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Adam Osȩkowski

Abstract. We study sharp LlogL inequalities for the Hilbert transform
and Riesz projection acting on vector-valued functions defined on the
unit circle.
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1. Introduction

Assume that f(ζ) =
∑
n∈Z f̂(n)ζn is a complex-valued integrable function

on the unit circle T = {ζ ∈ C : |ζ| = 1}. Here f̂(n) = 1
2π

∫ π
−π f(eiθ)e−inθdθ

stands for the n-th Fourier coefficient of f . For p ≥ 1, let Hp(T,C) consist

of all f satisfying f̂(n) = 0 for n < 0. Then Hp(T,C) is a closed subspace
of Lp(T,C) and can be identified with the space of analytic functions on the
unit disc D. The Riesz projection (or analytic projection) P+ : Lp(T,C) →
Hp(T,C), is the operator given by

P+f(ζ) =
∑
n≥0

f̂(n)ζn, ζ ∈ T.

We introduce P−, the co-analytic projection on T, by P− = I − P+. These
two projections are closely related to another classical operator, the Hilbert
transform (conjugate function) on T, which is defined by

Hf(ζ) = −i
∑
n∈Z

sgn(n)f̂(n)ζn, ζ ∈ T.

A classical theorem of M. Riesz states that the operator P+ (equivalently, the
Hilbert transform H) is bounded on Lp(T,C) for 1 < p < ∞. The question
about the precise value of the norms of these operators has gathered some
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interest in the literature. For p = 2k, k = 1, 2, . . ., the exact values of the
norms of H were determined by Gohberg and Krupnik [5], who showed that

||H||Lp(T,C)→Lp(T,C) = cot(π/(2p)).

For the remaining values of 1 < p <∞, the norms of the operator H acting
on real Lp spaces were found by Pichorides [10] and, independently, by Cole
(unpublished work, see Gamelin [4]):

||H||Lp(T,R)→Lp(T,R) = cot(π/(2p∗)),

where p∗ = max{p, p/(p − 1)}. Consult also Essén [1] and Verbitsky [12].
These norms do not change while passing to the complex Lp spaces (see e.g.
Pe lczyński [9]):

||H||Lp(T,C)→Lp(T,C) = cot(π/(2p∗)), 1 < p <∞.

For the Riesz projection, Hollenbeck and Verbitsky [7], [8] proved that

||P±||Lp(T,C)→Lp(T,C) = csc(π/p), 1 < p <∞.

The Hilbert transform is not bounded on L1(T,C), but, as shown by Zygmund
[13], there are absolute K, L <∞ such that

||Hf ||1 ≤ K||f ||L logL + L. (1.1)

Here ||f ||L logL = 1
2π

∫
T |f | log+ |f |dζ. There is a natural question about the

optimal values of K and L, which was partially answered by Pichorides [10]
under the additional assumption that f is real-valued. Namely, he proved
that for a fixed K > 2/π there is a universal L = L(K) <∞ such that (1.1)
is valid; on the other hand, when K ≤ 2/π, then such L does not exist. See
also Essén, Shea and Stanton [2], [3] for related results in this direction.

The purpose of this paper is to study the vector-valued analogues of
Pichorides’ result, both for the Hilbert transform and the Riesz projection.
In addition we shall derive, for each K, the best value of the constant L(K)
in a certain version of (1.1). Consider the Hilbert space `2C with norm | · | and
scalar product ·. Let

L logL =

{
f : T→ `2C : ||f ||L logL =

1

2π

∫ π

−π
|f(eiθ)| log+ |f(eiθ)|dθ <∞

}
be the L logL class for `2C-valued functions on the unit circle. It is easy to
see that P± and H can be extended to the operators acting on this class,
either by defining them coordinatewise, or simply by noting that the previous
definitions make sense in this new setting.

