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Abstract. The paper contains the study of sharp weighted logarithmic
estimates for maximal operators on probability spaces equipped with a
tree-like structure. These inequalities can be regarded as LlogL versions
of the classical estimates of Fefferman and Stein. The proof exploits the
existence of a certain special function, enjoying appropriate majorization
and concavity conditions.
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1. Introduction

The dyadic maximal operatorM on Rd is an operator acting by the formula

Mf(x) = sup

{
1

|Q|

∫
Q

|f(u)|du : x ∈ Q, Q ⊂ Rd is a dyadic cube

}
,

where f is a locally integrable function on Rd and the dyadic cubes are those
formed by the grids 2−NZd, N = 0, 1, 2, . . .. This operator plays a prominent
role in analysis and PDEs, and in applications it is often of interest to have
optimal, or at least tight bounds for its norms. For instance, M satisfies the
weak-type (1, 1) inequality

λ
∣∣ {x ∈ Rd :Mf(x) ≥ λ

} ∣∣ ≤ ∫
{Mf≥λ}

|f(x)|dx (1.1)

for any f ∈ L1(Rd) and any λ > 0. This bound is sharp: there is a non-zero f
for which both sides are equal. By a straightforward interpolation argument,
the above fact leads to the related Lp estimate

||Mf ||Lp(Rd) ≤
p

p− 1
||f ||Lp(Rd), 1 < p ≤ ∞, (1.2)
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in which the constant p/(p − 1) is also optimal. These two statements are
absolutely classical, and form a starting point for various extensions and nu-
merous applications. The literature on the subject is extremely large, and
we will only mention here some statements which are closely related to the
subject of this paper. First, both (1.1) and (1.2) hold in the setting of max-
imal operators MT associated with tree-like structure T . To introduce the
necessary background, let (X,µ) be a nonatomic probability space. Two mea-
surable subsets A, B of X are said to be almost disjoint if µ(A ∩B) = 0.

Definition 1.1. A set T of measurable subsets of X will be called a tree if the
following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there is a finite subset C(I) ⊂ T containing at least
two elements such that

(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
I∈T m C(I).

(iv) We have limm→∞ supI∈Tm µ(I) = 0.

Any probability space equipped with a tree gives rise to the correspond-
ing maximal operator MT , given by

MT f(x) = sup

{
1

µ(I)

∫
I

|f(u)|dµ(u) : x ∈ I, I ∈ T
}
.

In the paper, we are interested in weighted logarithmic estimates for
the operatorMT . Here the word “weight” refers to a nonnegative, integrable
function on X. It follows from the works of Fefferman and Stein [1] that there
exists a finite constant C such that

λw
(
{x ∈ X :MT f(x) ≥ λ}

)
≤ C

∫
X

|f(x)|MT w(x)dµ(x), λ > 0,

for all weights w and all f ∈ L1(X,MT w) (here we have used the standard
notation w(E) =

∫
E
wdµ for any measurable subset E of X). By interpola-

tion, for any p ∈ (1,∞) there is a finite Cp such that(∫
X

(MT f(x))pw(x)dµ(x)

)1/p

≤ Cp
(∫

X

|f(x)|pMT w(x)dµ(x)

)1/p

.

The principal goal of this paper is to establish the following sharp LlogL
estimate, which can be regarded as a limiting version of the above Lp bound
as p→ 1.

Theorem 1.2. Let w be a weight on X satisfying
∫
X
MT wdµ <∞. Then for

any K > 0 and any measurable function f : X → R we have∫
X

(MT f)wdµ ≤ K
∫
X

|f | log |f |MT wdµ+ L(K)

∫
X

MT wdµ, (1.3)
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where

L(K) =

∞ if K ≤ 1,
K2

(K − 1)e
if K > 1.

For each K, the constant L(K) is the best possible.

Here by the optimality of L(K) we mean that for any L < L(K) and
any probability space (X,µ) with a tree T , there is a weight w and a function
f for which (1.3) does not hold. Actually, when constructing such counterex-
amples one may restrict oneself to constant weights, i.e., the inequality (1.3)
is already sharp in the unweighted setting. This is closely related to the re-
sults of Gilat [2] on logarithmic bounds for martingales and Hardy-Littlewood
maximal operator on the positive halfline.

