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Abstract. We study logarithmic estimates for a class of Fourier multipliers

which arise from a nonsymmetric modulation of jumps of Lévy processes. In

particular, this leads to corresponding tight bounds for second-order Riesz
transforms on Rd.

1. Introduction

As evidenced in [1], [2], [3], [4], [6], [11], [15] and many other papers, the mar-
tingale theory plays a fundamental role in obtaining various bounds for many im-
portant singular integrals and Fourier multipliers. So far, the martingale methods
have constituted a particularly efficient tool in the proofs of Lp bounds. In [15] the
author proposed a novel approach which enabled the study of logarithmic estimates
and used it to obtain some tight bounds for Beurling-Ahlfors operator. This paper
is a continuation of that work and contains, among other things, a “fine-tuning”
of the martingale methods which leads to the improvement of several results from
[15], and indicates various interesting connections between certain classes of Fourier
multipliers and special pairs of differentially subordinated martingales.

We start with recalling the necessary background and notation. Let d ≥ 1 be a
fixed integer. For any bounded function m : Rd → C, there is a unique bounded
linear operator Tm on L2(Rd), called the Fourier multiplier with the symbol m,

which is given by the identity T̂mf = mf̂ . By Plancherel’s theorem, the norm of
Tm on L2(Rd) is equal to ||m||L∞(Rd) and there is a classical problem to characterize
those m, for which the corresponding Fourier multiplier extends to a bounded linear
operator on Lp(Rd), 1 < p <∞. This question is motivated by the analysis of the
classical example, a the collection of Riesz transforms {Rj}dj=1 on Rd [18]. Here,
for any j, the transform Rj is a Fourier multiplier corresponding to the symbol
m(ξ) = −iξj/|ξ|, ξ 6= 0. The remarkable feature is that Rj can be alternatively
defined via the singular integrals

Rjf(x) =
Γ
(
d+1

2

)
π(d+1)/2

p.v.

∫
Rd

xj − yj
|x− y|d+1

f(y)dy, j = 1, 2, . . . , d.

It is well-known that singular integral operators are important in the theory of
partial differential equations and have been used, in particular, in the study of
the higher integrability theory of the gradient of weak solutions. In addition, the
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exact information on the size of such operators (e.g. on the p-norms) provides the
insight into the degrees of improved regularity and other geometric properties of
solutions and their gradients. This gives rise to another classical problem for Fourier
multipliers: for a given m, provide tight bounds for the size of the multiplier Tm in
terms of some characteristics of the symbol.

We will study this question for the following class of symbols, introduced by
Bañuelos and Bogdan in [1]. Let ν be a Lévy measure on Rd, i.e., a nonnegative
Borel measure on Rd such that ν({0}) = 0 and∫

Rd
min{|x|2, 1}ν(dx) <∞.

Assume further that µ is a finite nonnegative Borel measure on the unit sphere S
of Rd and fix two Borel functions φ on Rd and ψ on S which take values in the unit
ball of C. We define the associated multiplier m = mφ,ψ,µ,ν on Rd by

(1.1) m(ξ) =
1
2

∫
S〈ξ, θ〉

2ψ(θ)µ(dθ) +
∫
Rd [1− cos〈ξ, x〉]φ(x)ν(dx)

1
2

∫
S〈ξ, θ〉2µ(dθ) +

∫
Rd [1− cos〈ξ, x〉]ν(dx)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for the
scalar product in Rd. The Fourier multipliers corresponding to these symbols can
be given a martingale representation by the use of transformations of jumps of
Lévy processes (see [1] and [2]). Combining this representation with Burkholder’s
martingale inequalities, Bañuelos and Bogdan [1] and Bañuelos, Bielaszewski and
Bogdan [2] obtained the following Lp bound.

Theorem 1.1. Let 1 < p < ∞ and let m = mφ,ψ,µ,ν be given by (1.1). Then for
any f ∈ Lp(Rd) we have

(1.2) ||Tmf ||Lp(Rd) ≤ (p∗ − 1)||f ||Lp(Rd),

where p∗ = max{p, p/(p− 1)}.

It turns out that the above constant p∗ − 1 cannot be replaced by a smaller
number, which has been shown recently by Geiss, Montgomery-Smith and Saksman
[11] (see also [5]). In the limit case p = 1, the Lp estimate does not hold with any
finite constant, but we have the following substitute. Throughout the paper, the
functions Φ, Ψ : [0,∞)→ [0,∞) are given by the formulas

Φ(x) = ex − 1− x and Ψ(x) = (x+ 1) log(x+ 1)− x

and the LlogL class is defined by

LlogL(Rd) =

{
f : Rd → C :

∫
Rd

Ψ(|f(x)|)dx <∞
}
.

Using a standard density argument and Corollary 1.3 from [15], one can define the
action of a multiplier Tm (with m coming from (1.1)) on the class LlogL(Rd). In
addition, we have the following bound, the main result of [15].

Theorem 1.2. Let m = mφ,ψ,µ,ν be given by (1.1), with µ, ν, φ and ψ satisfying
the above assumptions. Then for any K > 1, any f ∈ LlogL(Rd) and any Borel
subset A of Rd we have

(1.3)

∫
A

|Tmf(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+
|A|

2(K − 1)
.
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Furthermore, for any K > 2/π there is a multiplier m : C → R from the class
(1.1), a Borel subset A of C and a function f ∈LlogL(C) for which∫

A

|Tmf(z)|dz = K

∫
C

Ψ(|f(z)|)dz +
|A|

π(Kπ − 2)
.

In particular, the above theorems give quite precise information for second-order

Riesz transforms RiRj , as well as for
∑d
i, j=1 aijRiRj , the linear combinations of

such operators (cf. [4], [5], see also Section 4 below), which have further important
connections to the Beurling-Ahlfors operator and Iwaniec’ conjecture [12].

It turns out that for a certain natural and wide subclass of (1.1) the estimate
(1.3) can be considerably improved. Specifically, we will restrict ourselves to the
symbols of the form (1.1) in which the functions φ and ψ take values in the interval
[0, 1] (some examples which motivate this restriction are presented in Section 3).
For such multipliers, we will prove the following. For K > 1/2, define

CK =
1

K

[∫ 1

0

e2λ − 1

2λ
dλ+

∫ 3/2

1

e2λ − 1

2(2λ− 1)2
dλ

]
+

e3

16(K − 1/2)
.(1.4)

Computer simulations show that CK ≤ 3.1325/K + 1.2554/(K − 1/2).

Theorem 1.3. Fix K > 1/2 and let m = mφ,ψ,µ,ν be given by (1.1), with µ, ν as
above and φ, ψ taking values in the interval [0, 1]. Then for any f ∈ LlogL(Rd)
and any Borel subset A of Rd we have

(1.5)

∫
A

|Tmf(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+ CK |A|.

Furthermore, for any d ≥ 2 and any K > 1/2 there is a multiplier m : Rd → R
from the class (1.1), a Borel subset A of Rd and a function f ∈LlogL(Rd) for which

(1.6)

∫
A

|Tmf(z)|dz ≥ K
∫
Rd

Ψ(|f(z)|)dz +
2K − 1

2(4K − 1)2
· |A|.