Let us state our main result. Introduce the functions Φ, Ψ : R→ R by

Φ(x) = e|x| − 1− |x|, Ψ(x) = (|x|+ 1) log(|x|+ 1)− |x|. (1.2)

Theorem 1.1. If K > 2/π and f ∈ L logL, then

||Hf ||1 ≤
K

2π

∫ π

−π
Ψ(|f(eiθ)|)dθ + L(K), (1.3)
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where

L(K) =
K

π

∫ ∞
−∞

Φ
(

2
πK log |s|

)
s2 + 1

ds <∞.

The constant L(K) is the best possible.

Since Ψ(x) ≤ |x| log+ |x|+ a for some absolute a, we get the following.

Corollary 1.2. Let K be a fixed positive number. There is an absolute L <∞
such that for any f ∈ L logL,

||Hf ||1 ≤ K||f ||L logL + L,

if and only if K > 2/π.

Since P+f = 1
2 (f + iHf) + 1

2 f̂(0) and P−f = 1
2 (f − iHf) − 1

2 f̂(0), we
get the following result for the Riesz and co-analytic projections.

Corollary 1.3. Let K be a fixed positive number.
(i) There is an absolute L <∞ such that for any f ∈ L logL,

||P+f ||1 ≤ K||f ||L logL + L,

if and only if K > 1/π.
(ii) There is an absolute L = L <∞ such that for any f ∈ L logL,

||P−f ||1 ≤ K||f ||L logL + L,

if and only if K > 1/π.

A few words about our approach and the organization of the paper.
Pichorides’ proof rests on a construction of a certain special superharmonic
function; this gives the LlogL result for nonnegative f and then the general
statement follows from a decomposition of an arbitrary function to its positive
and negative parts. This argument does not work in the vector-valued setting
described above and hence a new method is needed. We shall use duality and
deduce (1.3) from a certain sharp exponential inequality: see the next section.
In Section 3 we exhibit examples which give the optimality of L(K).

2. Proof of Theorem 1.1

First let us state a well-known fact from complex analysis (see e.g. Theorem
4.13 in [11]). For z = (z1, z2, . . .) ∈ `2C, we define the conjugation by z =
(z1, z2, . . .) and then, for w, z ∈ `2C, we have w · z =

∑∞
j=1 wjzj .

Theorem 2.1. Suppose that D is a given subdomain of C and let D′ =
{(w, z) ∈ `2C × `2C : w · z ∈ D}. If φ : D → R is harmonic, then U : D′ → R
given by U(w, z) = φ(w · z) is pluriharmonic.

Let H = {(x, y) : y > 0} denote the upper half-space and let S =
{(x, y) ∈ R2 : |x| < 1} stand for the vertical strip in R2. Fix K > 2/π and
define V : H → R by the Poisson integral

V(α, β) =
1

π

∫ ∞
−∞

βΦ
(

2
πK log |t|

)
(α− t)2 + β2

dt. (2.1)
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Then V is a harmonic function on H and

lim
(α,β)→(t,0)

V(α, β) = Φ

(
2

πK
log |t|

)
. (2.2)

Consider a conformal map φ(z) = i exp(πz/2), which maps S onto H, and
introduce V : S → R by

V (x, y) =

{
Φ(y/K) if |x| = 1,

V(φ(x, y)) if |x| < 1.

We easily check that for (x, y) ∈ S we have

V (x, y) =
1

π

∫ ∞
−∞

cos
(
π
2x
)

Φ
(

2
πK log |s|+ y

K

)
s2 − 2s sin

(
π
2x
)

+ 1
ds. (2.3)

The function V is harmonic on S, because it is a real part of a certain
holomorphic function G:

V = ReG. (2.4)

In addition, in view of (2.2), V is a continuous function on the closure of S.
It is not difficult to see that V satisfies the condition

V (x, y) = V (x,−y) = V (−x, y) for all (x, y) ∈ S. (2.5)

Indeed, this can be verified by the substitutions s := −s and s := 1/s in
(2.3).

We shall need the following further properties of V .