The proof of (1.3) will be based on the existence of a certain special
function, enjoying appropriate majorization and concavity properties. This
approach, called the Bellman function technique, has gathered a lot of inter-
est in the recent literature: see e.g. [4], [6], [7], [8], [9], [11] and the references
therein. It is nice that here not only does the Bellman function method es-
tablish a logarithmic bound, but it also yields the optimal constant involved.

We have organized the rest of this paper as follows. In the next section
we introduce the special function corresponding to (1.3). Section 3 contains
the proof of Theorem 1.2.

2. A special function

Throughout this section, let K > 1 be a fixed parameter. We start with
writing down an elementary estimate, which will be used several times in our
further considerations. Namely, one easily verifies that for all x > 0 we have

−Kx log

(
K − 1

K
x

)
≤ L(K). (2.1)

As we have announced in the introductory section, the key role in the
proof of the inequality (1.3) is played by a certain special function. Introduce
B : (0,∞)4 → R by the formula

B(x, y, w, v)

=

{
yw −Kxv log x− L(K)v if y > K

K−1x,

yw + (K − 1)yv −Kxv log
(
K−1
K ey

)
− L(K)v if y ≤ K

K−1x.

One easily checks that the function B is of class C1. Further crucial properties
of this object will be studied in the two lemmas below.

Lemma 2.1. (i) For any x, w > 0 we have

B(x, x, w,w) ≤ 0. (2.2)

(ii) For any (x, y, w, v) ∈ (0,∞)4 we have

B(x, y, w, v) ≥ yw −Kxv log x− L(K)v. (2.3)
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Proof. To establish (2.2), observe that

B(x, x, w,w) = Kxw

(
1− log

(
K − 1

K
ex

))
− L(K)w

= w

[
−Kx log

(
K − 1

K
x

)
− L(K)

]
is nonpositive, due to (2.1). The proof of (2.3) is also simple. Clearly, we may
assume that y ≤ Kx/(K − 1) and then the estimate is equivalent to

(K − 1)y

Kx
≥ log

(
(K − 1)y

Kx

)
+ 1.

This is obviously true, because of the elementary bound 1 + log s ≤ s, valid
for all s > 0. �

We turn our attention to the main property of B. It can be regarded as
a concavity-type condition.

Lemma 2.2. Fix (x, y, w, v) ∈ (0,∞)4 satisfying y ≥ x and v ≥ w. Then for
any h > −x and any k > −w we have the estimate

B
(
x+ h, y ∨ (x+ h), w + k, v ∨ (w + k)

)
≤ B(x, y, w, v) +Bx(x, y, w, v)h+Bw(x, y, w, v)k.

(2.4)

Proof. For the sake of convenience, we have decided to split the reasoning
into three intermediate steps.

Case I. If x+ h ≤ y and w+ k ≤ v, then the inequality is immediate: it
suffices to note that for fixed y and v, the function (x,w) 7→ B(x, y, w, v) is
concave on (0, y] × (0, v]. Hence, in what follows, we assume that x + h > y
or w + k > v.

Case II. Suppose that x + h > y and w + k ≤ v. If y ≤ Kx/(K − 1),
then (2.4) reads

(x+ h)(w + k)+(K − 1)(x+ h)v −K(x+ h)v log

(
K − 1

K
e(x+ h)

)
≤ y(w + k) + (K − 1)yv −K(x+ h)v log

(
K − 1

K
ey

)
,

or, equivalently,

(s− 1)(w + k) + (K − 1)v(s− 1)−Ksv log s ≤ 0,

where s = (x + h)/y ∈ [1,∞). Denoting the left-hand side by F (s), we see
that F (1) = 0 and F ′(s) = w+ k− v−Kv log s ≤ 0. So, F is nonpositive on
[1,∞), which is exactly the claim.

If y > Kx/(K − 1), then the left-hand side of (2.4) does not depend on
y, while the right-hand side increases when y increases. Hence the validity of
(2.4) follows from the analysis of the boundary case y = Kx/(K − 1), just
provided above.