Comparing the assertions of the two above theorems, we see that the restriction
to [0, 1]-valued functions φ and ψ results in the improvement of the integrability of
the multiplier: the threshold K > 1 is reduced to K > 1/2, while the multiplicative
constant appearing in front of |A| remains of order O(K−1) as K →∞. We believe,
but have been unable to prove, that for K ≤ 1/2 the inequality (1.5) does not hold
in general with any finite CK (however, we have managed to prove the probabilistic
version of this statement: see Section 2 below).

A few words about the proof and the organization of the paper are in order.
It should be stressed here that the proof of (1.5) is not just a mere repetition of
the arguments from [15]. The passage to the above special subclass of the symbols
m requires an appropriate adjustment in the martingale setting, which leads to
an exponential estimate which is much more challenging than its counterpart in
[15]. This exponential bound will be established by means of the corresponding
weak-type inequality, which is of independent interest. All these probabilistic facts
will be presented in the next section. Section 3 is devoted to the proof of (1.5)
and contains some examples and applications. We also discuss there the possibility
of extending (1.5) to the vector valued setting. In the final part of the paper we
study the lower bound for the constant CK in (1.5); first we show (1.6) in the two-
dimensional case, exploiting the properties of the Beurling-Ahlfors operator, and
then pass to the general setting, using an appropriate transference method.
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2. A martingale inequality

2.1. Background and statement of the results. Assume that (Ω,F ,P) is a
complete probability space, equipped with (Ft)t≥0, a nondecreasing family of sub-
σ-fields of F , such that F0 contains all the events of probability 0. Suppose that X,
Y are two adapted martingales taking values in a certain separable Hilbert space
H with norm | · | and scalar product 〈·, ·〉; in fact, we may take H to be equal to
the subspace of `2. We impose the usual regularity conditions on the trajectories of
the processes: we assume that the paths are right-continuous and have limits from
the left. Then X∗, the maximal function of X, is defined by X∗ = supt≥0 |Xt|.
The symbol [X,Y ] will stand for the quadratic covariance process of X and Y . See
e.g. Dellacherie and Meyer [10] for details in the case when the processes are real-
valued, and extend the definition to the vector setting by [X,Y ] =

∑∞
k=0[Xk, Y k],

where Xk, Y k are the k-th coordinates of X, Y . Following Bañuelos and Wang
[6] and Wang [19], we say that Y is differentially subordinate to X, if the process
([X,X]t − [Y, Y ]t)t≥0 is nonnegative and nondecreasing as a function of t. For
example, if X is a standard one-dimensional Brownian motion, stopped at the set
{−1, 1}, H is a predictable process taking values in [−1, 1] and Y = H · X is the
Itô integral of H with respect to X, then Y is differentially subordinate to X: this
follows from the identity

[X,X]t − [Y, Y ]t = X2
0 (1−H2

0 ) +

∫ t

0+

(1−H2
s )ds, t ≥ 0.

As exhibited in [1], [2], martingales X, Y satisfying the differential subordination
arise naturally in the martingale study of Fourier multipliers (1.1). In order to
investigate the subclass studied in this paper (i.e., corresponding to φ, ψ taking
values in [0, 1]), we will work with pairsX, Y satisfying a slightly different condition:

(2.1) ([X,Y ]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function of t,

which can be regarded as “non-symmetric differential subordination”. For instance,
this holds in the above setting of stochastic integrals, if we assume that the integrand
H takes values in [0, 1]. Inequalities for such martingales were studied by a number
of authors (see e.g. Burkholder [7], Choi [9] and the author [13], [14]). We refer the
interested reader to those papers and mention here only result, which will be needed
later. It was proved for martingale transforms by Burkholder [7] and in the general
case by the author in [14]. Throughout, we use the notation ||X||p = supt≥0 ||Xt||p,
1 ≤ p ≤ ∞.

Theorem 2.1. Let X, Y be two Hilbert-space-valued martingales satisfying (2.1).
Then for any λ > 0 we have

(2.2) λP(Y ∗ ≥ λ) ≤ ||X||1.

For each λ the inequality is sharp.

The main result of this section is the following.

Theorem 2.2. Suppose that X, Y are Hilbert-space-valued martingales satisfying
(2.1) and ||X||∞ ≤ 1. Then for any K > 1/2 we have

(2.3) sup
t≥0

EΦ(|Yt|/K) ≤ CK
K
||X||1,
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where CK is given by (1.4). The above inequality does not hold with any finite
constant CK when K ≤ 1/2. Furthermore, the constant CK/K is of optimal order
O((K − 1/2)−1) as K → 1/2 and O(K−2) as K →∞.

The analogous statement for differentially subordinated martingales, with the
best constant, was established in [15]. In the above “non-symmetric” setting the
inequality is much more difficult and, in particular, we did not manage to obtain
the optimal value of CK . The key ingredient of the proof is the following weak type
estimate, which is of independent interest (and for which we have found the best
constants).

Theorem 2.3. Suppose that X, Y are Hilbert-space-valued martingales satisfying
(2.1) and ||X||∞ ≤ 1. Then for any λ > 0 we have

(2.4) P(Y ∗ ≥ λ) ≤ P (λ)||X||1,

where

P (λ) =


λ−1 if 0 < λ ≤ 1,

(2λ− 1)−2 if 1 < λ ≤ 3/2,

e3−2λ/4 if λ > 3/2.

The bound on the right-hand side of (2.4) is the best possible for each λ.

For related results for differentially subordinated martingales, see Sections 8 and
9 in [8].

2.2. On the method of proof. Let us describe the method which will be used to
establish the weak-type estimate of Theorem 2.3. We will restrict ourselves to the
case in which the dimension of the Hilbert spaceH is finite (this will be sufficient for
our purposes), but the reasoning can be easily extended to the infinite-dimensional
setting, by the use of standard approximation arguments (see e.g. Wang [19]).
So, assume that H = Rd for some positive integer d. Let λ > 0 be given and
fixed, and suppose that there is a real-valued function Uλ, defined on the strip
S = {(x, y) ∈ H × H : |x| ≤ 1}, which satisfies the following four properties
(here and below, Ao and A stand for the interior and the closure of the set A,
respectively):

1◦ Uλ is of class C2 on So.
2◦ For all (x, y) ∈ S we have the majorization

(2.5) Uλ(x, y) ≥ 1{|y|≥λ} − P (λ)|x|.

3◦ There is a Borel function c : So → [0,∞) with the following property: for
any (x, y) ∈ So and any h, k ∈ H such that |x+ h| ≤ 1, we have

(2.6) 〈Uλxx(x, y)h, h〉+2〈Uλxy(x, y)h, k〉+ 〈Uλyy(x, y)k, k〉 ≤ c(x, y)(|k|2−〈h, k〉).

4◦ For any (x, y) ∈ S with |y|2 ≤ 〈x, y〉 we have Uλ(x, y) ≤ 0.

