K > 1. For any y ∈ R and |γ| ≤ 1, the function t 7→
U(t, y+γt) is concave. Furthermore, if |γ| ≤ α, then the function is nonincreasing.

Proof. First we slightly reformulate the statement. Fix x, y, h > 0 and k ∈ R such
that |k| ≤ h. Introduce a function G = Gx,y,h,k defined on the set {t : x + th ≥ 0}
by the formula G(t) = U(x+th, y+tk). We will show the following three conditions:

1◦ if (x, y) belongs to the interior Do
i of some Di, then G′′(0) ≤ 0.

2◦ G′
1,y,h,k(0−) ≥ G′

1,y,h,k(0+) for any y > c.

3◦ G′
0,y,h,k(0+) ≤ 0 if |k| ≤ αh.

This clearly will yield the claim: 1◦, 2◦, together with Lemma 2.2 imply the
concavity, and then 3◦ gives the monotonicity property. We will only present the
detailed proof in the case K ≥ K0; for K < K0 the conditions 1◦, 2◦ and 3◦ can be
established in a similar manner.

We start with the property 1◦. If (x, y) ∈ Do
1, this follows by the result of

Burkholder: the function t 7→ (|x+ th|+ |y + tk|)1/(α+1)(−(α+1)|x+ th|+ |y + tk|)
is concave, see page 17 of [5]. If (x, y) lies in the interior of D2, then

G′′(0) =
2α + 1

α + 1
exp

[

− 2α + 1

α + 1

(

x + |y| − α

2α + 1

)]

×

×(h + k)
{[2α + 1

α + 1

(

x +
1

2α + 1

)

− 2
]

h +
2α + 1

α + 1

(

x +
1

2α + 1

)

k
}

≤ 0.

The latter inequality is valid, because

|k| ≤ h,
2α + 1

α + 1

(

x +
1

2α + 1

)

− 2 ≤ −1 and
2α + 1

α + 1

(

x +
1

2α + 1

)

≤ 1.

If (x, y) ∈ Do
3, then we derive that

G′′(0) =
2α + 1

α + 1
exp

[

− 2α + 1

α + 1

(

− x + |y| + α

2α + 1

)]

×

×(h − k)
{[2α + 1

α + 1
(1 − x) − 2

]

h − 2α + 1

α + 1
(1 − x)k

}

≤ 0,

which follows from

|k| ≤ h,
2α + 1

α + 1
(1 − x) − 2 ≤ −1 and

2α + 1

α + 1
(1 − x) ≤ 1.

For (x, y) ∈ Do
4 we have

G′′(0) =
−h + k

1 − x + |y|
[(

2 − 1 − x

1 − x + |y|
)

h +
1 − x

1 − x + |y|k
]

≤ 0,
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a consequence of

|k| ≤ h, 2 − 1 − x

1 − x + |y| ≥ 1 and
1 − x

1 − x + |y| ≤ 1.

If (x, y) ∈ Do
5, then G′′(0) = c−1(k2 − h2) ≤ 0. If (x, y) lies in the interior of D6,

one easily checks that

G′′(0) = (x + y − 1)−2(h + k)[(−x − 2y + 1)h + (x − 1)k]

is nonpositive, as |k| ≤ h and −x − 2y + 1 ≤ 1 − x < 0. If (x, y) ∈ Do
7, then

G′′(0) = K(x + y)−2(h + k)[h(−x − 2y) + xk] ≤ 0,

since |k| ≤ h and −x − 2y ≤ −x < 0. Finally, on Do
0, G′′(0) = −Kx−1h2 ≤ 0.

2◦ Since Uy is continuous, it suffices to show that for y > c we have

(2.5) Ux(1−, y) ≥ Ux(1+, y).

However,

Ux(1−, y) =

{

log[2α+1
α+1 y] − α − 1 if y ∈ (c, α/(2α + 1)),

−α − exp[− 2α+1
α+1 y + 1] if y ≥ α/(2α + 1)

is nondecreasing as a function of y, while

Ux(1+, y) =

{

− log |y| − K − log(K − 1) if y ∈ (c, (K − 1)−1),

−K if y ≥ (K − 1)−1

is nonincreasing. In consequence, it suffices to check (2.5) for y = c, and an easy
computation shows that for this choice of y both sides of the estimate are equal.

3◦ The inequality can be rewritten as Ux(0+, y)+α|Uy(0+, y)| ≤ 0, and we easily
check that in fact we have equality here. �

Lemma 2.4. Let α ∈ [0, 1], K > 1.
(i) We have the majorization

(2.6) U(x, y) ≥ V (x, y)

for x ≥ 0, y ∈ R.
(ii) If |y| ≤ x, then

(2.7) U(x, y) ≤ L(K, α).

Proof. (i) Since U(x, y) = U(x,−y) on [0,∞)×R, we may assume that y ≥ 0. The
inequality (2.6) is an immediate consequence of the following three facts: for fixed
x ≥ 0,

1◦ limy→∞(U(x, y) − V (x, y)) ≥ 0,
2◦ limy→∞(Uy(x, y) − Vy(x, y)) = 0,
3◦ the function y 7→ U(x, y) is convex and y 7→ V (x, y) is linear on [0,∞).

The details are left to the reader.
(ii) We use the previous lemma: the function t 7→ U(xt, yt) is concave and

since Ux(0+, 0) = Uy(0+, 0) = 0, it is nonincreasing. Hence U(x, y) ≤ U(0, 0) =
L(K, α). �

The final property of the functions U is the following.
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Lemma 2.5. Let K > 1. Then

(2.8) sup
x≥0

[UK,0(x, 0) + x] = L∗(K),

where L∗(K) is given by (1.8).