Maximal operator 5

Case III. Assume that x + h > y and w + k ≥ v. If y ≤ Kx/(K − 1),
then (2.4) becomes

(w + k)

[
−K(x+ h) log

(
K − 1

K
(x+ h)

)
− y − L(K)

]
≤ (K − 1)yv −K(x+ h)v log

(
K − 1

K
ey

)
− L(K)v.

By (2.1), the expression in the square brackets above is nonpositive and hence
the left-hand side is a nonincreasing function of k. So, it suffices to establish
the bound for k = v−w; but this boundary case has been already considered
above (Case II).

So, suppose that y > Kx/(K−1). Then, as in Case II, the left-hand side
of (2.4) does not depend on y, while the right-hand side is a nondecreasing
function of y. Hence, (2.4) follows from its validity in the limit case y =
Kx/(K − 1).

Case IV. It remains to consider the possibility x+h ≤ y and w+k > v.
This case will be most elaborate. Fix x, y, w, v, h and consider the function

H(k) = B(x+ h, y, w + k,w + k)

−B(x, y, w, v)−Bx(x, y, w, v)h−Bw(x, y, w, v)k

on [v − w,∞). Our aim is to prove that H is nonpositive. By Case I, we
know that H(v − w) ≤ 0 and hence we will be done if we show that H is
nonincreasing. Assume first that y ≥ K(x+ h)/(K − 1); then we see that

H ′(k) = −K(x+ h) log(x+ h)− L(K)

≤ −K(x+ h) log

(
K − 1

K
(x+ h)

)
− L(K) ≤ 0

(2.5)

(the latter estimate holds by (2.1)) and we are done. If y ≤ K(x+h)/(K−1),
then

H ′(k) = (K − 1)y −K(x+ h) log

(
K − 1

K
ey

)
− L(K).

By the above assumptions, x + h belongs to [(K − 1)y/K, y] and hence it
is enough to check that H ′(k) ≤ 0 for x + h = (K − 1)y/K and x + h = y
separately. The first case has been already verified above: see (2.5). If x+h =
y, then

H ′(k) = −(x+ h)−K(x+ h) log

(
K − 1

K
(x+ h)

)
− L(K)

≤ −K(x+ h) log

(
K − 1

K
(x+ h)

)
− L(K) ≤ 0,

again by (2.1). This finishes the analysis of Case IV and hence completes the
proof of the lemma. �
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3. Proof of Theorem 1.2

3.1. Proof of (1.3)

For the sake of the clarity of the exposition, we have decided to split the
argumentation into a few separate parts.

Step 1. Some reductions. First, it is enough to prove the inequality for
K > 1 only, since for K ≤ 1 it is trivial. Next, note that we may and do
assume that f is nonnegative: the passage from f to |f | does not alter the
right-hand side of (1.3), while the left-hand side can only increase. Now, by a
straightforward continuity argument, we may assume that f and w are strictly
positive. Finally, we may restrict ourselves to those functions, which satisfy∫
X
|f | log |f |MT wdµ <∞; indeed, otherwise there is nothing to prove.

Step 2. Auxiliary sequences. Define four sequences (xn)n≥0, (yn)n≥0,
(wn)n≥0, (vn)n≥0 of measurable functions on X as follows. Given a nonneg-
ative integer n, an element E of T n and a point x ∈ E, set

xn(x) =
1

µ(E)

∫
E

fdµ, wn(x) =
1

µ(E)

∫
E

wdµ

and yn(x) = max0≤k≤n xk(x), vn(x) = max0≤k≤n wk(x). These objects enjoy
the following structural property which will be of crucial importance to the
proof. Let n, E be as above and let E1, E2, . . ., Em be the elements of T n+1

whose union is E. Then we easily check that

1

µ(E)

∫
E

xndµ =

m∑
i=1

µ(Ei)

µ(E)
· 1

µ(Ei)

∫
Ei

xn+1dµ, (3.1)

1

µ(E)

∫
E

wndµ =

m∑
i=1

µ(Ei)

µ(E)
· 1

µ(Ei)

∫
Ei

wn+1dµ (3.2)

and

yn+1(x) = max{yn(x), xn+1(x)}, vn+1(x) = max{vn(x), wn+1(x)}.