Lemma 2.2. (i) We have V (x, 0) ≤ V (0, 0) for all x ∈ [−1, 1].
(ii) If x ∈ (−1, 1) and y ≥ 0, then Vyyy(x, y) ≥ 0.
(iii) If x ∈ [0, 1) and y ≥ 0, then yVx(x, y) + xVy(x, y) ≤ 0.
(iv) There are a0, a1, a2, . . . ∈ C such that the holomorphic function G

given by (2.4) satisfies G(z) =
∑∞
n=0 anz

2n for all z ∈ S.

Proof. (i) Since Φ is convex, (2.3) implies that for a fixed x ∈ [−1, 1], the
function V (x, ·) is also convex. Hence, by the harmonicity of V , we have
Vxx ≤ 0 on S and it remains to apply (2.5) to get the estimate.

(ii) The function Φ is of class C2, so Fubini’s theorem yields

Vyyy(x, y) =
1

π

∫ ∞
−∞

cos
(
π
2x
)

Φ′′′
(
2
π log |s|+ y

)
s2 − 2s sin

(
π
2x
)

+ 1
ds

=
1

2π

∫ ∞
−∞

cos
(
π
2x
) [

Φ′′′
(
2
π log |s|+ y

)
+ Φ′′′

(
− 2
π log |s|+ y

)]
s2 − 2s sin

(
π
2x
)

+ 1
ds,

where the second passage can be justified using the substitution s := 1/s.
However, Φ′′′(s) = e|s| sgn s for s 6= 0, so the sum in the square brackets
under the last integral is nonnegative for almost all s.

(iii) First note that

Vxy ≤ 0 for x ∈ [0, 1), y ≥ 0. (2.6)

Indeed, by (2.5), we have Vx(0, y) = 0 for any y ∈ R; this implies Vxy(0, y) = 0
for all y. Furthermore, by (ii) and the fact that V is harmonic, we have
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Vxyx = −Vyyy ≤ 0 on [0, 1)× [0,∞) and hence (2.6) follows. Next, fix y ≥ 0
and let F (x) = yVx(x, y) + xVy(x, y), x ∈ [0, 1). Since F (0) = 0, we will be
done if we show that F is nonincreasing. Using the harmonicity of V , we get,
for x ∈ (0, 1),

F ′(x) = yVxx(x, y) + Vy(x, y) + xVxy(x, y)

= (−yVyy(x, y) + Vy(x, y)) + xVxy(x, y).

This is nonpositive: indeed, (2.5) gives Vy(x, 0) = 0, so by (ii) and the mean-
value property,

−yVyy(x, y) + Vy(x, y) = −yVyy(x, y) + Vy(x, y)− Vy(x, 0)

= y(−Vyy(x, y) + Vyy(x, y′)) ≤ 0,

for some y′ ∈ [0, y]; in addition, xVxy(x, y) ≤ 0 in view of (2.6). Thus F ′ ≤ 0,
as desired.

(iv) By (2.5), the partial derivatives of V of odd order vanish at (0, 0)
and hence so do those of ImG, by Cauchy-Riemann equations. This implies
G(2n+1)(0) = 0 and the claim follows. �

Consider the region D = {z ∈ C : |2Rez1/2| ≤ 1}.

Lemma 2.3. The function z 7→ V (2z1/2), z ∈ D, is harmonic.

Proof. First notice that the function is well defined: in view of (2.5) it does
not matter which square root of z we take. The assertion is an immediate
consequence of Lemma 2.2 (iv): the function z 7→ G(2z1/2) is holomorphic
and hence its real part is harmonic. �

Let W : {(w, z) ∈ `2C × `2C : |w + z| ≤ 1} → R be defined by the formula

W (w, z) = V (2(w·z)1/2). The definition makes sense, in view of the following.