Proof. Straightforward analysis of the derivative. �

3. Proofs of (1.10), (1.11) and (1.12)

For any semimartingale X there exists a unique continuous local martingale part
Xc of X satisfying

[X, X ]t = [Xc, Xc]t +
∑

0≤s≤t

|△Xs|2

for all t ≥ 0 (here △Xs = Xs − Xs−, s ≥ 0). Furthermore, [Xc, Xc] = [X, X ]c, the
pathwise continuous part of [X, X ]. We will need Lemma 1 from [16], which can
be stated as follows. Recall that we have set X0− = Y0− = 0.

Lemma 3.1. If X and Y are semimartingales, then Y is differentially subordinate
to X if and only if Y c is differentially subordinate to Xc and for any t ≥ 0 we have
|△Yt| ≤ |△Xt|.

Proof of the inequality (1.10). Obviously, we may restrict ourselves to those sub-
martingales X , for which

(3.1) sup
t

EXt log+ Xt < ∞.

It suffices to prove that for any t > 0, E|Yt| ≤ KEXt log+ Xt + L(K, α). The
main tool used in the proof is the Itô’s formula. Since U is not of class C2, we
need to approximate it by sufficiently smooth function: fix 0 < ε < 1 and let
gε : R

2 → [0,∞) be a nonnegative C∞ function, supported on the ball of center
(0, 0) and radius ε, satisfying

∫

R2 gε = 1. Let Uε, V ε : [ε,∞) × R → R be given by

Uε(x, y) =

∫

[−ε,ε]×R

U(x − u, y − v)gε(u, v)dudv

and

V ε(x, y) =

∫

[−ε,ε]×R

V (x − u, y − v)gε(u, v)dudv.

It is clear that the properties described in Lemma 2.3 remain valid for the function
Uε. In consequence, since this function is of class C∞, for any h, k such that
|k| ≤ |h|, we have

(3.2) Uε
xxh2 + 2Uε

xyhk + Uε
yyk

2 ≤ 0 on (ε,∞) × R

and

(3.3) Uε
x + α|Uε

y | ≤ 0 on (ε,∞) × R.

Now fix δ ∈ (ε
√

2,
√

2), t ≥ 0 and apply Itô’s formula to obtain

(3.4) Uε(δ + Xt, Yt) = I0 + I1 + I2/2 + I3,
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where

I0 = Uε(δ + X0, Y0),

I1 =

∫ t

0+

Uε
x(δ + Xs−, Ys−)dXs +

∫ t

0+

Uε
y (δ + Xs−, Ys−)dYs,

I2 =

∫ t

0+

Uε
xx(δ + Xs−, Ys−)d[Xc

s , Xc
s ] + 2

∫ t

0+

Uε
xy(δ + Xs−, Ys−)d[Xc

s , Y c
s ]

+

∫ t

0+

Uε
yy(δ + Xs−, Ys−)d[Y c

s , Y c
s ]

I3 =
∑

0<s≤t

[

Uε(δ + Xs, Ys) − Uε(δ + Xs−, Ys−)

− Uε
x(δ + Xs−, Ys−)△Xs − Uε

y (δ + Xs−, Ys−)△Ys

]

.

(3.5)

Now we deal with each of the terms Ii separately. By the differential subordination
of Y to X , we have |Y0| = |△Y0| ≤ |△X0| = X0 (see Lemma 3.1). Since δ > ε

√
2,

we have |Y0−v| ≤ δ +X0−u for (u, v) lying in the support of gε and the inequality
(2.7) implies I0 ≤ L(K, α). Let X = X0 + M + A, Y = Y0 + N + B be the Doob-
Meyer decomposition guaranteed by the α-differential subordination. We have

∫ t

0+

Uε
x(δ + Xs−, Ys−)dAs +

∫ t

0+

Uε
y (δ + Xs−, Ys−)dBs

≤
∫ t

0+

Uε
x(δ + Xs−, Ys−)dAs +

∫ t

0+

|Uε
y (δ + Xs−, Ys−)|d|B|s

≤
∫ t

0+

Uε
x(δ + Xs−, Ys−)dAs +

∫ t

0+

α|Uε
y (δ + Xs−, Ys−)|dAs ≤ 0.

Here in the second passage we have exploited α-subordination (since X is a sub-
martingale, we have |A|t = At for all t) and in the third one we have used (3.3).
Furthermore, we have

E

[
∫ t

0+

Uε
x(δ + Xs−, Ys−)dMs +

∫ t

0+

Uε
y (δ + Xs−, Ys−)dNs

]

= 0,

as the stochastic integrals are martingales. In consequence, the term I1 has non-
positive expectation. Moreover, I2 is nonpositive due to (3.2) and the differential
subordination of Y c to Xc (simply approximate the integrals by discrete sums –
see e.g. page 533 of [16] for details). Finally, I3 is nonpositive in virtue of Lemma
3.1 and the fact that Lemma 2.3 is valid for Uε. Plugging the above estimates for
Ii into (3.4) gives EUε(δ + Xt, Yt) ≤ L(K, α). The majorization (2.6) carries over
to the functions Uε, V ε, so

(3.6) EV ε(δ + Xt, Yt) ≤ L(K, α).

Since V (x, y) ≥ −Kx log+ x, we see that for x ≥ 0,

(3.7) V ε(δ + x, y) ≥ −K(x + δ + ε) log+(x + δ + ε) ≥ −κ1x log+ x − κ2,

for some absolute constants κ1, κ2. Therefore, by (3.1), we may let ε → 0 in (3.6)
and use Fatou’s lemma to obtain

EV (δ + Xt, Yt) = E|Yt| − KE(δ + Xt) log+(δ + Xt) ≤ L(K, α).
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Finally, let δ → 0 and use Lebesgue’s dominated convergence theorem (together
with (3.1) and (3.7)) to get the claim. �

Proof of (1.11). We assume that

(3.8) sup
t

E|Xt| log+ |Xt| < ∞

and prove that for any t ≥ 0, E|Yt| ≤ KE|Xt| log+ |Xt| + L(K, 0). Introduce the
function U : R

2 → R by

(3.9) U(x, y) = UK,0(|x|, y)

and let VK be defined by (2.3). In virtue of (2.6), we have

UK,0(x, y) ≥ VK(|x|, y).

