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ADAM OSȨKOWSKI

Abstract. Let d = (d0, d1, d2, . . .) be a martingale difference sequence and

θ = (θ0, θ1, θ2, . . .) be a predictable sequence taking values in [0, 1]. In the
paper we study the inequality
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and show that it holds with some universal L(K) <∞ if and only if K > 1/2.

Furthermore, we determine the optimal value of L(K) for K ≥ 1 and the
optimal order of L(K) as K → 1/2. Related estimates for stochastic integrals

are also established.

1. Introduction

Let (Ω,F ,P) be a probability space, which is equipped with a nondecreasing
family (Fn)n≥0 of sub-σ-fields of F . Let d = (dn)n≥0 be an adapted real-valued
martingale difference sequence and suppose θ = (θn)n≥0 is a real-valued predictable
sequence, that is, for any n ≥ 0 the random variable θn is measurable with respect
to F(n−1)∨0. As shown by Burkholder in [3], if θ is bounded in absolute value by
1, then for 1 < p <∞,
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where Cp = max{p−1, (p−1)−1}, and the constant cannot be replaced by a smaller
one. The inequality fails to hold for p = 1, but, as shown by the author in [6], we
have, for K > 1,

(1.2)
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where

L0(K) =

{
K2

2(K−1) exp(−K−1) if 1 < K < 2,

K exp(K−1 − 1) if K ≥ 2.
The constant L0(K) is the best possible in (1.2); furthermore, the inequality fails to
hold for K ≤ 1 (that is, there is no universal L0(K) <∞ for which (1.2) is valid).
The moment inequality (1.1) was studied by Choi under a different, non-symmetric
assumption that the variables θn, n = 0, 1, 2, . . ., take values in [0, 1]: the paper [5]
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contains the equations determining the optimal constants, for 1 < p < ∞. There
is a natural question about the logarithmic estimate (1.2) in the nonsymmetric
setting. Our contribution is stated in the theorem below.

Theorem 1.1. Let d be a martingale difference sequence and θ be a predictable
sequence taking values in [0, 1]. Then for K > 1/2,
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where

(1.4) L(K) =

{
K2(2K − 1)−1 if 1/2 < K < 1,
K exp(K−1 − 1) if K ≥ 1.

The constant L(K) is the best possible if K ≥ 1. Furthermore, it is of the best order
O((K − 1/2)−1) when K → 1/2+. For K ≤ 1/2 there is no L(K) < ∞ for which
(1.3) holds.

In fact, it will be shown that for 1/2 < K < 1, the optimal constant L in (1.3) is
not smaller than K2

2K−1 exp(1−K−1), so we are quite close with our choice of L(K).
Observe that, quite surprisingly, the lack of symmetry in the transforming se-

quence θ enlarges the set ofK’s, for which the logarithmic estimate is valid. Nothing
like that happens for the moment estimate (1.1), which holds only for 1 < p <∞,
both in the symmetric and nonsymmetric setting.

Standard approximation arguments yield a related estimate for stochastic in-
tegrals (see Section 16 in Burkholder [3], where it is presented how the results
of Bichteler [1] can be used to transfer the inequalities from the discrete- to the
continuous-time setting). Suppose that (Ω,F ,P) is complete and filtered by a right-
continuous nondecreasing family (Ft)t∈[0,∞). In addition, assume that F0 contains
all the events of probability 0.

Theorem 1.2. Let X = (Xt) be a real-valued right-continuous martingale with
limits from the left and let H = (Ht) be a predictable process taking values in [0, 1].
Then for any K > 1/2,

E

∣∣∣∣∣H0X0 +
∫

(0,t]

HsdXs

∣∣∣∣∣ ≤ KE|Xt| log |Xt|+ L(K), t ≥ 0,

where L(K) is given by (1.4). The constant is the best possible for K ≥ 1 and of
optimal order for K → 1/2+. For K ≤ 1/2, the inequality does not hold with any
finite L(K).

A few words about the organization of the paper. The inequality (1.3) is estab-
lished in the next section. The final part of the paper is devoted to the optimality
of the constant L(K).

2. The proof of (1.3)

In [3], Burkholder proved that the function u : R× R→ R, given by

u(x, y) =

{
1 + xy if |x| ∨ |y| ≤ 1,
|x+ y| if |x| ∨ |y| > 1,
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satisfies the following condition: if ((Xn, Yn)) is an R2-valued martingale satisfying

(2.1) (Xn+1 −Xn)(Yn+1 − Yn) ≥ 0, n = 0, 1, 2, . . . ,

then, for any n,

(2.2) Eu(X0, Y0) ≤ Eu(X1, Y1) ≤ . . .Eu(Xn, Yn).

Furthermore, as one easily verifies, we have

(2.3) u(x, y) ≥ 1 for all x, y such that xy ≥ 0.