Then (2.4) follows. To see this, it is convenient to split the reasoning into a few
parts.

Step 1. A stopping time argument. It suffices to prove the following weaker form
of (2.4): for all X, Y as in the statement and any t ≥ 0,

(2.7) P(|Yt| > λ) ≤ P (λ)||X||1.
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Indeed, suppose that we have established (2.7). Fix ε ∈ (0, λ/2) and consider the
stopping time τ = inf{t : |Yt| ≥ λ− ε}. Since

{Y ∗ ≥ λ} ⊆ {|Yt| ≥ λ− ε for some t} = {|Yτ∧t| ≥ λ− ε for some t}

and the events {|Yτ∧t| ≥ λ− ε} are monotone with respect to t, we conclude that

P(Y ∗ ≥ λ) ≤ lim
t→∞

P(|Yτ∧t| ≥ λ− ε).

However, if we apply (2.7) to λ − 2ε and to the stopped martingales (Xτ∧t)t≥0,
(Yτ∧t)t≥0 (for which (2.1) is still satisfied), we obtain

P(|Yτ∧t| ≥ λ− ε) ≤ P(|Yτ∧t| > λ− 2ε) ≤ P (λ− 2ε)||X||1.

Consequently,

P(Y ∗ ≥ λ) ≤ P (λ− 2ε)||X||1,

and letting ε→ 0 yields the claim, since the function P is continuous.

Step 2. An application of Itô’s formula. Take martingales X, Y as in the
statement and let Zt = (Xt, Yt) for t ≥ 0. An application of Itô’s formula to the
process (Uλ(Zt))t≥0 yields

(2.8) Uλ(Zt) = Uλ(Z0) + I1 + I2/2 + I3,

where

I1 =

∫ t

0+

Uλx(Zs−)dXs +

∫ t

0+

Uλy(Zs−)dYs,

I2 =

∫ t

0+

Uλxx(Zs−)d[X,X]cs + 2

∫ t

0+

Uλxy(Zs−)d[X,Y ]cs +

∫ t

0+

Uλyy(Zs−)d[Y, Y ]cs,

I3 =
∑

0<s≤t

[
Uλ(Zs)− Uλ(Zs−)− 〈Uλx(Zs−),∆Xs〉 − 〈Uλy(Zs−),∆Ys〉

]
.

Now let us analyze each of the terms I1 − I3 separately. We have EI1 = 0, by
the properties of stochastic integrals. To deal with I2, let 0 ≤ s0 < s1 ≤ t. For
any j ≥ 0, let (ηji )1≤i≤ij be a sequence of nondecreasing finite stopping times with

ηj0 = s0, η
j
ij

= s1 such that limj→∞max1≤i≤ij−1 |ηji+1 − η
j
i | = 0. Keeping j fixed,

we apply, for each i = 0, 1, 2, . . . , ij , the inequality (2.6) to x = Xs0−, y = Ys0−
and h = hji = Xηji+1

− Xηji
, k = kji = Yηji+1

− Yηji . Summing the obtained ij + 1

inequalities and letting j →∞ yields

d∑
m=1

d∑
n=1

[
Uxmxn(Zs0−)[Xm, Xn]s1s0

+ 2Uxmyn(Zs0−)[Xm, Y n]s1s0 + Uymyn(Zs0−)[Y m, Y n]s1s0

]
≤ c(Zs0−)

(
[Y, Y ]s1s0 − [X,Y ]s1s0

)
,

where we have used the notation [S, T ]s1s0 = [S, T ]s1 − [S, T ]s0 and Xm, Y n denote
the m-th and n-th coordinates of X and Y , respectively. By (2.1) and the condition
c ≥ 0, the double sum above is nonpositive; hence, if we approximate I2 by discrete
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sums, we obtain I2 ≤ 0. Finally, I3 is also nonpositive. To see this, apply the
mean-value property: for any ω ∈ Ω we write

Uλ(Zs(ω))− Uλ(Zs−(ω))− 〈Uλx(Zs−(ω)),∆Xs(ω)〉 − 〈Uλy(Zs−(ω)),∆Ys(ω)〉

=
1

2

[
〈Uλxx(ξ)∆Xs(ω),∆Xs(ω)〉+ 2〈Uλxy(ξ)∆Xs(ω),∆Ys(ω)〉

+ 〈Uλyy(ξ)∆Ys(ω),∆Ys(ω)〉
]
,

where ξ is a certain point in S. Using (2.6), this can be bounded from above by
c(ξ)

[
|∆Ys(ω)|2 − 〈∆Xs(ω),∆Ys(ω)〉

]
. However, we have

|∆Ys(ω)|2 ≤ 〈∆Xs(ω),∆Ys(ω)〉,

since otherwise the condition (2.1) would not be satisfied, and the inequality I3 ≤ 0
follows.

Step 3. The final part. Combining all the above facts and taking expectation of
both sides of (2.8) gives EUλ(Zt) ≤ EUλ(Z0). Using (2.5), this estimate implies

P(|Yt| ≥ λ) ≤ P (λ)E|Xt|+ EUλ(Z0) ≤ P (λ)||X||1 + EUλ(Z0).

It remains to use the condition 4◦: by (2.1), we have Uλ(Z0) ≤ 0.

As we will see, the method can be modified to the case when Uλ satisfies slightly
less restrictive conditions; see below.

2.3. Proof of (2.4). We consider the cases 0 < λ ≤ 1, 1 < λ ≤ 3/2 and λ > 3/2
separately.

The case 0 < λ ≤ 1. This follows immediately from (2.2); in fact, for these λ’s
the inequality (2.4) is valid without the assumption ||X||∞ ≤ 1.

The case 1 < λ ≤ 3/2. Let Uλ : S → R be given by

Uλ(x, y) =
4

(2λ− 1)2
(|y|2 − 〈y, x〉).

Then 1◦ is obvious, since Uλ is of class C∞ in the interior of S. To check 2◦, note
that for |y| < λ,

Uλ(x, y) ≥ − 1

(2λ− 1)2
|x|2 ≥ −P (λ)|x| = 1{|y|≥λ} − P (λ)|x|

(in the second passage we have used |x| ≤ 1). For |y| ≥ λ, we have

Uλ(x, y) ≥ 4(λ2 − λ|x|)
(2λ− 1)2

=
(4λ− 1)(1− |x|)

(2λ− 1)2
+ 1− P (λ)|x| ≥ 1{|y|≥1} − P (λ)|x|.

The condition 3◦ is obvious: we have

〈Uλxx(x, y)h, h〉+ 2〈Uλxy(x, y)h, k〉+ 〈Uλyy(x, y)k, k〉 =
8

(2λ− 1)2
(|k|2 − 〈h, k〉),

so we can take c(x, y) = 8(2λ − 1)−2. Finally, 4◦ is trivial. Therefore, using the
above machinery, we get that (2.4) holds true.