Furthermore, since (UK,0)x(0+, y) = 0, we see that for any y ∈ R and |γ| ≤ 1 the
function t 7→ U(t, y + γt) is concave on whole R. The remaining part of the proof
is just the repetition of the arguments used previously. �

Proof of (1.12). Let ε > 0 and assume gε, used above, satisfies the additional
symmetry condition gε(u, v) = gε(u,−v) for all u, v. Let U, Uε, V ε : R

2 → R be
given by (3.9) and

Uε(x, y) =

∫

R2

U(x − u, y − v)gε(u, v)dudv,

V ε(x, y) =

∫

R2

V (|x − u|, y − v)gε(u, v)dudv.

(3.10)

Introduce W ε : R
3 → R by

(3.11) W ε(x, y, z) = y + Uε(x, y − z).

This function is of class C∞. By the symmetry of gε and U with respect to the
second variable, we have that for all x, y, Uε(x, y) = Uε(x,−y). Consequently,

(3.12) W ε
z (x, y, y) = 0 for any x, y ∈ R.

Furthermore, by (2.6), we have

(3.13) W ε(x, y, z) ≥ y + V ε(x, y − z).

Moreover, for any y ∈ R and |γ| ≤ 1, the function t 7→ Uε(t, y + γt) is concave (see
the previous proof), and hence so is the function t 7→ W ε(t, y + γt, z). This gives

(3.14) W ε
xxh2 + 2W ε

xyhk + W ε
yyk2 ≤ 0, |k| ≤ |h|.

Apply Itô’s formula to obtain

W ε(Xt, Yt, Y
∗
t ) = I0 + I1 + I2 + I3/2 + I4,
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where

I0 = W ε(X0, Y0, Y
∗
0 ),

I1 =

∫ t

0+

W ε
x (Xs−, Ys−, Y ∗

s−)dXs +

∫ t

0+

W ε
y (Xs−, Ys−, Y ∗

s−)dYs,

I2 =

∫ t

0+

W ε
z (Xs−, Ys−, Y ∗

s−)dY ∗
s −

∑

0<s≤t

W ε
z (Xs−, Ys−, Y ∗

s−)△Y ∗
s ,

I3 =

∫ t

0+

W ε
xx(Xs−, Ys−, Y ∗

s−)d[Xc
s , Xc

s ] + 2

∫ t

0+

W ε
xy(Xs−, Ys−, Y ∗

s−)d[Xc
s , Y c

s ]

+

∫ t

0+

W ε
yy(Xs−, Ys−, Y ∗

s−)d[Y c
s , Y c

s ],

I4 =
∑

0<s≤t

[

W ε(Xs, Ys, Y
∗
s ) − W ε(Xs−, Ys−, Y ∗

s−)

− W ε
x(Xs−, Ys−, Y ∗

s−)△Xs − W ε
y (Xs−, Ys−, Y ∗

s−)△Ys

]

.

Observe that I1 has zero expectation. Moreover, I2 ≤ 0 by (3.12): indeed, the
contribution coming from the jump part of Y ∗ vanishes, so only the continuous
part matters; however, the support of d(Y ∗)c is precisely the set {s : Ys− = Y ∗

s−}
and W ε

z (Xs−, Ys−, Y ∗
s−) is equal to 0 there. Furthermore, I3 ≤ 0 by (3.14) and

I4 ≤ 0 due to the concavity of the function W ε. Hence, by (3.13),

EYt + EV ε(Xt, Yt − Y ∗
t ) ≤ EW ε(Xt, Yt, Y

∗
t ) ≤ EW ε(X0, Y0, Y

∗
0 ).

Both U and V are continuous, so letting ε → 0 we obtain

EYt + E(Y ∗
t − Yt) − KE|Xt| log+ |Xt| = EY ∗

t − KE|Xt| log+ |Xt|
≤ E[Y0 + U(X0, 0)]

≤ E[|X0| + U(X0, 0)].

(3.15)

Now it suffices to use Lemma 2.5 to complete the proof. �

4. Sharpness

Throughout this section we deal with the discrete-time case.

4.1. On the method. We will use two techniques of showing that the constants are
the best possible. One method is just to construct appropriate examples. However,
sometimes it is more convenient to take a different approach. Namely, the validity
of a given estimate for (sub-)martingales implies the existence of a certain special
function and then one exploits its properties to obtain the lower bound for the
constant appearing in the inequality. This second approach has been successful in
a number of papers (see e.g. [5], [6], [11], [12]) and we will describe it now.

We assume that the underlying probability space is the interval [0, 1] equipped
with its Borel subsets and Lebesgue’s measure. Recall that a discrete-time real-
valued process f = (fn) is simple if for any n the random variable fn takes only a
finite number of values and there is N such that P(fN = fN+1 = fN+2 = . . .) = 1.
Clearly, for such processes there is an almost sure limit f∞.

For a fixed x ≥ 0, y ∈ R, let Sα(x, y) denote the class of all pairs (f, g) of
simple processes starting from (x, y) such that f is a nonnegative submartingale
and g satisfies |dgn| ≤ |dfn| and |E(dgn|Fn−1)| ≤ αE(dfn|Fn−1) almost surely for
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any n ≥ 1 (so this is “almost” α-subordination - possibly violated only for n = 0).
Here (Fn) is the natural filtration of (f, g). Similarly, for x, y ∈ R, let M(x, y)
denote the set of all pairs (f, g) of simple martingales (with respect to the natural
filtration) starting from (x, y) such that |dgn| ≤ |dfn| for any n ≥ 1.