A key role in the paper is played by the following function Us : R× R→ R, where
s > 0 is a fixed parameter. Let

Us(x, y) =
∫ ∞

s

(1− u(x/t, y/t))dt

=

{
−xy/s if |x| ∨ |y| ≤ s,
|x| ∨ |y| − s− xy

|x|∨|y| − |x+ y| log |x|∨|y|s if |x| ∨ |y| > s.

(2.4)

For K > 1/2, let VK : R× R→ R be given by

VK(x, y) = |y| −K|x+ y| log |x+ y| − L(K)

and let αK = max{1,K−1}, s(K) = L(K)/K. We will need the following ma-
jorization property.

Lemma 2.1. For any K > 1/2 and x, y ∈ R, we have

(2.5) Us(K)(x, y) ≥ αKVK(x, y).

Proof. We will show a stronger estimate

F (x, y) := Us(K)(x, y)− αK(|x| ∨ |y| −K|x+ y| log |x+ y| − L(K)) ≥ 0.

We present a detailed proof only in the case 1/2 < K < 1; if K ≥ 1, then the
estimate can be established essentially in the same manner. Since F (x, y) = F (y, x)
and F (x, y) = F (−x,−y) for all x, y, it suffices to prove the majorization on the
set C = {(x, y) : |x| ≤ y}. Note that F is of class C1 in the interior of this set and

(2.6) F (·, y) is convex and Fx(−y+, y) ≤ 0 for all y > 0.

Furthermore, if y ≥ s(K), then

Fx(x, y) = log(x+ y)− log
y

s(K)
, Fy(x, y) = log(x+ y)− log

y

s(K)
− x

y
− 1
K

+ 1,

while for y < s(K),

Fx(x, y) = − y

s(K)
+ 1 + log(x+ y), Fy(x, y) = − x

s(K)
− 1
K

+ 1 + log(x+ y).

Therefore,

(2.7) Fx(x, y) = Fy(x, y) = 0 if and only if x =
K − 1
K

y and y ≥ s(K).

Moreover,

(2.8) F

(
K − 1
K

y, y

)
= 0 for y ≥ s(K).
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The properties (2.6)–(2.8) imply that F (x, y) ≥ 0 for y ≥ s(K). In virtue of (2.6),
it remains to prove that F (y, y) ≥ 0 for y < s(K). Using the estimate t log t ≥ t−1,
t ≥ 0, we may write

F (y, y) ≥ − y2

s(K)
− y

K
+ 2y − 1 +

L(K)
K

,

and the right-hand side is a concave function of y, taking nonnegative values at 0
and s(K). �

Now we proceed to the proof of our main result.

Proof of (1.3). Using standard approximation, we may assume that the sequences
d and θ are simple; that is, for any n, the random variables dn and θn take only
a finite number of values and there is a deterministic N such that dN = dN+1 =
dN+2 = . . . = θN = θN+1 = θN+2 = . . . ≡ 0. This will guarantee the integrability of
all the variables appearing below. Consider the pair (X,Y ) of martingales defined
by

Xn =
n∑

k=0

(1− θk)dk, Yn =
n∑

k=0

θkdk, n = 0, 1, 2, . . . .

This pair satisfies (2.1) for any n; this follows from the assumption θn ∈ [0, 1],
n = 1, 2, . . .. Therefore, applying (2.5), and then using (2.2) and the definition of
Us(K), we obtain, for any n,

αKEVK(Xn, Yn) ≤ EUs(K)(Xn, Yn) ≤ EUs(K)(Xn−1, Yn−1)

≤ . . . ≤ EUs(K)(X0, Y0).
(2.9)

Now, by (2.3) and the definition of Us(K), we see that Us(K)(X0, Y0) ≤ 0; this
implies EVK(Xn, Yn) ≤ 0, which is precisely (1.3). �

3. On the lower bound for the constant L(K)

We will study the cases K ≥ 1, 1/2 < K < 1 and K ≤ 1/2 separately.
The case K ≥ 1. The constant K exp(K−1−1) is the best possible in (1.3). The

equality is attained for d0 ≡ exp(K−1 − 1), d1 = d2 = . . . ≡ 0 and θ = (1, 1, . . .).
The case 1/2 < K < 1. This is more involved. Suppose that the best constant

in (1.3) equals β = β(K). Let S = {(x, y) ∈ R2 : x+ y ≥ 0} and let U0 : S → R be
given by

U0(x, y) = sup{EVK(X∞, Y∞) + L(K)}.
Here the supremum is taken over the class Z(x, y), which consists of all pairs (X,Y )
of S-valued simple zigzag martingales starting from (x, y). Here X∞, Y∞ denote
the almost sure limits limn→∞Xn, limn→∞ Yn (which exist due to the simplicity
assumption) and by the zigzag property we mean that

(3.1) Xn+1 −Xn ≡ 0 or Yn+1 − Yn ≡ 0 for all n ≥ 0.