Lemma 2.4. For any w, z ∈ `2C we have

2|Re(w · z)1/2| ≤ |w + z| and 2|Im(w · z)1/2| ≤ |w − z|. (2.7)

Proof. It suffices to establish the first estimate; the second follows by the
substitution −z in the place of z. We have

|w + z|2 = (w + z) · (w + z)

= |w|2 + |z|2 + 2 Re(w · z)
≥ 2|w · z|+ 2 Re(w · z)

=
[
(w · z)1/2 + (w · z)1/2

]2
= (2Re(w · z)1/2)2.

The proof is complete. �

Lemma 2.5. For any w, z ∈ `2C such that |w + z| ≤ 1, we have

W (w, z) ≥ Φ(|w − z|/K). (2.8)
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Proof. Fix s ∈ R and consider the function Fs(x) = V (
√
x2 + s, x), defined

for nonnegative x satisfying x2 + s ≥ 0. By Lemma 2.2 (iii), this function is
nonincreasing: this is due to

F ′s(x) =
x√

x2 + s
Vx(
√
x2 + s, x) + Vy(

√
x2 + s, x) ≤ 0.

Next, note that V (x, y) ≥ Φ(y/K) on S: indeed, both sides are equal when
|x| = 1 and we have Vxx ≤ 0 on S (see the proof of Lemma 2.2 (i)). Therefore,
using (2.7),

Φ(|w − z|/K) ≤ V (|w + z|, |w − z|) = F|w+z|2−|w−z|2(|w − z|)

≤ F|w+z|2−|w−z|2(2|Im(w · z)1/2|) = V (2(w · z)1/2),

where the latter follows from the definition of F|w+z|2−|w−z|2 and the identity

(2|Re(w · z)1/2|)2 + |w − z|2 − |w + z|2 = (2|Im(w · z)1/2|)2. �

Proof of (1.3). Let g be a Borel function on T taking values in the unit
ball of `2C and let g+, g− denote the harmonic extensions of P+g − 1

2 ĝ(0)

and P−g + 1
2 ĝ(0) to the unit disc D. By Theorem 2.1, the function W is

pluriharmonic and thus W (g+, g−) is harmonic on D (we need the bound
|g| ≤ 1 to guarantee that |g+ + g−| ≤ 1, so W (g+, g−) is well defined). Apply
the mean-value property and Lemma 2.2 (i) to get

1

2π

∫
T
W
(
g+(ζ), g−(ζ)

)
dζ = W

(
1

2
ĝ(0),

1

2
ĝ(0)

)
= V (|ĝ(0)|, 0) ≤ V (0, 0).

Combine this with (2.8) to obtain the following dual of (1.3):

1

2π

∫
T

Φ(|Hg(ζ)|/K)dζ ≤ V (0, 0) =
1

π

∫ ∞
−∞

Φ
(

2
πK log |s|

)
s2 + 1

ds. (2.9)

Now we are ready to establish (1.3). Take f ∈ L logL, let g be as above and
observe that the function Ψ is the Legendre transform of Φ (that is, Ψ′|R+

is
the inverse to Φ′|R+

). Consequently, by Young’s inequality,∣∣∣∣ 1

2π

∫
T
Hf(ζ) · g(ζ)dζ

∣∣∣∣ =

∣∣∣∣ 1

2π

∫
T
f(ζ) · Hg(ζ)dζ

∣∣∣∣
≤ K

2π

∫
T

Ψ(|f(ζ)|)dζ +
K

2π

∫
T

Φ(|Hg(ζ)|/K)dζ

≤ K

2π

∫
T

Ψ(|f(ζ)|)dζ +
K

π

∫ ∞
−∞

Φ
(

2
πK log |s|

)
s2 + 1

ds,

in view of (2.9). Taking supremum over all g as above gives

||Hf ||1 ≤
K

2π

∫
T

Ψ(|f(ζ)|)dζ +
K

π

∫ ∞
−∞

Φ
(

2
πK log |s|

)
s2 + 1

ds,

which is the claim. �
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3. Sharpness of (1.3) and (2.9)