Let V : [0,∞) × R → R be a fixed function, not necessarily measurable, and
introduce, for α ∈ [0, 1], the function U = UV,α : [0,∞) × R → (−∞,∞] by the
formula

U(x, y) = sup
Sα(x,y)

EV (f∞, g∞).

We have the following general fact (consult Lemma 2.1 in [6], see also Theorem 4.2
below).

Theorem 4.1. Suppose α ∈ [0, 1], β ∈ R and assume that the inequality

(4.1) EV (f∞, g∞) ≤ β

holds for all simple f , g such that f is a nonnegative submartingale and g is α-
subordinate to f . Then UV,α satisfies the following:

(i) We have U(x, y) ≥ V (x, y),
(ii) If |y| ≤ x, then U(x, y) ≤ β,
(iii) For any y ∈ R, the functions t 7→ U(t, y+ t) and t 7→ U(t, y− t) are concave,
(iv) For any y ∈ R, the functions t 7→ U(y, y + αt) and t 7→ U(y, y − αt) are

nonincreasing.
(v) The function U is finite.

Proof. (i) This follows from the fact that Sα(x, y) contains the pair (x, y) of constant
processes.

(ii) This is a consequence of (4.1): for any (f, g) ∈ Sα(x, y), where |y| ≤ x, we
have that g is α-subordinate to f and hence EV (f∞, g∞) ≤ β. It remains to take
supremum over (f, g).

(iii) Let t > 0, a ∈ (0, t], y ∈ R and ε = ±1. Take (f1, g1) ∈ Sα(t+ a, y + t+ εa),
(f2, g2) ∈ Sα(t − a, y + t − εa) and define (f, g) by (f0, g0) ≡ (t, y + t), (f1, g1) =
(t + a, y + t + εa)χ[0,1/2] + (t − a, y + t − εa)χ(1/2,1] and, for n ≥ 2,

fn(ω) = f1
n−1(2ω)χ[0,1/2](ω) + f2

n−1(2ω − 1)χ(1/2,1](ω),

gn(ω) = g1
n−1(2ω)χ[0,1/2](ω) + g2

n−1(2ω − 1)χ(1/2,1](ω).

It can be easily seen that (f, g) belongs to Sα(t, y + t) and

(f∞(ω), g∞(ω))=(f1
∞(2ω), g1

∞(2ω))χ[0,1/2](ω)+(f2
∞(2ω−1), g2

∞(2ω−1))χ(1/2,1](ω).

Hence
U(t, y + t) ≥ EV (f∞, g∞) = EV (f1

∞, g1
∞)/2 + EV (f2

∞, g2
∞)/2.

Now take supremum over (f1, g1) and (f2, g2) to obtain the concavity.
(iv) Let t ≥ 0, a > 0, y ∈ R and ε = ±1. Take (f, g) ∈ Sα(t+a, y+εα(t+a)) and

let (f, g) be given by (f0, g0) = (t, y + εαt) and, for n ≥ 1, (fn, gn) = (fn−1, gn−1).
Then it can be verified readily that (f, g) lies in Sα(t, y + εαt) and (f∞, g∞) =
(f∞, g∞). Consequently,

U(t, y + αεt) ≥ EV (f∞, g∞) = EV (f∞, g∞)

and it suffices to take supremum over (f, g) to get the claim.
(v) This follows immediately from (ii) and (iii). For any (x, y) there is ε ∈

{−1, 1} such that the halfline {(x + t, y + εt) : t ≥ −x} intersects with the set



14 ADAM OSȨKOWSKI

D = {(x, y) : |y| ≤ x} at infinitely many points. It suffices to use the concavity of
U along this halfline and finiteness of U on D. �

A similar argumentation leads to the martingale version of Theorem 4.1 (consult
e.g. [2], [3] and Theorem 2.1 in [5]). It will be needed in the proof of the sharpness
of (1.6). Let V : R

2 → R be a function and let U = UV : R
2 → (−∞,∞] be given

by

U(x, y) = sup
Mα(x,y)

EV (f∞, g∞).

Theorem 4.2. Suppose β ∈ R and assume that the inequality

EV (f∞, g∞) ≤ β

holds for all simple martingales f , g such that g is differentially subordinate to f .
Then UV satisfies the following:

(i) We have U(x, y) ≥ V (x, y).
(ii) If |y| ≤ x, then U(x, y) ≤ β.
(iii) For any y ∈ R, the functions t 7→ U(t, y+ t) and t 7→ U(t, y− t) are concave.
(iv) For any (x, y) ∈ [0,∞) we have U(x, y) < ∞.

This result can be further extended to study the inequalities involving maximal
functions. Let V : R

3 → R be a fixed function satisfying

V (x, y, z) = V (x, y, y ∨ z) for all x, y, z.

Let U = UV : R
3 → (−∞,∞] be given by

U(x, y, z) = sup
Mα(x,y)

EV (f∞, g∞, g∗∞ ∨ z).

Theorem 4.3. Suppose β ∈ R and assume that the inequality

EV (f∞, g∞, g∗∞) ≤ β

holds for all simple martingales f , g such that g is differentially subordinate to f .
Then UV satisfies the following:

(i) We have U(x, y, z) ≥ V (x, y, z),
(ii) For any x, y, z, U(x, y, z) = U(x, y, y ∨ z).
(iii) If |y| ≤ x, then U(x, y, y ∨ z) ≤ β,
(iv) For any x ∈ R, y ≤ z, ε ∈ {−1, 1}, α ∈ (0, 1) and t1, t2 such that αt1 +

(1 − α)t2 = 0, we have

αU(x + t1, y + εt1, z) + (1 − α)U(x + t2, y + εt2, z) ≤ U(x, y, z).

(v) For any (x, y) ∈ [0,∞) we have U(x, y, z) < ∞.