We have the following fact.

Lemma 3.1. (i) For any y > 0 we have U0(0, y) ≤ β(K).
(ii) We have U0(x, y) <∞ for all (x, y) ∈ S.
(iii) The function U0 is the least biconcave majorant of the function VK +L(K).
(iv) For any (x, y) ∈ S and λ > 0,

(3.2) U0(λx, λy) = λU0(x, y)− λ(x+ y) log λ.
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Proof. (i) Take (X,Y ) ∈ Z(0, y). Then it follows from (3.1) that the martingale Y
is a transform of X +Y by a deterministic (so, in particular, predictable) sequence
taking values in {0, 1}. Therefore

EVK(X∞, Y∞) + L(K) = E|Y∞| −KE|(X + Y )∞| log |(X + Y )∞| ≤ β(K).

It suffices to take supremum over the class Z(0, y).
(ii) Let (x, y) ∈ S and (X,Y ) ∈ Z(x, y). As (2.2) holds, the chain of inequalities

(2.9) is valid; this gives EVK(X∞, Y∞) + L(K) ≤ α−1
K Us(K)(x, y) + L(K) and it

remains to take supremum over Z(x, y).
(iii) This is precisely the first part of Theorem 7.1 in [2].
(iv) We have (X,Y ) ∈ Z(x, y) if and only if (λX, λY ) ∈ Z(λx, λy). Furthermore,

EVK(λX∞, λY∞) + L(K) = λ(EVK(X∞, Y∞) + L(K))− λE(X∞ + Y∞) log λ

≤ λU0(x, y)− λ(x+ y) log λ.

Taking supremum over Z(x, y) we obtain U(λx, λy) ≤ λU(x, y) − λ(x + y) log λ.
Applying it to x := λx, y := λy and λ := λ−1, we obtain the reverse estimate. �

Now we turn to the lower bound for β(K). Let a, δ be fixed positive numbers.
By part (ii) of the lemma above, we may write

U0(a, a) ≥ Kδ

a+Kδ
U0(a− aK−1, a) +

a

a+Kδ
U0(a+ δ, a)

≥ Kδ

a+Kδ

[
a−K(2a− aK−1) log(2a− aK−1)

]
+

a

a+Kδ
U0(a+ δ, a)

(3.3)

(note that since K > 1/2, we have that (a− aK−1, a) belongs to S, the domain of
U0). Similarly, we have

U0(a+ δ, a) ≥ Kδ

a+Kδ
U0(a+ δ, a− aK−1) +

a

a+Kδ
U0(a+ δ, a+ δ)

≥ Kδ

a+Kδ

[
aK−1 − a−K(2a− aK−1 + δ) log(2a− aK−1 + δ)

]
+

a

a+Kδ
U0(a+ δ, a+ δ).

(3.4)

Furthermore, by part (iv), we may write

U0(a+ δ, a+ δ) =
a+ δ

a
U0(a, a)− 2K(a+ δ) log

a+ δ

a
.

Put this into (3.4) and plug the obtained lower bound for U0(a + δ, a) into (3.3).
Then subtract U0(a, a) from both sides, divide throughout by δ and let δ to 0. As
a result, after some manipulations, we get

−a− 2Ka log(2a− aK−1) ≤ U0(a, a).

Thus, by part (ii),

U0(0, a) ≥ KU0(a− aK−1, a) + (1−K)U0(a, a)

≥ K
[
a−K(2a− aK−1) log(2a− aK−1)

]
+ (1−K)[−a− 2Ka log(2a− aK−1)]

= (2K − 1)a−Ka log(2a− aK−1).
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Using part (i) of the lemma above and maximizing the left hand-side over a, we get

(3.5) β(K) ≥ K2

2K − 1
exp(1−K−1).

This completes the proof.
The case K ≤ 1/2. Suppose that there is K ≤ 1/2 for which (1.3) holds with

some L(K) <∞. Take K ′ > 1. Since t log t+ e−1 ≥ 0, we have, for any n,

E
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∣∣∣∣∣ log
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)
−Ke−1 + L(K)

≤ K ′
(

E
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k=0

dk

∣∣∣∣∣ log

∣∣∣∣∣
n∑

k=0

dk

∣∣∣∣∣+ e−1

)
−Ke−1 + L(K)

= K ′E

∣∣∣∣∣
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k=0

dk

∣∣∣∣∣ log

∣∣∣∣∣
n∑

k=0
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∣∣∣∣∣+ (K ′ −K)e−1 + L(K),

a contradiction with (3.5), since (K ′−K)e−1 +L(K) does not tend to ∞ as K ′ →
1/2+.
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