8 ADAM OSȨKOWSKI

The case λ > 3/2. This is the most difficult part, and the special function will
be much more complicated. Introduce the following subsets of the strip S:

D1 = {(x, y) ∈ S : |x|+ |2y − x| ≤ 1},
D2 = {(x, y) ∈ S : 1 < |x|+ |2y − x| ≤ 2λ− 2},
D3 = {(x, y) ∈ S : |x|+ |2y − x| > 2λ− 2}

and let Uλ : S → R be given by

Uλ(x, y) =


e3−2λ(|y|2 − 〈x, y〉) if (x, y) ∈ D1,

(1− |x|)e|x|+|2y−x|−2λ+2/2− e3−2λ/4 if (x, y) ∈ D2,[
(|2y − x| − 2λ+ 3)2 − |x|2 + 1− e3−2λ

]
/4 if (x, y) ∈ D3.

This function does not have the necessary smoothness, but this will be overcome
with the use of a straightforward mollification. However, let us first verify that Uλ
satisfies (2.5), the condition 3◦ on the large part of S, and the condition 4◦.

Let us deal with the majorization (2.5). If (x, y) ∈ D1, then

Uλ(x, y) ≥ −1

4
e3−2λ|x|2 ≥ −1

4
e3−2λ|x| = 1{|y|≥λ} − P (λ)|x|,

where in the second passage we have used the bound |x| ≤ 1. If (x, y) ∈ D2, then

|y| ≤ 1

2
(|x|+ |2y − x|) ≤ λ− 1,

so (2.5) holds trivially. If (x, y) ∈ D3 and |y| < λ, we derive that

Uλ(x, y) ≥ 1

4
(−|x|2 + 1− e3−2λ)

=
1

4
(1− |x|)

(
|x|+ 1− e3−2λ

)
− P (λ)|x| ≥ 1{|y|≥λ} − P (λ)|x|.

Finally, if (x, y) ∈ D3 and |y| ≥ λ, then |2y − x| ≥ 2λ− 1 and

Uλ(x, y) ≥ 1

4
(4− |x|2 + 1− e3−2λ)

= 1 +
1

4
(1− |x|)

(
|x|+ 1− e3−2λ

)
− P (λ)|x| ≥ 1{|y|≥λ} − P (λ)|x|.

The next step is to verify the condition (2.6), under the additional assumption that
(x, y) ∈ Do

1 ∪Do
2 ∪Do

3 and that |x|, |2y − x| are nonzero. If (x, y) ∈ Do
1, then the

left-hand side of (2.6) equals 2e3−2λ(|k|2−〈h, k〉), so one can take c(x, y) = 2e3−2λ.
Suppose that (x, y) belongs to the interior of D2. The left-hand side of (2.6) is
equal to the second derivative of t 7→ Uλ(x+ th, y + tk) at 0. For x 6= 0, we have

d

dt
|x+ th|

∣∣∣
t=0

= 〈x′, h〉 and
d2

dt2
|x+ th|

∣∣∣
t=0

=
|x|2|h|2 − 〈x, h〉2

|x|3

(where x′ = x/|x|). Therefore, the left-hand side of (2.6) equals

1

2
e|x|+|2y−x|−2λ+2(A+B + C),

where

A = −|x| [〈x′, h〉+ 〈(2y − x)′, 2k − h〉]2 ,
B = 4(|k|2 − 〈k, h〉),
C = −

[
|2k − h|2 − 〈(2y − x)′, 2k − h〉2

]
(|x|+ |2y − x| − 1)/|2y − x|.
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Since A and C are nonpositive, we may take c(x, y) = 2e|x|+|2y−x|−2λ+2. Finally,
suppose that (x, y) lies in Do

3 and write the identity

(|2y − x| − 2λ+ 3)2 = |2y − x|2 + (2λ− 3)2 + 2(−2λ+ 3)|2y − x|.
The function (x, y) 7→ 2(−2λ+ 3)|2y − x| is concave, so if we omit this term while
computing the left-hand side of (2.6), we obtain

〈Uλxx(x, y)h, h〉+ 2〈Uλxy(x, y)h, k〉+ 〈Uλyy(x, y)k, k〉 ≤ 2(|k|2 − 〈h, k〉).
Consequently, c(x, y) = 2 works fine; note that the function c which we have just
introduced is bounded. Finally, we check 4◦. If (x, y) ∈ D1, then the condition is
obvious. Suppose that (x, y) ∈ D2. The inequality |y|2 ≤ 〈x, y〉 is equivalent to
|2y − x| ≤ |x|, so we have

Uλ(x, y) ≤ 1

2
(1− |x|)e2|x|−2λ+2 − 1

4
e3−2λ ≤ 0,

because of the elementary bound (1 − t)e2t ≤ e/2. If (x, y) ∈ D3, then, by the
definition of D3, |2y− x| > 2λ− 2− |x| ≥ 2λ− 3; on the other hand, |2y− x| ≤ |x|
(which follows from |y|2 ≤ 〈x, y〉), so

Uλ(x, y) +
1

4
e3−2λ ≤ 1

4

[
(|x| − 2λ+ 3)2− |x|2 + 1

]
=

1

4

[
(2λ− 3)2 + 1− 2(2λ− 3)|x|

]
.

Using again the definition of D3 and the inequality |2y − x| ≤ |x|, we see that
|x| > λ− 1, which implies

Uλ(x, y) +
1

4
e3−2λ <

1

4

[
(2λ− 3)2 + 1− 2(2λ− 3)(λ− 1)

]
=

1

4

[
1 + (3− 2λ)

]
.

The latter expression does not exceed e3−2λ/4. This completes the proof of 4◦.
Now we carry out the mollification argument. Consider a C∞ function g :

H×H → [0,∞), supported on the unit ball of H×H and satisfying
∫
H×H g = 1.

For a given δ ∈ (0, 1/4), let U
(δ)
λ be defined on (1− δ)S = {(x, y) : |x| ≤ 1− δ} by

the convolution

U
(δ)
λ (x, y) =

∫
[−1,1]d×[−1,1]d

Uλ(x+ δu, y + δv)g(u, v)dudv.

Of course, U
(δ)
λ is of class C∞ in the interior of its domain. This function inherits

the crucial properties from Uλ. Namely, we have the following version of (2.5):

(2.9) U
(δ)
λ (x, y) ≥ 1{|y|≥λ+δ} − P (λ)(|x|+ δ)

for all (x, y) ∈ (1 − δ)S. Next, note that the function Uλ is of class C1 on the set
So \ {x = 0 or 2y − x = 0}; therefore, integrating by parts implies

U
(δ)
λxx(x, y) =

∫
[−1,1]d×[−1,1]d

Uλxx(x+ δu, y + δv)g(u, v)dudv,

on the set W = {(x, y) ∈ (1 − δ)S : |x| ≥ δ and |2y − x| ≥ 3δ}. Similar identities

hold for U
(δ)
λxy and U

(δ)
λyy, so (2.6) holds true, for all (x, y) ∈W , with

c(δ)(x, y) =

∫
[−1,1]d×[−1,1]d

c(x+ δu, y + δv)g(u, v) dudv ≥ 0

(recall that c constructed above was bounded, so there is no problem with the
integration). To apply the methodology described in §2.2, we need to ensure that
the martingale pair takes values in W . To this end, we add one dimension and
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replace H by H×R. Consider a new pair Z(δ) of H×R-valued martingales X(δ) =(
(1 − 4δ)X, 3δ

)
and Y (δ) =

(
(1 − 4δ)Y, 0

)
. Then Z(δ) ∈ W almost surely, so we

are permitted to repeat the arguments of §2.2 to U
(δ)
λ and Z(δ). As the result, we

obtain EU (δ)
λ (Z

(δ)
t ) ≤ EU (δ)

λ (Z
(δ)
0 ), and combining this with (2.9), we arrive at

P(|Y (δ)
t | ≥ λ+ δ) ≤ P (λ)(||X(δ)||1 + δ) + EU (δ)

λ (Z
(δ)
0 ).