For the proof and discussion, we refer the reader to [11] and [12].

4.2. Sharpness of (1.4), K ≥ K0. Let ε > 0. The paper [10] contains the con-
struction of the pair (f, g) which enjoys the following properties: f is a submartin-
gale taking values in [0, 1], g is α-subordinate to f and ||g||1 ≥ L(K, α) − ε. For
such a pair, we have ||g||1 − K supn Efn log+ fn = ||g||1 ≥ L(K, α) − ε and hence
the constant L(K, α) cannot be replaced in (1.4) by a smaller one.
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4.3. Sharpness of (1.4), 1 < K < K0. Suppose that the inequality (1.4) holds
with some universal constant β(K, α) and let V be given by (2.3). By Theorem 4.1,
there is U : [0,∞) × R → R satisfying the properties (i)–(v). For x ≥ 0, y ∈ R, let
A(y) = U(0, y), B(x) = U(x, 0) and C(y) = U(α/(2α+1), y−α/(2α+1)). Clearly,
A is even.

It is convenient to divide the remaining part of the proof into a few intermediate
steps.

Step 1. We start with the observation that for any x ≥ 0 and y ∈ R,

(4.2) U(x, y + δ) ≤ U(x, y) + δ.

This follows immediately from the definition of U . Indeed, if (f, g) ∈ Sα(x, y + δ),
then (f, g − δ) ∈ Sα(x, y), so, by the triangle inequality,

E
[

|g∞| − Kf∞ log+ f∞
]

≤ E
[

|(g − δ)∞| − Kf∞ log+ f∞
]

+ δ ≤ U(x, y) + δ

and it suffices to take supremum over (f, g).
Step 2. We will establish the bound

(4.3) B (K/(K − 1)) ≥ −K/(K − 1).

Let us introduce the function W , given on [1,∞) × R → R by the formula

W (x, y) = inf
λ>1/x

[U(λx, λy)/λ + Kx log λ].

This function enjoys (i), (iii) (with obvious restriction to the domain of W ) and is
finite. Indeed, the first property is a consequence of the fact that for any x ≥ 1 and
λ > 1/x,

U(λx, λy)/λ + Kx log λ ≥ |y| − Kλx log(λx) + Kx log λ = V (x, y).

To prove (iii), one shows that for any (x, y) ∈ (1,∞) × R and any ε > 0 there is
δ > 0 such that if a ∈ (0, δ) and x − a ≥ 1, then

W (x, y) ≥ (W (x + a, y ± a) + W (x − a, y ∓ a))/2 − ε.

Furthermore, W has the following homogeneity-type property: for any x ≥ 1, y ∈ R

and µ ≥ 1/x,

(4.4) W (µx, µy) = µW (x, y) − Kµx log µ.

By properties (i) and (iii), we have, for x = K/(K − 1),

W (x, 0) ≥ Kδ

x + Kδ
W (1, x − 1) +

x

x + Kδ
W (x + δ,−δ)

≥ Kδ(x − 1)/(x + Kδ) + xW (x + δ,−δ)/(x + Kδ)
(4.5)

and

W (x + δ,−δ) ≥ Kδ

x + 2δ
W

(

(K − 1)(x + 2δ)

K
,
x + 2δ

K

)

+
x + 2δ − Kδ

x + 2δ
W (x + 2δ, 0)

≥ Kδ

x + 2δ

[

x + 2δ

K
− (K − 1)(x + 2δ) log

(

(K − 1)(x + 2δ)

K

)]

+ (x + 2δ − Kδ)W (x + 2δ, 0)/(x + 2δ)

=
Kδ

x + 2δ

[

x + 2δ

K
− (K − 1)(x + 2δ) log

(

(K − 1)(x + 2δ)

K

)]

+
x + 2δ − Kδ

x + 2δ

[

x + 2δ

x
W (x, 0) − K(x + 2δ) log

(

1 +
2δ

x

)]

,
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where in the last passage we have exploited (4.4). Insert this into (4.5), subtract
W (x, 0) from both sides, divide throughout by δ and let δ → 0. As the result, we
obtain W (x, 0) ≥ −K/(K − 1). The final observation is that W (x, 0) ≤ U(x, 0), so
(4.3) follows.

Step 3. Now we will prove that

(4.6) B(c + 1) ≥ −cα − (α + 1)/(2α + 1).

To this end, note that by the properties (i) and (iii), for any x ≥ 1,

B(x) ≥ δ

x − 1 + δ
U(1, x − 1) +

x − 1

x − 1 + δ
U(x + δ,−δ)

≥ δ(x − 1)/(x − 1 + δ) + (x − 1)U(x + δ,−δ)/(x− 1 + δ)

and

U(x + δ,−δ) ≥ δ

x − 1 + 2δ
U(1,−(x − 1 + 2δ)) +

x − 1 + δ

x − 1 + 2δ
B(x + 2δ)

≥ δ + (x − 1)B(x + 2δ)/(x − 1 + δ).

Combining these two estimates we obtain, after some manipulations,

B(x)

x − 1
≥ B(x + 2δ)

x + 2δ − 1
+

2δ

x − 1
− δ2x

(x − 1 + δ)(x − 1)
,

so, by induction,

B(x)

x − 1
≥ B(x + 2Nδ)

x + 2Nδ − 1
+

N−1
∑

k=0

[

2δ

x + 2kδ − 1
− δ2(x + 2kδ)

(x + (2k + 1)δ − 1)(x + 2kδ − 1)

]

.