The above objects have very nice probabilistic interpretation. For any n ≥ 0,
let Fn be the σ-algebra generated by T n. Then (xn)n≥0 and (wn)n≥0 are
adapted martingales generated by the functions f and w (i.e., xn = E(f |Fn)
and wn = E(w|Fn), n = 0, 1, 2, . . .); furthermore, (yn)n≥0 and (vn)n≥0 are
the maximal functions associated with these martingales.

Step 3. The main argument. The purpose of this part is to show that
the sequence

(∫
X
B(xn, yn, wn, vn)dµ

)
n≥0 is nonincreasing. To accomplish

this, fix an arbitrary integer n ≥ 0, pick E ∈ T and let E1, E2, . . ., Em be
the elements of T n+1 whose union is E. By the very definition, we see that
the functions xn, yn, wn and vn are constant on E; denote the corresponding
values by x, y, w and v, and note that y ≥ x, v ≥ w. Similarly, xn+1 and wn+1

are constant on each of the sets E1, E2, . . ., Em; denote the corresponding
values by x+ h1, x+ h2, . . ., x+ hm and w + k1, w + k2, . . ., w + km. Then
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(3.1) implies that x =
∑m
i=1

µ(Ei)
µ(E) (x+ hi), or

m∑
i=1

µ(Ei)

µ(E)
hi = 0. (3.3)

Similarly, (3.2) implies
m∑
i=1

µ(Ei)

µ(E)
ki = 0. (3.4)

Now, by (2.4) applied to x, y, w, v and hj , kj , we get

B
(
x+ hj , y ∨ (x+ hj), w + kj , v ∨ (w + kj)

)
≤ B(x, y, w, v) +Bx(x, y, w, v)hj +Bw(x, y, w, v)kj .

Multiply both sides by µ(Ej)/µ(E), sum the obtained inequalities over j =
1, 2, . . . , m and apply (3.3), (3.4) to get

m∑
j=1

µ(Ej)

µ(E)
B
(
x+ hj , y ∨ (x+ hj), w + kj , v ∨ (w + kj)

)
≤ B(x, y, w, v).

It is easy to see that this is equivalent to∫
E

B(xn+1, yn+1, wn+1, vn+1)dµ ≤
∫
E

B(xn, yn, wn, vn)dµ,

and summing over all E ∈ T n yields the aforementioned monotonicity of the
sequence

(∫
X
B(xn, yn, wn, vn)dµ

)
n≥0.

Step 4. Completion of the proof. Combining Step 3 with (2.3), we obtain
that for any nonnegative integer n,∫

X

[
ynwn −Kxnvn log xn − L(K)vn

]
dµ ≤

∫
X

B(xn, yn, wn, vn)dµ

≤
∫
X

B(x0, y0, w0, v0)dµ ≤ 0.

Here in the last passage we have used (2.2) and the equalities x0 = y0,
w0 = v0. By Jensen’s inequality and the convexity of the function u 7→ u log u
on [0,∞), we see that for each E ∈ T n,∫

E

xnvn log xndµ ≤
∫
E

fvn log fdµ.

Furthermore, we have
∫
E
ynwndµ =

∫
E
ynwdµ. Thus, the preceding estimate

gives ∫
X

ynwdµ ≤ K
∫
X

f log fvndµ+ L(K)

∫
X

vndµ.

Now we apply a limiting argument. If n → ∞, then yn = max0≤k≤n xk →
supk≥0 xk = MT f and, similarly, vn → MT w almost everywhere with re-
spect to the measure µ. Therefore, by Lebesgue’s dominated convergence
theorem,

∫
X
f log fvndµ →

∫
X
f log fMwdµ (here we use the assumptions∫

X
f log fMwdµ < ∞ and

∫
X
Mwdµ < ∞). In addition, we have that
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∫
X
ynwdµ →

∫
X
Mfwdµ and

∫
X
vndµ →

∫
X
Mwdµ, by Lebesgue’s mono-

tone convergence theorem. This establishes (1.3).

3.2. Sharpness

Let (X,µ) be a given probability space with a tree T and take the constant
weight w ≡ 1. Fix an arbitrary constant K > 1 and a positive parameter δ
(which will eventually be sent to 0). To provide the construction of an appro-
priate function (or rather a functional sequence), we will need the following
lemma, which can be found in [3].