We shall prove now that for each K > 2/π, the constants

K

π

∫ ∞
−∞

Φ
(

2
πK log |s|

)
s2 + 1

ds and
1

π

∫ ∞
−∞

Φ
(

2
πK log |s|

)
s2 + 1

ds

are optimal in (1.3) and (2.9), respectively, even if f is assumed to be real-
valued. Of course, it suffices to focus on the logarithmic estimate. Consider
the function w : T→ R given by

w(eiφ) =
2

π
log

∣∣∣∣1 + sinφ

cosφ

∣∣∣∣ .
It is easy to check that Hw(eiφ) = 1{|φ|≤π/2}−1{|φ|>π/2} for |φ| ≤ π. Indeed,
consider a conformal mapping F : D → S, given by the formula F (z) =
(2/π) log[(iz− 1)/(z− i)]− i and observe that ReF = w and ImF = Hw on
T. Next, introduce the function u on the unit circle by

u(eiφ) = Φ′
(∣∣∣∣ 2

Kπ
log

∣∣∣∣1 + sinφ

cosφ

∣∣∣∣∣∣∣∣) sgn

(
log

∣∣∣∣1 + sinφ

cosφ

∣∣∣∣) , |φ| ≤ π.

We have

1

2π

∫ π

−π
Ψ(u(eiφ))dφ =

1

2π

∫ π

−π
Ψ

(
Φ′
(∣∣∣∣ 2

Kπ
log

∣∣∣∣1 + sinφ

cosφ

∣∣∣∣∣∣∣∣)) dφ

=
2

π

∫ π/2

0

Ψ

(
Φ′
(

2

Kπ
log

1 + sinφ

cosφ

))
dφ,

which, after substitution t = 2
π log

(
1+sinφ
cosφ

)
, becomes

1

2π

∫ π

−π
Ψ(u(eiφ))dφ =

∫ ∞
0

Ψ(Φ′(t/K))

cosh(πt/2)
dt.

On the other hand, since ||Hw||∞ = 1, we have

||Hu||1 ≥
1

2π

∫ π

−π
Hu(eiφ)Hw(eiφ)dφ =

1

2π

∫ π

−π
u(eiφ)w(eiφ)dφ

=
1

2π

∫ π

−π
Φ′
(∣∣∣∣ 2

Kπ
log

∣∣∣∣1 + sinφ

cosφ

∣∣∣∣∣∣∣∣) ∣∣∣∣ 2π log

∣∣∣∣1 + sinφ

cosφ

∣∣∣∣∣∣∣∣dφ
=

∫ ∞
0

Φ′(t/K)t

cosh(πt/2)
dt.

It suffices to use the identities

Φ′(t)t = Ψ(Φ′(t)) + Φ(t), t ≥ 0,

and

K

∫ ∞
0

Φ(t/K)

cosh(πt/2)
dt =

K

π

∫ ∞
−∞

Φ
(

2
πK log |s|

)
s2 + 1

ds

to complete the proof.
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[3] M. Essén, D. F. Shea and C. S. Stanton, Sharp L logα L inequalities for con-
jugate functions, Ann. Inst. Fourier, Grenoble 52, Vol. 2 (2002), 623–659.

[4] T. W. Gamelin, Uniform Algebras and Jensen Measures, London Math. Soc.
Lecture Notes Series, Vol. 32, Cambridge Univ. Press, Cambridge/New York,
1978.

[5] I. Gohberg and N. Krupnik, Norm of the Hilbert transformation in the Lp
space, Funct. Anal. Pril. 2 (1968), 91–92 [in Russian]; English transl. in Funct.
Anal. Appl. 2 (1968), 180–181.

[6] I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equa-
tions, Vol. I. II. Operator Theory: Advances and Appl. Vols. 53, 54. Birkhäuser,
1992.

[7] B. Hollenbeck and I. E. Verbitsky, Best Constants for the Riesz Projection, J.
Funct. Anal. 175 (2000), 370–392.

[8] B. Hollenbeck and I. E. Verbitsky, Best constant inequalities involving the
analytic and co-analytic projections, Operator Theory: Adv. Appl. vol. 202.
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