Now set x = c + 1, δ = ( K
K−1 − c − 1)/(2N) and let N → ∞ to obtain

B(c + 1) ≥ c(K − 1)B(K/(K − 1)) − c log(c(K − 1)),

as the sum converges to the integral
∫ K/(K−1)

c+1 (x − 1)−1dx = log(c(K − 1)). Now

(4.6) follows from (4.3) and (2.2).
Step 4. The next step is to establish the bound

B(c − (2α + 1)−1) ≥ α + 1

c(2α + 1) + α
A(c − (2α + 1)−1)

+
c(2α + 1) − 1

c(2α + 1) + α

[

−cα +
α(α + 1)

2α + 1
+

(α + 1)2

c(2α + 1)2

]

.

(4.7)

We proceed as previously. Using the concavity of t 7→ U(t, c − (2α + 1)−1 − t)
and t 7→ U(t, c + 1 − t) we can bound B(c − (2α + 1)−1) from below by a convex
combination of A(c− (2α + 1)−1), B(c + 1) and U(1, c). It suffices to use (4.6) and
U(1, c) ≥ V (1, c) = c to obtain the desired inequality.

Step 5. Now we will deal with the estimate

(4.8) A(c − (2α + 1)−1) ≥ c +
2α2 + 2α − 1

2α + 1
− 2α(α + 1)

c(2α + 1)2
+

B(c − (2α + 1)−1)

c(2α + 1)
.

This is the most elaborate part; we will show the inequality only for α > 0; the
case α = 0 can be treated similarly. Use (iv) and then (iii) to obtain, for any
y ≥ c − (2α + 1)−1 and 0 < δ < α,

A(y) ≥ U(δ, y + αδ) ≥ (2α + 1)δC(y + (α + 1)δ)/α

+ (α − (2α + 1)δ)A(y + (α + 1)δ)/α
(4.9)
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and, similarly, using (iv) and (i), one gets

C(y + (α + 1)δ) ≥ (2α + 1)δy/(2 + (2α + 1)δ) + δ/2

+
(2α + 1)(α + 1)δ

α(2 + (2α + 1)δ)
A(y) +

2α − (2α + 1)(α + 1)δ

α(2 + (2α + 1)δ)
C(y).

(4.10)

Multiply both sides of (4.9) by

λ =
(

2α + 3 +
√

(2α + 1)2 − 4δ(2α + 1)
)

/(4 + 2δ(2α + 1)).

and add it to (4.10) to obtain, after some manipulations,

(A(y) − y)γ1 − (C(y) − y)γ2 ≥r[(A(y + (α + 1)δ) − (y + (α + 1)δ))γ1

− (C(y + (α + 1)δ) − (y + (α + 1)δ))γ2]

+ (λ − 1)(α + 1)δ + δ/2,

(4.11)

where

γ1 = λ − δ
(α + 1)(2α + 1)

α(2 + δ(2α + 1))
, γ2 =

2α − (α + 1)(2α + 1)δ

α(2 + δ(2α + 1))

and

r =
(2 + δ(2α + 1))(α − λ(2α + 1)δ)

2α − (α + 1)(2α + 1)δ
= 1 − δ

(2α + 1)(2λ − (2α + 1))

2α
+ o(δ).

By induction, (4.11) gives, for any integer N ≥ 1,

(A(y) − y)γ1 − (C(y) − y)γ2 ≥rN [(A(y + N(α + 1)δ) − (y + N(α + 1)δ))γ1

− (C(y + N(α + 1)δ) − (y + N(α + 1)δ))γ2]

+ [(λ − 1)(α + 1)δ + δ/2] (rN − 1)/(r − 1).

Now fix z > y, set δ = (z−y)/N (here N is sufficiently large, so that δ < α/(2α+1))
and let N → ∞. Then γ1 → α + 1, γ2 → 1 and rN → exp[(y − z) 2α+1

2α(α+1) ], so we

obtain, after some computations,

(A(y) − y)(α + 1) − (C(y) − y) ≥ exp

[

(y − z)
2α + 1

2α(α + 1)

]

[

(A(z) − z)(α + 1)

− (C(z) − z) − α(2α(α + 1) + 1)/(2α + 1)
]

+ α(2α(α + 1) + 1)/(2α + 1).

Now let z → ∞. Since A(z) = U(0, z) ≥ V (0, z) = z and, by (4.2), C(z) ≤ C(0)+z,
we obtain

(A(y) − y)(α + 1) − (C(y) − y) ≥ α(2α(α + 1) + 1)/(2α + 1).

Take y = c − (2α + 1)−1 and combine it with the following consequence of (iii):

C(c− (2α + 1)−1) ≥ αB(c − (2α + 1)−1)

c(2α + 1) − 1
+

c(2α + 1) − (α + 1)

c(2α + 1) − 1
A(c− (2α + 1)−1).

As a result, we obtain (4.8).
Step 6. The last inequality we need is

(4.12) (α + 2)U(0, 0) ≥ (α + 1)A(c − (2α + 1)−1) + B(c − (2α + 1)−1).

Fix a positive integer N and let δ = (c− (2α+1)−1)/N , k < N . Arguing as above,
one can establish the inequalities

(4.13) A(k(α + 1)δ) ≥ k(α + 1) + α

(k + 1)(α + 1)
A((k + 1)(α + 1)δ) +

B((k + 1)(α + 1)δ)

(k + 1)(α + 1)
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and

B(k(α + 1)δ) ≥ 2k(α + 1) + α

(2k + 1)(k + 1)(α + 1)
A((k + 1)(α + 1)δ)

+

[

1

(2k + 1)(k + 1)(α + 1)
+

k

k + 1

]

B((k + 1)(α + 1)δ).

(4.14)

Multiply (4.13) throughout by α + 1− (2k+ 1)−1 and add it to (4.14). After some
manipulations, one obtains

(α + 1)[A(k(α + 1)δ) − A((k + 1)(α + 1)δ)] + B(k(α + 1)δ) − B((k + 1)(α + 1)δ)

≥
(

A(k(α + 1)δ) − A((k + 1)(α + 1)δ)
)

/(2k + 1) ≥ (α + 1)δ/(2k + 1),

where the latter inequality follows from (4.2). Write the above estimate for k =
0, 1, 2, . . . , N − 1 and add the obtained inequalities to get

(α + 1)A(0) + B(0) ≥ (α + 1)A(c − (2α + 1)−1) + B(c − (2α + 1)−1)

+(α + 1)δ

N−1
∑

k=0

(2k + 1)−1.