Letting δ → 0 we obtain (2.7), which immediately leads us to the desired bound.

2.4. Sharpness of (2.4). Suppose that B is a standard one-dimensional Brownian
motion. We will prove that for any λ there is a nonzero stopping time τ and
a predictable process H taking values in [0, 1] such that if X = (Bτ∧t)t≥0 and
Y = H · X, then ||X||∞ ≤ 1 and both sides of (2.4) are either equal, or as close
as we wish. As previously, we consider the cases λ ≤ 1, 1 < λ ≤ 3/2 and λ > 3/2
separately.

The case 0 < λ ≤ 1. Here the example is straightforward: we take τ = inf{t :
|Bt| = λ} and H ≡ 1. Then Y = X,

1 = P(Y ∗ ≥ λ) = ||X||1/λ.

The case 1 < λ ≤ 3/2. The idea is to construct first an appropriate Markov
process taking values in [−1, 1] × [−λ, λ] and then embed it into (X,Y ) as above.
Distinguish the following eleven points from R2: A0 =

(
1
2 ,

1
2

)
, A1 =

(
1, 1

2

)
, A2 =(

3
2 − λ,

1
2

)
, A3 = (1, λ), A4 =

(
1
2 − λ,−

1
2

)
and A5 = −A1, A6 = −A2, A7 = −A3,

A8 = −A4, A9 = A1, A10 = A2. Consider a Markov martingale (f, g), uniquely
determined by the following conditions:

(i) We have (f0, g0) ≡ A0.
(ii) For any 0 ≤ k ≤ 4, the state A2k leads to A2k+1 or to A2k+2.

(iii) The states A1, A3, A5 and A7 are absorbing.

Let us gather some relevant information about the behavior of the pair (f, g). For
any 0 ≤ k ≤ 4, the line segments A2kA2k+1 and A2kA2k+2 are of slope 0 or 1:
therefore, we may embed the pair (f, g) into the martingale (X,Y ), where X is a
one-dimensional Brownian motion started at 1/2 and stopped at τ , its exit time
from [−1, 1], and Y = H · X for a certain predictable process H taking values in
{0, 1}. To be more precise, note that there is a nondecreasing sequence (τn)n≥0,
adapted to the filtration generated by X, such that (Xτk)k≥0 and f have the same
distribution. Next, put H0 ≡ 1 and

Ht =

{
0 if τ2k < t ≤ τ2k+1,

1 if τ2k+1 < t ≤ τ2k+2,

whenever t < τ , and Ht = 0 for t ≥ τ . This implies Yτ2k+1
− Yτ2k = 0 and

Yτ2k+2
− Yτ2k+1

= Xτ2k+2
−Xτ2k+1

= f2k+2 − f2k+1, so the pair (Xτk , Yτk)k≥0 has
the same distribution as (f, g). Now, observe that the terminal value (Xτ , Yτ )
takes values in the set {A1, A3, A5, A7}, and hence 2Yτ − Xτ ∈ {0,±(2λ − 1)}.
Furthermore, Yτ ∈ {λ,−λ} if and only if 2Y −X ∈ {2λ− 1,−2λ+ 1}. Therefore,

P(Y ∗ ≥ λ) = P(|Yτ | = λ) = P(|2Yτ −Xτ | = 2λ− 1) =
E|2Yτ −Xτ |2

(2λ− 1)2
.
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However, the martingales X, Y are bounded, so

E|2Yτ −Xτ |2 = E
[
2Yτ −Xτ , 2Yτ −Xτ

]
= E

∫ τ

0

|2Hs − 1|2ds = Eτ = E|Xτ |2 = 1,

where in the third passage we have used the equality |2Hs − 1| ≡ 1 for all s. This
implies that the constant P (λ) is indeed the best in the range 1 < λ ≤ 3/2.

The case λ > 3/2. Here the reasoning is similar: first we construct an appropriate
discrete-time Markov process. Fix a large positive integer N and let δ = (λ −
3/2)/N . Consider the Markov martingale (f, g), given by the following:

(i) We have (f0, g0) ≡ (1/2, 1/2).
(ii) Any state of the form (x, y), with x ∈ (0, 1) and y > 0, leads to (0, y) or to

(1, y).
(iii) Any state of the form (0, y), where 0 < y < λ− 1, leads to (δ, y + δ) or to

(−1, y − 1).
(iv) The state (0, λ− 1) leads to (−1, λ− 2) or to (1, λ).
(v) All the states lying on the lines x = ±1 are absorbing.

Arguing as previously, we may embed (f, g) into a pair (X,Y ) such that X is a
Brownian motion starting from 1/2 and Y is an Itô integral, with respect to X,
of a certain predictable process with values in {0, 1}. Directly from the transition
probabilities above, we have

P(Y ∗ ≥ λ) = P(g∗ ≥ λ)

= P((f0, f1, . . . , f2N+2) = (1/2, 0, δ, 0, δ, 0, . . . , δ, 0, 1))

=
1

4

(
1− δ
1 + δ

)N
.

Recall that δ = (λ− 3/2)/N ; thus, if N is sufficiently large, the above probability
can be made arbitrarily close to e3−2λ/4. This proves the desired sharpness of the
bound (1.5).

2.5. Proof of Theorem 2.2. Finally, we show how to deduce the exponential
inequality (2.3) from (2.4) and study the behavior of CK as K → 1/2 and K →∞.
For X, Y as in the statement and any t ≥ 0, we have

EΦ

(
|Yt|
K

)
≤ EΦ

(
Y ∗

K

)
=

1

K

∫ ∞
0

Φ′
(
λ

K

)
P(Y ∗ ≥ λ)dλ

≤ 1

K

[∫ 1

0

eλ/K − 1

λ
dλ+

∫ 3/2

1

eλ/K − 1

(2λ− 1)2
dλ+

∫ ∞
3/2

(eλ/K − 1)e3−2λ

4
dλ

]
||X||1

=
1

K2
AK ||X||1 +

1

8K(K − 1/2)
BK ||X||1,

where the constants AK , BK are given by

AK =

∫ 1

0

eλ/K − 1

λ/K
dλ+

∫ 3/2

1

eλ/K − 1

(2λ− 1)2/K
dλ and BK = Ke3/(2K) −K + 1/2.
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It suffices to note that AK , BK are decreasing functions of K; since K > 1/2, this
implies

AK ≤
∫ 1

0

e2λ − 1

2λ
dλ+

∫ 3/2

1

e2λ − 1

2(2λ− 1)2
dλ, BK ≤ e3/2,

and (2.3) follows.
We turn to the lower bounds for the best constant in (2.3). Fix K ∈ (1/2,∞).