Lemma 3.1. For every I ∈ T and every α ∈ (0, 1) there is a subfamily
F (I) ⊂ T consisting of pairwise almost disjoint subsets of I such that

µ

 ⋃
J∈F (I)

J

 =
∑

J∈F (I)

µ(J) = αµ(I).

First we introduce a certain sequence (An)n≥0 of subsets of X. The
construction is inductive, and in each step we require the corresponding
subset to be a union of pairwise almost disjoint elements of T : for each n,
An =

⋃
I∈Fn

I. First, set A0 = X; since X ∈ T 0, we see that F0 = {X}. Sup-

pose that we have successfully constructed An =
⋃
I∈Fn

I. Pick I ∈ Fn and

apply Lemma 3.1 with α = (1+δ)−1. Let Fn+1 be the union of all the families
F (I) corresponding to all the elements I ∈ Fn, and put An+1 =

⋃
I∈Fn+1

I.

Directly from the definition, we see that µ(An) = (1 + δ)−n, n =
0, 1, 2, . . .. Consider the function

f =
1

e

∞∑
n=0

(
K + δ

K

)n
χAn\An+1

.

Fix a nonnegative integer n and let I ∈ Fn be the “atom” of An. From the
above construction, we have

1

µ(I)

∫
I

fdµ =
1

e

∞∑
m=n

(
K + δ

K

)m
(1 + δ)n−m

δ

1 + δ

=
1

e

(
K + δ

K

)n
δ

1 + δ

(
1− K + δ

K(1 + δ)

)−1
=

K

(K − 1)e

(
K + δ

K

)n
.

This implies MT f ≥ K
(K−1)e

(
K+δ
K

)n
on An and hence

MT f ≥
K

(K − 1)e

∞∑
n=0

(
K + δ

K

)n
χAn\An+1

.

Consequently,∫
X

MT fdµ ≥ K

(K − 1)e

∞∑
n=0

(
K + δ

K

)n
(1 + δ)−n

δ

1 + δ
=

K2

(K − 1)2e
.
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Next, we compute that∫
X

f log fdµ =
1

e

∞∑
n=0

n

(
K + δ

K

)n [
log

(
K + δ

K

)n
− 1

]

=
(K + δ)δ

K(1 + δ)2e
log

(
K + δ

K

) ∞∑
n=0

n

(
K + δ

K(1 + δ)

)n−1
− δ

(1 + δ)e

∞∑
n=0

(
K + δ

K(1 + δ)

)n
=

K(K + δ)

(K − 1)2δe
log

(
K + δ

K

)
− K

(K − 1)e
.

Therefore, if δ → 0, then∫
X

MT fdµ−K
∫
X

f log fdµ→ K2

(K − 1)2e
− K2

(K − 1)2e
+

K2

(K − 1)e
= L(K)

and hence for each K > 1, the constant L(K) is indeed the best possible.
It remains to show that if K ≤ 1, then no finite constant L(K) works

in (1.3). This is straightforward: suppose, on contrary, that there is K ′ ≤ 1
and some L(K ′) <∞ for which (1.3) is satisfied. Since x log x+ e−1 ≥ 0 for
all x ≥ 0, we see that for any K > 1 and any nonnegative f ,∫
X

Mfdµ ≤ K ′
∫
X

f log fMT wdµ+ L(K ′)

∫
X

MT wdµ

= K ′
∫
X

(
f log f + e−1

)
MT wdµ+

(
L(K ′)−K ′e−1

) ∫
X

MT wdµ

≤ K
∫
X

(
f log f + e−1

)
MT wdµ+

(
L(K ′)−K ′e−1

) ∫
X

MT wdµ

= K

∫
X

f log fMT wdµ+
(
L(K ′) + (K −K ′)e−1

) ∫
X

MT wdµ.

Therefore, (1.3) holds with L(K ′)+(K−K ′)e−1 and hence L(K) ≤ L(K ′)+
(K−K ′)e−1. But this is a contradiction: as we already know, L(K) explodes
as K ↘ 1. Consequently, L(K) must be infinite for K ≤ 1. This completes
the proof.
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