It suffices to let N → ∞ to obtain (4.12); the last term in the estimate above tends
to 0, as it is of order N−1 log N .

Step 7. Combine (4.7) and (4.8) to get

A(c − (2α + 1)−1) ≥ c − (2α + 1)−1 + α + (α + 1)/(c(2α + 1)2),

B(c − (2α + 1)−1) ≥ α + 1 − cα.

Plugging this into (4.12) yields U(0, 0) ≥ L(K, α). Now use (ii) with x = y = 0 to
complete the proof.

4.4. Sharpness of (1.6), K ≥ K0. This is very simple: a pair (f, g) ≡ (1, 1) of
constant martingales gives equality in (1.6).

4.5. Sharpness of (1.6), 1 < K < K0. Suppose the inequality holds with some
constant β(K) and use Theorem 4.2 with V (x, y) = |y| −K|x| log+ |x|, (x, y) ∈ R

2,
to obtain the existence of a function U satisfying (i)–(iv). By (iii),

U ((c + 1)/2, (c + 1)/2) ≥ (c − 1)U(c + 1, 0)/(2c) + (c + 1)U(1, c)/(2c).

We may repeat word by word the argumentation from Steps 2 and 3 in Section
4.3, and obtain U(c + 1, 0) ≥ −1. Furthermore, by (i), U(1, c) ≥ c. Plugging
this above yields U ((c + 1)/2, (c + 1)/2) ≥ L(K, 0), and it suffices to use (ii) with
x = y = (c + 1)/2 to obtain β(K) ≥ L(K, 0).

4.6. Sharpness of (1.7), K > 1. Suppose that the inequality holds with some
β∗(K). Apply Theorem 4.3, with V (x, y, z) = y∨z−K|x| log+ |x|, to get a function
U satisfying the properties (i)–(v) listed in the statement. It follows from the very
definition of U and the special form of V that

(4.15) U(x, y, z) = z + U(x, y − z, 0)

and

(4.16) U(x, y, z) = U(−x, y, z)

for all x, y, z. The key ingredient in the proof is the following estimate

U(x, x, x) ≥ UK,0(x, 0) + x for all x ≥ 0,
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from which the claim is deduced immmediately, in virtue of Lemma 2.5 and property
(iii). By (4.15), this can be rewritten in the form

(4.17) U(x, 0, 0) ≥ UK,0(x, 0) for all x ≥ 0.

We will only deal with the case K > K1; the remaining ones can be studied in a
similar manner.

Step 1. To begin, note that by (iv), for any x ≥ 0 and δ > 0 we have

U(x, 0, 0) ≥ 1 − x

1 − x + δ
U(x − δ, δ, 0) +

δ

1 − x + δ
U(1, x − 1, 0).

Now use (ii) and (4.15) to obtain U(x − δ, δ, 0) = δ + U(x − δ, 0, 0). Furthermore,
by (i), U(1, x − 1, 0) ≥ V (1, x − 1, 0) = 0, so we get

(4.18) U(x, 0, 0) ≥ (1 − x)δ/(1 − x + δ) + (1 − x)U(x − δ, 0, 0)/(1− x + δ).

Use this twice, with x = 0 and then with x = δ. Combining these estimates with
(4.16), we obtain

(4.19) U(0, 0, 0) ≥ 1,

that is, (4.17) for x = 0.
Step 2. Now fix x ∈ (0, c(K, 0)], a positive integer N , and set δ = x/N . The

inequality (4.18) implies that for any k = 1, 2, . . . , N ,

U(kδ, 0, 0)/(1 − kδ) ≥ U((k − 1)δ, 0, 0)/(1 − (k − 1)δ) + δ/(1 − (k − 1)δ),

so, by induction,

U(x, 0, 0)

1 − x
≥ U(0, 0, 0) + δ

N
∑

k=1

1

1 − (k − 1)δ
.

Use (4.19) and let δ → 0 to obtain

U(x, 0, 0) ≥ 1 − x + (1 − x)

∫ x

0

1

1 − s
ds = UK,0(x, 0).

Step 3. Now we show (4.17) for x ≥ K/(K−1). To this end, consider W : R
3 →

R given by

W (x, y, z) = inf
λ≥1/x

[U(λx, λy, λz)/λ + Kx log λ],

and observe W satisfies (i), (ii), (iv) and the homogeneity property

(4.20) W (µx, µy, µz) = µW (x, y, z) − Kµx log µ.

Applying (iv),

W (x, 0, 0) ≥ Kδ

x + Kδ
· W (x − x/K,−x/K, 0) +

x

x + Kδ
W (x + δ, δ, 0),

which, by (i), (ii) and (4.20), is not smaller than

− Kδ

x + Kδ
· K(x − x/K) log(x − x/K) +

xδ

x + Kδ
+

x + δ

x + Kδ
W (x, 0, 0).

Subtracting W (0, 0, 0) from both sides, dividing by δ and letting δ → 0 yields
W (x, 0, 0) ≥ UK,0(x, 0). It suffices to use U(x, 0, 0) ≥ W (x, 0, 0) to obtain (4.17).