We will use a Markov martingale similar to that used in the case λ > 3/2 above.
Fix δ ∈ (0, 1) and consider the pair (f, g), satisfying the following conditions:

(i) We have (f0, g0) ≡ (1/2, 1/2).
(ii) Any state of the form (x, y), with x ∈ (0, 1) and y > 0, leads to (0, y) or to

(1, y).
(iii) Any state of the form (0, y), with y > 0, leads to (δ, y+ δ) or to (−1, y−1).
(iv) All the states lying on the lines x = ±1 are absorbing.

Next, embed it in the pair (Xt, Yt)t≤τ as above. For any positive integer n, the
event

{f = (1/2, 0, δ, 0, . . . , δ, 1, 1, 1, 1, . . .)},
where the first 1 occurs on 2n+ 1-st coordinate, has probability

1

2

(
1− δ
1 + δ

)n−1
δ

1 + δ

and is contained in {|Yτ | = nδ + 1/2}. Consequently,

sup
t≥0

EΦ(|Yt|/K) = EΦ(|Yτ |/K) ≥ δ

2(1 + δ)

∞∑
n=1

Φ

(
nδ

K

)(
1− δ
1 + δ

)n−1

.

However, if δ is sufficiently small, the latter sum can be made arbitrarily close to

1

2

∫ ∞
0

Φ
( s
K

)
e−2sds =

1

16K(K − 1/2)
.

This immediately yields the assertions concerning the order of CK for K → 1/2
and K →∞. Because of the explosion of the constant at K = 1/2, (2.3) does not
hold with any finite CK when K ≤ 1/2.

3. Proof of (1.5)

This section is divided into two parts. The first of them describes the martin-
gale representation of Fourier multipliers with symbols as in (1.1); the material is
essentially taken from [1] and [2], and we have decided to include it here for the
sake of completeness. The second subsection contains the proof of (1.5).

3.1. The martingale representation of the Fourier multipliers (1.1). By the
results from [2], we may assume that the Lévy measure ν satisfies the symmetry
condition ν(B) = ν(−B) for all Borel subsets B of Rd (more precisely, for any ν
there is a symmetric ν̄ which leads to the same multiplier). Assume in addition that
|ν| = ν(Rd) is finite and nonzero, and define ν̃ = ν/|ν|. Consider the independent
random variables T−1, T−2, . . ., Z−1, Z−2, . . . such that for each n = −1, −2, . . .,
Tn has exponential distribution with parameter |ν| and Zn takes values in Rd and
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has ν̃ as the distribution. Next, put Sn = −(T−1+T−2+. . .+Tn) for n = −1, −2, . . .
and let

Xs,t =
∑

s<Sj≤t

Zj , Xs,t− =
∑

s<Sj<t

Zj , ∆Xs,t = Xs,t −Xs,t−,

for −∞ < s ≤ t ≤ 0. For a given f ∈ L∞(Rd), define its parabolic extension Uf to
(−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).

Next, fix x ∈ Rd, s < 0 and let f, φ ∈ L∞(Rd). We introduce the processes

F = (F x,s,ft )s≤t≤0 and G = (Gx,s,f,φt )s≤t≤0 by

Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[
∆Fu · φ(∆Xs,u)

]
−
∫ t

s

∫
Rd

[
Uf (v, x+Xs,v− + z)− Uf (v, x+Xs,v−)

]
φ(z)ν(dz)dv.

(3.1)

These processes are martingales adapted to the filtration Ft = σ(Xs,t : t ∈ [s, 0])
(see [1], [2]). The key fact is the following.

Lemma 3.1. If φ takes values in [0, 1], then the pair (F x,s,f , Gx,s,f,φ) satisfies
(2.1).

Proof. The assertion follows immediately from the identities

[F,G]t =
∑
s<u≤t

|∆Fu|2φ(∆Xs,u) and [G,G]t =
∑
s<u≤t

|∆Fu|2(φ(∆Xs,u))2,

which can be established by repeating the reasoning from [1]. �

Now we introduce a family of multipliers. Fix s < 0, a function φ on Rd taking
values in the unit ball of C and define the operator T = T s by the bilinear form

(3.2)

∫
Rd
T f(x)g(x)dx =

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx,

where f, g ∈ C∞0 (Rd). We have the following fact, proved in [1].

Lemma 3.2. Let 1 < p < ∞ and d ≥ 2. The operator T s is well defined and
extends to a bounded operator on Lp(Rd), which can be expressed as a Fourier
multiplier with the symbol

M(ξ) = Ms(ξ)

=

[
1− exp

(
2s

∫
Rd

(1− cos〈ξ, z〉)ν(dz)

)] ∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)

if
∫
Rd(1 − cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise. Furthermore, (3.2) holds

true for all f ∈ C∞0 (Rd) and all g belonging to Lq(Rd) for some 1 < q <∞.



14 ADAM OSȨKOWSKI

3.2. Proof of (1.5). We start with proving the dual version of (1.5).

Theorem 3.3. Assume that K > 1/2 and let m : Rd → C be a multiplier as in
Theorem 1.3. Then for any function f ∈ L1(Rd) taking values in the unit ball of C
we have

(3.3) ||Φ(|Tmf |/K)||L1(Rd) ≤
CK
K
||f ||L1(Rd).

Proof. We divide the proof into two parts.

Step 1. First we show the estimate for the multipliers of the form

(3.4) Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
.

In addition, we assume that 0 < ν(Rd) < ∞, so that the above approach using
Lévy processes is applicable. Fix s < 0 and functions f, g ∈ C∞0 (Rd) such that f
is bounded by 1; then the martingale F x,s,f also takes values in the unit ball of C.
By Young inequality, Fubini’s theorem, Lemma 3.1 and (2.3), we have∣∣∣∣∣

∫
Rd

E

[
Gx,s,f,φ0

K
g(x+Xs,0)

]
dx

∣∣∣∣∣
≤
∫
Rd

EΦ

(
|Gx,s,f,φ0 |

K

)
dx+

∫
Rd

EΨ
(
|g(x+Xs,0)|)dx

≤ CK
K

∫
Rd

E|F x,s,f0 |dx+

∫
Rd

Ψ(|g(x)|)dx

=
CK
K

∫
Rd
|f(x)|dx+

∫
Rd

Ψ(|g(x)|)dx.

(3.5)

Plugging this into the definition of T s (see (3.2)), we obtain∫
Rd

[
T sf(x)

K
g(x)−Ψ(|g(x)|)

]
dx ≤ CK

K
||f ||L1(Rd).

Now fix M > 0 and put

g(x) =
T sf(x)

|T sf(x)|

[
exp

(
min

{
|T sf(x)|

K
,M

})
− 1

]
(if T sf(x) = 0, set g(x) = 0). We have |g| ≤ c|T sf | for some constant c depending
on M and K; furthermore, T sf ∈ L2(Rd), directly from the formula for the symbol
of the multiplier (and the fact that f ∈ L2(Rd)). Consequently, plugging g into the
preceding inequality gives∫

Rd
Φ

(∣∣∣∣T sf(x)

K

∣∣∣∣) 1{|T sf(x)|≤MK}

+

(
|T sf(x)|(eM − 1)

K
−Ψ(eM − 1)

)
1{|T sf(x)|>MK}dx ≤

CK
K
||f ||L1(Rd)

and hence, by Fatou’s lemma, if we let M →∞, we get∫
Rd

Φ

(∣∣∣∣T sf(x)

K

∣∣∣∣)dx ≤ CK
K
||f ||L1(Rd).

Now if we let s→ −∞, then Ms converges pointwise to the multiplier Mφ,ν given by
(3.4). By Plancherel’s theorem, T sf → TMφ,ν

f in L2 and hence there is a sequence
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(sn)∞n=1 converging to −∞ such that limn→∞ T snf → TMφ,ν
f almost everywhere.

Thus Fatou’s lemma yields the desired bound for the multiplier TMφ,ν
.

Step 2. Now we deduce the result for the general multipliers as in (1.1) and drop
the assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy measure νε in
polar coordinates (r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)µ(dθ),

where δε denotes Dirac measure on {ε}. Next, consider a multiplier mε as in (3.4),
in which the Lévy measure is 1{|x|>ε}ν + νε and the jump modulator is given by
1{|x|>ε}φ(x)+1{|x|=ε}ψ(x/|x|). This yields the claim by applying the previous step
to νε and letting ε→ 0. Indeed, we have∫

Rd
[1− cos〈ξ, x〉]ψ(x/|x|)νε(dx) =

∫
S
ψ(θ)

1− cos〈ξ, εθ〉
ε2

µ(dθ)

ε→0−−−→ 1

2

∫
S
〈ξ, θ〉2ψ(θ)µ(dθ)

so, as above, it suffices to use Plancherel’s theorem and pass to the subsequence
which converges almost everywhere. �

Proof of (1.5). Let us skip the lower indices and write m instead of mφ,ψ,µ,ν . Fix
f ∈ L2(Rd) and put g = Tmf1A/|Tmf | (g = 0 if the denominator is zero). We have∫

A

|Tmf(x)|dx =

∫
Rd
Tmf(x)g(x)dx

=

∫
Rd
T̂mf(x)ĝ(x)dx

=

∫
Rd
f̂(x)T̂m̄g(x)dx

=

∫
Rd
f(x)Tm̄g(x)dx

≤ K
∫
Rd

Ψ(|f(x)|)dx+K

∫
Rd

Φ(|Tm̄g(x)|/K)dx

≤ K
∫
Rd

Ψ(|f(x)|)dx+ CK ||g||L1(Rd).

(3.6)

Here in the fifth line we have exploited Young’s inequality and in the latter passage
we have used (3.3) and the fact that g takes values in the unit ball of C. It suffices
to note that ||g||L1(Rd) ≤ |A| to complete the proof for square-integrable f . For
general functions from the class LlogL we use a straightforward approximation:

there is a sequence (fn)n≥1 ⊂ L2(Rd) such that
∫
Rd Ψ(|fn|)

n→∞−−−−→
∫
Rd Ψ(|f |) and

Tmfn
n→∞−−−−→ Tmf almost everywhere. �

Let us present some examples, following the exposition in [2]. Let µ ≡ 0 and
let ν be the Lévy measure of a non-zero symmetric α-stable Lévy process in Rd,
α ∈ (0, 2). In polar coordinates we have (see e.g. [17]),

ν(drdθ) = r−1−αdrσ(dθ), r > 0, θ ∈ S,

where the so-called spectral measure σ is finite and non-zero on S. Pick a function
φ : Rd → [0, 1] bounded by 1 and homogeneous of order 0, that is, satisfying
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φ(x) = φ(x/|x|) for x 6= 0. Let cα =
∫∞

0
[1− cos s]s−1−αds. We have∫

Rd
[1− cos〈ξ, x〉]φ(x)ν(dx) =

∫
S

∫ ∞
0

[1− cos〈ξ, rθ〉]φ(rθ)r−1−αdrσ(dθ)

= cα

∫
S
|〈ξ, θ〉|αφ(θ)σ(dθ)

and thus Theorem 1.3 gives that the multiplier with the symbol

(3.7) Mα(ξ) =

∫
S |〈ξ, θ〉|

αφ(θ)σ(dθ)∫
S |〈ξ, θ〉|ασ(dθ)

satisfies (1.5). In particular, if we take σ to be the probability measure satisfying

σ({(1, 0, 0, . . . , 0)}) = σ({(0, 1, 0, . . . , 0)}) = . . . = σ({(0, 0, . . . , 0, 1)}) = 1/d

and φ is the indicator function of the j-th axis, we obtain Marcinkiewicz-type
multipliers (see Stein [18], p. 110):

Mα,j(ξ) =
|ξj |α

|ξ1|α + |ξ2|α + . . .+ |ξd|α
.

If we let α ↑ 2, we obtain the second-order Riesz transforms R2
j . To give another

example, suppose that d is even: d = 2n, and let σ be the uniform measure on

{x ∈ S : x2
1 + . . .+ x2

n = 1 or x2
n+1 + x2

n+2 + . . .+ x2
2n = 1}.

If φ is the indicator function of {x ∈ S : x2
1 + . . .+ x2

n = 1}, then (3.7) becomes

(3.8) M(ξ) =
|ξ2

1 + ξ2
2 + . . .+ ξ2

n|α/2

|ξ2
1 + ξ2

2 + . . .+ ξ2
n|α/2 + |ξ2

n+1 + ξ2
n+2 + . . .+ ξ2

2n|α/2
.

Finally, we mention an example which is induced by the class of the so-called
tempered stable Lévy processes [16]. As previously, take µ ≡ 0 and define the Lévy
measure ν in polar coordinates by

ν(drdθ) = r−1e−rdrσ(dθ), r > 0, θ ∈ S,

where σ is as above. This choice leads to the multiplier

M(ξ) =

∫
S log[1 + 〈ξ, θ〉2]φ(θ)σ(dθ)∫

S log[1 + 〈ξ, θ〉2]σ(dθ)
,

which, in virtue of Theorem 1.3, satisfies (1.5). (We would like to point out the
misprint in the formula for M(ξ) in [2]. The authors of that paper will likely
appreciate a corrected version of the formula.) In particular, by choosing φ, σ as
above, we get the logarithmic estimate for the multipliers

Mj(ξ) =
log(1 + ξ2

j )

log(1 + ξ2
1) + log(1 + ξ2

2) + . . .+ log(1 + ξ2
d)
,

for j = 1, 2, . . . , d.
In the remainder of this section we discuss the possibility of extending the as-

sertion of Theorems 1.3 and 3.3 to the vector-valued multipliers. Note that for any
bounded function m = (m1,m2, . . . ,mn) : Rd → Cn, we may define the associ-
ated Fourier multiplier acting on complex valued functions on Rd by the formula
Tmf = (Tm1

f, Tm2
f, . . . , Tmnf). The reasoning presented above can be easily mod-

ified to yield the following statement.
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Theorem 3.4. Let ν, µ be two measures on Rd and S, respectively, satisfying the
assumptions of Theorem 1.3. Assume further that φ, ψ are two Borel functions on
Rd taking values in the cube [0, 1]n and let m : Rd → Rn be the associated symbol
given by (1.1). Let K > 1/2 be a fixed number.

(i) For any integrable function f on Rd, taking values in the unit ball of C,∫
Rd

Φ

(∣∣∣∣Tmf(x)

K

∣∣∣∣) dx ≤ CK
K
||f ||L1(Rd).

(ii) For any f ∈ LlogL(Rd) and any Borel subset A of Rd,∫
A

|Tmf(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+ CK |A|.

The proof is word-by-word repetition of the argumentation from [15] and is
omitted.

4. On the lower bound for the constant in (1.5)

4.1. The case d = 2. We start with the two-dimensional setting, in which a very
convenient tool, the Beurling-Ahlfors transform, is available. Recall that this op-
erator is a Fourier multiplier with the symbol m(ξ) = ξ/ξ, ξ ∈ C; alternatively, it
can be defined by the singular integral

BAf(z) = − 1

π
p.v.

∫
C

f(w)

(z − w)2
dw

(here and below, we identify R2 with the complex plane C). The fundamental
property of this object is that it changes the complex derivative ∂ to ∂. Precisely,
for any f from the Sobolev space W 1,2(C,C) we have

(4.1) BA(∂f) = ∂f,

where, as usual,

∂f =
1

2

(
∂f

∂x
− i∂f

∂y

)
, ∂f =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Directly from the form of the symbol, we infer that BA = (R2
1 − R2

2) + 2iR1R2,
where R1, R2 are planar Riesz transforms, and hence R2

1f = (−f +(ReBA)f)/2, if
we restrict ourselves to the real-valued functions f (here we have used the identity
−Id = R2

1 +R2
2, which follows directly from the passage to Fourier transforms).

We are ready to establish the second part of Theorem 1.3. Consider the following
example. For a fixed α ∈ (0, 1/2), let R > 0 be given by the equation R2α = 1− α
and define w : C→ C by

w(z) =

{
z|z|−2α − z if |z| ≤ R,
R2−2αz−1 −R2z−1 if |z| > R.

We easily check that w ∈W 1,2(C,C) and derive that

∂w(z) =

{
αz2|z|−2α−2 if |z| < R,

−R2−2αz−2 +R2z−2 if |z| > R

and

∂w(z) =

{
(1− α)|z|−2α − 1 if |z| < R,

0 if |z| > R.
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Finally, put A = {z ∈ C : |z| ≤ R} and f = ∂̄w. We have∫
C

Ψ(|f(z)|)dz = πR2−2α

[
log(1− α) +

2α− 1

1− α
− 2α logR

]
+ πR2 =

α2|A|
(1− α)2

and ∫
A

|R2
1f(z)|dz =

1

2

∫
A

∣∣− f(z) + (ReBA)f(z)
∣∣dz

=
1

2

∫
A

∣∣− (1− α)|z|−2α + 1 + α|z|−2α−2Re z̄2
∣∣dz

≥ 1

2

∫
A

(
1− α− αRe(z̄2/|z|2)

)
|z|−2α dz − |A|

2
,

where in the last line we have used the triangle inequality and the bound α < 1/2.
Passing to polar coordinates and applying the identity R2α = 1−α, we verify that∫

A

|R2
1f(z)|dz ≥ π

∫ R

0

(1− α)r1−2α dr − |A|
2

=
|A|
2
· α

1− α
.

Now substitute α = (4K)−1 and plug the above facts into (1.5). If we divide both
sides by |A|, we see that the constant CK must satisfy

CK ≥
1

|A|

[∫
A

|R2
1f | −K

∫
C

Ψ(|f |)
]
≥ 1

2(4K − 1)
− K

(4K − 1)2
=

2K − 1

2(4K − 1)2
.

This yields the claim in the two-dimensional setting.

4.2. The case d ≥ 3. Suppose that for a fixed K > 1/2 and some DK > 0 we have

(4.2)

∫
A

|R2
1f(x)|dx ≤ K

∫
Rd

Ψ(|f(x)|)dx+DK · |A|

for all Borel subsets A of Rd and all Borel functions f : Rd → R. For t > 0, define
the dilation operator δt as follows: for any function g : R2 × Rd−2 → R, we let
δtg(ξ, ζ) = g(ξ, tζ); for any A ⊂ R2 × Rd−2, let δtA = {(ξ, tζ) : (ξ, ζ) ∈ A}. By
(4.2), the operator Tt := δ−1

t ◦R2
1 ◦ δt satisfies∫

A

|Ttf(x)|dx = td−2

∫
δ−1
t A

|R2
1 ◦ δtf(x)|dx(4.3)

≤ td−2

[
K

∫
Rd

Ψ(|δtf(x)|)dx+DK · |δ−1
t A|

]
= K

∫
Rd

Ψ(|f(x)|)dx+DK · |A|.

Now fix f ∈ L2(Rd) satisfying
∫
R Ψ(|f |) < ∞. It is not difficult to check that the

Fourier transform F satisfies the identity F = td−2δt ◦F ◦δt and hence the operator
Tt has the property that

T̂tf(ξ, ζ) = − ξ2
1

|ξ|2 + t2|ζ|2
f̂(ξ, ζ), (ξ, ζ) ∈ R2 × Rd−2.

By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂tf(ξ, ζ) = T̂0f(ξ, ζ)
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in L2(Rd), where T̂0f(ξ, ζ) = −ξ2
1 f̂(ξ, ζ)/|ξ|2. The convergence in L2(Rd) implies

the convergence in L1(A) provided |A| is finite; therefore, (4.3) implies

(4.4)

∫
A

|T0f(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+DK · |A|

(if |A| = ∞ this is of course also true). Now, recall the function w and the set
B = {z ∈ R2 : |z| ≤ R} from the previous subsection, and define f : R2×Rd−2 → R
by f(ξ, ζ) = ∂̄w(ξ)1[0,1]d−2(ζ). Denoting by R1 the first planar Riesz transform, we

have T0f(ξ, ζ) = (R2
1∂̄w)(ξ)1[0,1]d−2(ζ), because of the identity

T̂0f(ξ, ζ) = − ξ2
1

|ξ|2
̂̄∂w(ξ) ̂1[0,1]d−2(ζ).

Plug this into (4.4) with the choice A = B × [0, 1]d−2 to obtain∫
B

|R2
1∂̄w(ξ)|dξ ≤ K

∫
R2

Ψ(|∂̄w(ξ)|)dξ +DK · |B|.

As we have computed in the previous subsection, this implies

DK ≥
2K − 1

2(4K − 1)2
.

The proof is complete.
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