Step 4. Now we establish (4.17) for x ∈ [1 + c, K/(K − 1)). By (iv),

U(x, 0, 0) ≥ δ

x − 1 + δ
U(1, 1 − x, 0) +

x − 1

x − 1 + δ
(U(x + δ, 0, 0) + δ).
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Arguing as in Step 2, this leads to

U(x, 0, 0)

x − 1
≥ U(K/(K − 1), 0, 0)

K/(K − 1) − 1
+

∫ K/(K−1)

x

(s − 1)−1ds,

which is (4.17).
Step 5. It remains to consider the inequality (4.17) on interval (1− c, 1 + c). By

(iv),

U(x, 0, 0) ≥ 2δ

x − 1 + c + 2δ
U

(

x + 1 − c

2
,
1 − c − x

2
, 0

)

+
(x − 1 + c)U(x + δ, δ, δ)

x − 1 + c + 2δ
.

Furthermore, again by (iv), and then by (i) and Step 2,

U

(

x + 1 − c

2
,
1 − c − x

2
, 0

)

≥ x − 1 + c

2c
U(1,−c, 0) +

c + 1 − x

2c
U(1 − c, 0, 0)

≥ (c + 1 − x)(1 − log c)/(2c).

Plugging this into the previous estimate and using (4.15), this yields, after some
manipulations,

U(x, 0, 0)

(x − 1 + c)2
≥ U(x + δ, 0, 0)

(x + δ − 1 + c)2
+

δ(c + 1 − x)

(x − 1 + c + δ)3
(1 − log c) +

δ

(x − 1 + c)2
+ r,

where

r ≥ −δ2 · K(x + δ) log+(x + δ)

[(x − 1 + c)2 + 2δ(x − 1 + c)](x − 1 + c + δ)2
.

Arguing as in Step 2, this gives

U(x, 0, 0)

(x − 1 + c)2
≥ U(1 + c, 0, 0)

(2c)2
+

∫ c+1

x

c + 1 − s

(s − 1 + c)3
(1 − log c) +

1

(c − 1 + s)2
ds,

which is equivalent to (4.17). The proof is complete.

4.7. The case K ≤ 1. That none of (1.4), (1.6) and (1.7) hold, follows from the
fact that the corresponding constants L(K, α), L(K, 0) and L∗(K) tend to ∞ as K
tends to 1. For example, if (1.4) were valid with some K ≤ 1 and L(K, α) < ∞,
then, for any K ′ > 1,

||g||1 ≤ K ′ sup
n

Efn log+ fn + L(K, α),

so L(K ′, α) ≤ L(K, α). This would contradict (1.5) for K ′ sufficiently close to 1.
The argumentation for (1.6) and (1.7) is the same.

5. Inequalities for smooth functions

As an application of Theorems 1.4 and 1.5, we present logarithmic estimates for
differentially subordinate smooth functions on Euclidean domains. Let us introduce
the necessary background. Suppose that Ω is an open subset of R

n, n being a
positive integer. Let D be a bounded subdomain of Ω with 0 ∈ D and ∂D ⊂
Ω. Denote by µ the harmonic measure on ∂D with respect to 0. Consider two
real-valued C2 functions u, v on Ω. Following [4], we say that v is differentially
subordinate to u if

|∇v(x)| ≤ |∇u(x)| for x ∈ Ω.
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Furthermore, for α ≥ 0, the function v is α-subordinate to u if it is differentially
subordinate to u and, in addition,

|∆v(x)| ≤ α|∆u(x)| for x ∈ Ω

(see [6] and [8]).

Theorem 5.1. Let α ∈ [0, 1] and suppose that u is subharmonic and nonnegative,
v is α-subordinate to u and |v(0)| ≤ u(0). Then, for K > 1,

(5.1)

∫

∂D

|v(x)|dµ(x) ≤ K

∫

∂D

u(x) log+ u(x)dµ(x) + L(K, α).

Theorem 5.2. Suppose that u, v are harmonic, v is differentially subordinate to
u and |v(0)| ≤ |u(0)|. Then, for K > 1,

(5.2)

∫

∂D

|v(x)|dµ(x) ≤ K

∫

∂D

|u(x)| log+ |u(x)|dµ(x) + L(K, 0).

We will only provide the proof of (5.1), the inequality (5.2) can be established
in the same manner.

Proof of Theorem 5.1. This is standard. Consider n-dimensional Brownian motion
W starting from 0 and let τ denote the exit time of D: τ = inf{t : Wt /∈ D}.
Consider the processes

X = (Xt)t≥0 = (u(Wτ∧t))t≥0, Y = (Yt)t≥0 = (v(Wτ∧t))t≥0

and write Itô’s formula: for any t ≥ 0,

Xt = u(0) +

∫ t

0

∇u(Wτ∧s)dWs +
1

2

∫ t

0

△u(Wτ∧s)ds = X0 + Mt + At,

Yt = v(0) +

∫ t

0

∇v(Wτ∧s)dWs +
1

2

∫ t

0

△v(Wτ∧s)ds = Y0 + Nt + Bt.

Since

[M, M ]t − [N, N ]t = |u(0)|2 − |v(0)|2 +

∫ t

0

(

|∇u(Wτ∧s)|2 − |∇v(Wτ∧s)|2
)

ds

and

α|A|t − |B|t =
1

2

∫ t

0

(α|△u(Wτ∧s)| − |△v(Wτ∧s)|) ds,

we see that α-subordination of the functions u and v implies that Y is α-subordinate
to X . Since ||Y ||1 =

∫

∂D
|v(x)|dµ(x), supt EXt log+ Xt =

∫

∂D
u(x) log+ u(x)dµ(x),

it suffices to use (1.4) to complete the proof. �
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[14] A. Osȩkowski, Sharp weak type inequalities for differentially subordinated martingales,

Bernoulli 15 Vol. 3 (2009), 871–897.
[15] Y. Suh, A sharp weak type (p, p) inequality (p > 2) for martingale transforms and other

subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), 1545–1564 (electronic).
[16] G. Wang, Differential subordination and strong differential subordination for continuous time

martingales and related sharp inequalities, Ann. Probab. 23 (1995), 522-551.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Ba-

nacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl


