
A LOGARITHMIC BOUND FOR A STOPPED BROWNIAN

MOTION

Abstract. We study an estimate which can be regarded as a logarithmic

version of Burkholder-Davis-Gundy inequality. Namely, for any K > 0 we

determine the best constant L(K) ∈ (0,∞] for which the following holds. If B

is a standard Brownian motion and τ is an adapted stopping time, then

E
√
τ ≤ KEΨ(|Bτ |) + L(K),

where Ψ(x) = (x + 1) log(x + 1) − x. Using standard embedding theorems,

we obtain a related logarithmic bound involving a continuous-path martingale

and its square bracket.

1. Introduction

Let (Ω,F ,P) be a complete probability space, equipped with a filtration (Ft)t≥0

such that F0 contains all the events of measure 0. Let B = (Bt)t≥0 be an adapted

standard one-dimensional Brownian motion. Celebrated inequalities of Burkholder,

Davis and Gundy state that for any p ∈ (0,∞) there are finite universal constants

cp, Cp such that

(1.1) cp||τ1/2||p ≤
∣∣∣∣∣∣∣∣ sup
0≤t≤τ

|Bt|
∣∣∣∣∣∣∣∣
p

≤ Cp||τ1/2||p

for any adapted stopping time τ . These inequalities are of fundamental importance

to the theory of stochastic integration and have numerous applications and exten-

sions. Very little is known about the optimal values of the constants cp and Cp;

to the best of the author’s knowledge, the only result in this direction is that for

p = 2, the optimal choices for cp and Cp are 1 and 2, respectively.
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2 STOPPED BROWNIAN MOTION

Consider the version of (1.1) in which the term sup0≤t≤τ |Bt| is replaced by |Bτ |.

Then there are finite absolute constants ap and Ap for which

(1.2) ap||τ1/2||p ≤ ||Bτ ||p, if 1 < p <∞ and ||τ1/2||p <∞,

and

(1.3) ||Bτ ||p ≤ Ap||τ1/2||p, if 0 < p <∞.

These estimates follow immediately from (1.1) and Doob’s maximal inequality for

martingales [4]. In contrast with (1.1), the optimal values of the constants ap and

Ap are known (cf. Davis [3]). For p = 2n, n a positive integer, they are respectively

the smallest and the largest positive zeros of the Hermite polynomial of order 2n.

(For p = 4, this has been proved by Novikov [11]). For the remaining values of p,

the description is a little more complicated. Let νp be the smallest positive zero of

the confluent hypergeometric function and let µp be the largest positive zero of the

parabolic cylinder function of parameter p (see Abramovitz and Stegun [1]). Then

the best value of ap is µp when 1 < p < 2 and νp for 2 ≤ p < ∞; in addition, the

best choice for Ap is νp when 0 < p < 2 and µp for 2 ≤ p <∞.

The above results have been extended in many directions and the literature on

this subject is very extensive. We only mention here the works [5], [6], [7], [8], [9],

[10] and [14]. We also refer the reader to the monograph [12] for an overview of the

inequalities which can be obtained with the use of the optimal stopping techniques.

There is a natural question about the limit case p = 1 in (1.2). The constant

ap goes to 0 as p approaches 1, so the moment inequality fails to hold for general

stopping times τ . However, combining (1.1) with the well-known logarithmic esti-

mate for the maximal function (see e.g. [4]) yields the existence of finite constants

K and L such that

(1.4) E
√
τ ≤ KE|Bτ | log+ |Bτ |+ L,
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whenever τ is an adapted stopping time satisfying τ ∈ Lp/2 for some p > 1. We

will be interested in providing the sharp version of this estimate. The following two

natural questions arise:

(I) For which K > 0 there is a finite L = L(K) for which (1.4) holds?

(II) If K is as in (I), what is the optimal choice for L(K)?

Actually, we will study a slightly different form of (1.4), in which the term

|Bτ | log+ |Bτ | is replaced by Ψ(|Bτ |). Here Ψ : [0,∞)→ [0,∞) is a Young function

given by the formula Ψ(x) = (x + 1) log(x + 1) − x. This choice of “LlogL” term

has some advantages over the classical function x 7→ x log+ x. First, we have that

Ψ(x)− x log x→ −∞ as x→∞, so, in a sense,

(1.5) E
√
τ ≤ KEΨ(|Bτ |) + L(K)

is more tight than (1.4). Actually, for any α < 1 there is β > 0 such that Ψ(x) ≥

αx log+ x − β for all x; this implies that the answer to (I) is the same, no matter

which function we choose. Secondly, and most importantly, Ψ is smooth and strictly

increasing. This allowed us to overcome all the technical difficulties and obtain

relatively compact formulas.

From now on, we focus on (1.5) and our purpose is to give the full answers to

both questions above. The problem (I) has a very simple solution: the finite L

exists if and only if K >
√

2/π. However, the answer to (II) turns out to be more

complicated; the description of the optimal value of L(K) involves an auxiliary

parameter, and we postpone it to the Section 3 below.

Our approach rests on solving an optimal stopping problem closely related to

(1.5). This will be presented and explained in detail in the next two sections.

Let us conclude this section by giving an application of the above result. By

the embedding theorem of Dambis, Dubins and Schwarz (see [2], [6]; [13] is also a

convenient reference), the inequality (1.5) implies the following sharp inequality:

(1.6) E
√
〈X,X〉∞ ≤ KEΨ(|X∞|) + L(K), K >

√
2/π.
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Here X = (Xt)t≥0 is an arbitrary continuous-path local martingale starting from

0 whose quadratic covariance process 〈X,X〉 satisfies the integrability condition

〈X,X〉∞ ∈ Lp/2 for some p > 1. This inequality can be further applied to obtain,

for example, interesting sharp bounds for Bessel processes, stochastic integrals and

stopped geometric Brownian motion. We omit the details and leave them to the

interested reader.

2. An optimal stopping problem

Clearly, the questions posed in the previous section lead to the following optimal

stopping problem:

(2.1) U = sup
τ

EG(Bτ , τ),

where the gain function G is given by G(x, t) =
√
t−KΨ(|x|) for (x, t) ∈ R× [0,∞).

Here the supremum is taken over all stopping times τ of B such that τ belongs to

Lp/2 for some p > 1. In order to treat the problem successfully (i.e., enable the use

of Markovian arguments), we extend it so that the process ((Bt, t))t≥0 can start at

the arbitrary points of R×[0,∞). This is straightforward: for any (x, t) ∈ R×[0,∞)

define the underlying value function by

(2.2) U(x, t) = sup
τ

EG(x+Bτ , t+ τ),

where the supremum is taken over the same class of stopping times as previously.

Of course, as soon as we manage to find the value function U , we are done: the

optimal constant L(K) in (1.5) equals U(0, 0).

To solve the optimal stopping problem (2.2), we use an approach which has

proved to be very efficient in this type of settings. The procedure consists of two

parts. The first step, presented in this section, exploits more or less heuristic a

priori considerations concerning the structure of U and yields a candidate U0 for

the value function. The second step of the analysis, which is the contents of Section

3, is the rigorous verification that both functions U and U0 coincide on R× [0,∞).
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We start with introducing the continuation set

C = {(x, t) ∈ R× [0,∞) : U(x, t) > G(x, t)}

and the stopping set

D = {(x, t) ∈ R× [0,∞) : U(x, t) = G(x, t)}.

Clearly, all we need is to identify C and the restriction of U to this set. The lemma

below provides the initial insight into the shape of the continuation region.

Lemma 2.1. If (x, t) ∈ C and s < t, then (x, s) ∈ C.

Proof. Since (x, t) ∈ C, there is a stopping time τ belonging to Lp/2 for some p > 1,

such that EG(x+Bτ , t+ τ) > G(x, t), i.e.,

E
(√
t+ τ −KΨ(|x+Bτ |)

)
>
√
t−KΨ(|x|).

On the other hand, for any fixed s ≥ 0, the function r 7→
√
r + s −

√
r is nonin-

creasing, which combined with the previous bound gives

E
(√
s+ τ −KΨ(|x+Bτ |)

)
≥ E

(√
t+ τ −KΨ(|x+Bτ |)

)
+
√
s−
√
t

>
√
s−KΨ(|x|).

Consequently, we get EG(x+Bτ , s+ τ) > G(x, s) and hence (x, s) ∈ C. �

In the next lemma we establish the key two properties of the function U .

Lemma 2.2. (i) The function U enjoys the symmetry condition

(2.3) U(x, t) = U(−x, t) for all x ∈ R and t ≥ 0.

(ii) If (0, s) ∈ D, then the function U satisfies the homogeneity property

(2.4) U(λ(x+ 1)− 1, λ2t) = λU(x, t)−Kλ(x+ 1) log λ+K(λ− 1)

for all x ≥ 0, t ≥ s and all λ such that λ(x+ 1)− 1 ≥ 0 and λ2t ≥ s.
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Proof. (i) This follows at once from the analogous symmetry of G and the fact that

the process (−Bt)t≥0 is also a Brownian motion.

(ii) We start from observing that by Lemma 2.1, the whole halfline {0}×[s,∞) is

contained in the stopping set D. Consequently, by the strong Markov property, in

the derivation of U(λ(x+ 1)−1, λ2t) and U(x, t) we may restrict ourselves to those

τ , for which the processes (λ(x+ 1)− 1 +Bτ∧u)u≥0 (respectively, (x+Bτ∧u)u≥0)

are nonnegative. Pick such a stopping time. We apply Brownian scaling and note

that τ̃ = τ/λ2 is a stopping time for the Brownian motion (B̃t)t≥0 = (λ−1Bλ2t)t≥0.

Now, rewrite the definition of U(λ(x+ 1)− 1, λ2t) in the form

sup
τ

E
{
λ
√
t+ τ/λ2 −Kλ

(
x+ 1 + λ−1Bλ2(τ/λ2)

)
log
[
λ
(
x+ 1 + λ−1Bλ2(τ/λ2)

)]
+Kλ

(
x+ 1 + λ−1Bλ2(τ/λ2)

)
−K

}
= λ sup

τ̃
E
{√

t+ τ̃ −KΨ(x+ B̃τ̃ )−K(x+ 1 + B̃τ̃ ) log λ
}

+K(λ− 1).

Since τ ∈ Lp for some p > 1, we have E(x+ 1 + B̃τ̃ ) = x+ 1 and (2.4) follows. �

The above lemma gives the following information on the stopping region D.

Lemma 2.3. Suppose that the set {t : (0, t) ∈ D} is nonempty and let t0 denote

its infimum. Then

(2.5)
{

(x, t) :
√
t ≥
√
t0(|x|+ 1)

}
⊆ D.

Proof. First, note that D is symmetric with respect to t-axis; this follows immedi-

ately from (2.3). Therefore, we will be done if we show that

{(x, t) ∈ [0,∞)2 :
√
t ≥
√
t0(x+ 1)} ⊂ D.

By Lemma 2.1, we see that the whole halfline {0} × (t0,∞) is contained inside D.

Actually, we will show that (0, t0) also belongs to D. To do this, take an arbitrary

stopping time τ belonging to Lp/2 for some p > 1. By Lebesgue’s dominated
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convergence theorem, we have E
√
t0 + n−1 + τ → E

√
t0 + τ as n→∞ and hence

lim inf
n→∞

U(0, t0 + n−1) ≥ EG(Bτ , t0 + τ).

Taking the supremum over all τ as above gives

U(0, t0) ≤ lim inf
n→∞

U(0, t0 + n−1) = lim inf
n→∞

G(0, t0 + n−1) = G(0, t0),

so U(0, t0) = G(0, t0) and (0, t0) ∈ D, as claimed. Now, pick arbitrary nonnegative

y, s satisfying
√
s ≥
√
t0(y + 1) and apply the identity (2.4) to x = 0, λ = y + 1

and t = λ−2s. The application is allowed, since λ ≥ 1, t ≥ λ−2(y + 1)2t0 = t0 and

λ2t ≥ λ2t0 ≥ t0. We obtain

U(y, s) = λU(0, t)−K(y + 1) log(y + 1) +Ky = G(y, s)

so (y, s) ∈ D. This proves the claim. �

The remaining part of the analysis rests on the additional three assumptions.

First, we impose the condition that U is a continuous function on its whole domain.

The second requirement is that we have equality in (2.5); that is, the continuation

and stopping regions are given by

C = {(x, t) :
√
t <
√
t0(|x|+ 1)}, D = {(x, t) :

√
t ≥
√
t0(|x|+ 1)}.

From the general theory of optimal stopping for the Markov processes (see Chapter

I in [12]) we infer that the stopping time which gives equality in (2.2), is defined by

τD = inf{s ≥ 0 : (x+Bs, t+ s) ∈ D}.

Thus, standard arguments based on the strong Markov property and classical results

on PDEs show that U is of class C2,1 on C and satisfies the heat equation

(2.6) Ut +
1

2
Uxx = 0 on C.
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The final condition we impose concerns the principle of smooth-fit. Namely, we

assume that

(2.7) Ux(x+, t) = Gx(x+, t) for x ≥ 0 and
√
t =
√
t0(x+ 1).

Exploiting the above properties, we will identify the explicit formula for the candi-

date for U . If t ≥ t0 and
√
t <
√
t0(|x|+ 1), then, by (2.4), we have

U(x, t) =

√
t

t0
γ

(√
t0
t

(|x|+ 1)

)
+
K(|x|+ 1)

2
log

t0
t
−K,

where γ(x) = U(x− 1, t0) +K for x ≥ 1. Applying (2.6), we check that γ satisfies

the differential equation

(2.8) t0γ
′′(s)− sγ′(s) + γ(s) = Ks for s > 1.

It is not difficult to find the full class of solutions. It is given by

γ(s) = −Ks log s−K
√

2πs

∫ s

1

√
t0
u2

exp

(
u2

2t0

)
Φ

(
− u√

t0

)
du

+ αs

∫ s

1

exp

(
u2

2t0

)
du

u2
+ βs,

where α, β are arbitrary real parameters and

Φ(t) =
1√
2π

∫ t

−∞
exp(−u2/2)du

denotes the distribution function of the standard normal variable. To determine α

and β which correspond to the function we search for, observe first that α cannot

be negative. Indeed, otherwise the inequality U(x, t0) ≥ G(x, t0) would not be

satisfied for large |x|. Similarly, α cannot be positive. To show this, note that

for any x > 0 and any stopping time τ satisfying the usual integrability we have
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√
t0 + τ ≤

√
t0(x+ 1)2 + τ and thus

EG(x+Bτ , t0 + τ) ≤ EG(x+Bτ , t0(x+ 1)2 + τ)

≤ U(x, t0(x+ 1)2)

= G(x, t0(x+ 1)2)

= (x+ 1)
√
t0 −KΨ(x) ≤ (x+ 1)

√
t0.

However, if α were larger than 0, this inequality would be violated for large x (the

integral
∫ s
1

exp(u2/(2t0))u−2du grows very fast for big s). Hence, we must have

α = 0. To determine β, we note that

√
t0 = G(0, t0) = U(0, t0) = γ(1)−K,

which implies β = K +
√
t0. Thus, we have obtained that

(2.9) γ(s) = (K +
√
t0)s−Ks log s−K

√
2πs

∫ s

1

√
t0
u2

exp

(
u2

2t0

)
Φ

(
− u√

t0

)
du.

The next observation we make here concerns the value of the parameter t0. It

follows from the smooth-fit property (2.7) that γ′(1+) = 0; a direct differentiation

in (2.9) shows that this is equivalent to

(2.10) K =
exp(−(2t0)−1)√
2πΦ(−t0−1/2)

.

We will show that such a t0 > 0 exists if and only if K ∈ (
√

2/π,∞). This is

related to the fact that (1.5) holds with some finite L if and only if K belongs to

this interval. We postpone the proofs of both these facts to the next section and

continue with the construction of the candidate for U . So, assume that there is t0

satisfying (2.10). It remains to define it on the set R×[0, t0). This is straightforward:

since this set is entirely contained in C, Itô’s formula combined with (2.6) implies
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that U is given by

U(x, t) = EU(x+Bt0−t, t0)

= Eγ(x+Bt0−t + 1) =
1√
2π

∫
R
γ
(
x+ y

√
1− t+ 1

)
e−y

2/2dy.
(2.11)

Summarizing, we have obtained the following candidate U0 : R× [0,∞)→ R for

the value function:

U0(x, t) =



√
t−KΨ(|x|) if

√
t/t0 ≥ |x|+ 1,√

t
t0
γ
(√

t0
t (|x|+ 1)

)
+ K(|x|+1)

2 log t0
t −K if 1 ≤

√
t/t0 < |x|+ 1,

1√
2π

∫
R γ
(
x+ y

√
t0 − t+ 1

)
e−y

2/2dy if 0 < t < t0,

where γ is given by (2.9).

3. Verification

Now we will provide the full answer to the questions (I) and (II) formulated in

the introductory section, by showing that U0 is indeed the value function of the

optimal stopping problem (2.2). We start with the following auxiliary fact.

Lemma 3.1. For any K >
√

2/π there is a unique t0 > 0 satisfying (2.10).

Furthermore, we have K
√
t0 > 1.

Proof. Consider the function

F (s) =
exp(−s2/2)√

2πΦ(−s)
, s ≥ 0.

We have F (0) =
√

2/π and lims→∞ F (s) =∞, so the existence and the uniqueness

of t0 will follow when we show that F is strictly increasing. To do this, it suffices

to note that for all s > 0,

(3.1)
1√
2π

exp(−s2/2)− sΦ(−s) =

∫ ∞
s

Φ(−u)du > 0
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and, in consequence,

F ′(s) =
exp(−s2/2)√

2πΦ(−s)2

[
1√
2π

exp(−s2/2)− sΦ(−s)
]
> 0.

It remains to note that the inequality K
√
t0 > 1 follows directly from (3.1) (divide

throughout by sΦ(−s) and substitute s = 1/
√
t0). �

The next step in the analysis is the following majorization.

Lemma 3.2. We have U0(x, t) ≥ G(x, t) for all x ∈ R and t ≥ 0.

Proof. By symmetry, it suffices to prove the assertion for x ≥ 0. If
√
t ≥
√
t0(x+1),

then we have the equality. If
√
t0 ≤

√
t ≤
√
t0(x+ 1), then the majorization can be

rewritten in the form

F (s) :=
γ(s)

s
−
√
t0
s

+K log s−K ≥ 0,

where s =
√
t0/t(x+ 1) ∈ [1,∞). We have F (1) = 0 and

F ′(s) =

√
t0
s2

√
2π exp

(
s2

2t0

)
Φ

(
− s√

t0

)[
exp

(
−s2/(2t0)

)
√

2πΦ
(
−s/
√
t0
) −K] .

Thus, F ′(1+) = 0 in view of the definition of t0; furthermore, by the reasoning

presented in the proof of Lemma 3.1, the expression in the square brackets is a

nondecreasing function of s. This implies F ′(s) ≥ 0 for all s > 1 and hence F is

nonnegative.

Finally, we will show the majorization for t < t0. In the light of what we have

just proved, it suffices to establish the bound

U0(x, t)−G(x, t) ≥ U0(x, t0)−G(x, t0),

or, equivalently,
√
t0 −

√
t ≥ U0(x, t0)− U0(x, t).
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However, by Itô’s formula,

U0(x, t0)− U0(x, t) = E [U0(x, t0)− U0(x+Bt0−t, t0)]

= −1

2

∫ t0−t

0

Eγ′′(|x+Bs|+ 1)ds.

(3.2)

We derive that

(3.3) −γ′′(s) = K

√
2π

t0
exp

(
s2

2t0

)
Φ

(
− s√

t0

)
,

and the right-hand side is strictly decreasing, in view of the proof of the previous

lemma. Consequently, we have

−γ′′(|x+Bs|+ 1) ≤ K
√

2π

t0
exp

(
1

2t0

)
Φ

(
− 1√

t0

)
=

1√
t0
,

where the latter equality is just (2.10). Plugging this into (3.2) gives

U0(x, t0)− U0(x, t) ≤ 1

2

∫ t0−t

0

1√
t0

ds = (
√
t0 −

√
t)

√
t0 +

√
t

2
√
t0

≤
√
t0 −

√
t,

and we are done. �

Theorem 3.3. If K >
√

2/π, then the functions U and U0 coincide.

We split the reasoning into two parts: first we establish the inequality U ≥ U0,

and then show the reverse bound.

Proof of the inequality U ≤ U0. The idea is to apply Itô’s formula (or rather its

extension) to the function U0, and exploit the majorization of Lemma 3.2. Formally,

there is a problem with sufficient regularity of U0 (it is not of class C2). However,

the function is of class C1 on its domain and of class C2 outside the curves {(x, t) :

t = t0} and C = {(x, t) :
√
t/t0 = |x|+ 1}. Thus, by the change-of-variable formula
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with local time on curves (see Section 3 in [12]), we obtain, for any s > 0,

U0(x+Bτ∧s, t+ (τ ∧ s))

= U0(x, t) +

∫ τ∧s

0+

(
U0t(x+Bu, t+ u) +

1

2
U0xx(x+Bu, t+ u)

)
1{(x+Bu,t+u)/∈C}du

+

∫ τ∧s

0+

U0x(x+Bu, t+ u)dBu

almost surely. By the construction, the function U0 satisfies U0t(x, t)+
1
2U0xx(x, t) =

0 for
√
t <
√
t0(|x|+ 1). On the other hand, if

√
t >
√
t0(|x|+ 1), then

U0t(x, t) +
1

2
U0xx(x, t) =

1

2
√
t
− K

2(|x|+ 1)
≤ 1−K

√
t0

2(|x|+ 1)
√
t0
< 0,

where the latter bound follows from the second part of Lemma 3.1. Therefore, by

the preceding formula, we get

U0(x+Bτ∧s, t+ (τ ∧ s)) ≤ U0(x, t) +

∫ τ∧s

0+

U0x(x+Bu, t+ u) dBu

with probability 1. The integral on the right defines a local martingale; thus,

replacing s with s ∧ σn (where (σn)n≥1 is an appropriate localizing sequence), we

may assume that the expectation of the integral is zero. Consequently, we obtain

EU0(x+Bτ∧σn∧s, t+ (τ ∧ σn ∧ s)) ≤ U0(x, t).

However, τ ∈ Lp/2 for some p > 1; thus, by Burkholder-Davis-Gundy inequality,

we have sup0≤s≤τ |Bs| ∈ Lp and therefore, letting n→∞ and then s→∞, we get

EU0(x+Bτ , t+ τ) ≤ U0(x, t),

by Lebesgue’s dominated convergence theorem. Since U0 ≥ G, taking the supre-

mum over all τ gives the desired bound U(x, t) ≤ U0(x, t) (but only for t > 0 - we

have assumed this at the beginning). To show this inequality for t = 0, we simply

note that U(x, 0) ≤ U(x, s) ≤ U0(x, s) for any s > 0, and let s ↓ 0. �
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Proof of U ≥ U0. This is simple: for any (x, t) we must exhibit a stopping time

τ belonging to Lp/2 for some p > 1, such that EG(x + Bτ , t + τ) ≥ U0(x, t). If
√
t ≥
√
t0(|x| + 1), then we take τ ≡ 0. Suppose then that

√
t <
√
t0(|x| + 1) and

consider the stopping time

τ = inf{s ≥ 0 :
√
t+ s =

√
t0(|x+Bs|+ 1)}.

It follows immediately from the results of Davis [3] and Novikov [11] that τ is p/2-

integrable for some p > 1. Precisely, τ ∈ Lp/2 if and only if
√
t0 < µ−1p , where

µp is the largest positive zero of parabolic cylinder function of parameter p (cf.

[1]). However, the process (x+Bτ∧s, t+ (τ ∧ s))s≥0 moves along the continuation

set (in which U0 is of class C2 and satisfies the heat equation) and terminates at

the common boundary of C and D (on which U0 and G coincide). This, by Itô’s

formula, implies

EG(x+Bτ , t+ τ) = EU0(x+Bτ , t+ τ) = U0(x, τ).

The proof is complete. �

We are ready to establish the main result of this paper.

Theorem 3.4. (i) If K >
√

2/π, then the best constant in (1.5) equals

L(K) =
2K
√
t0√

2π
− 2K

√
2π

∫ ∞
0

exp

(
1

2

(
x+

1√
t0

)2
)

Φ

(
−x− 1√

t0

)
Φ(−x)dx.

(ii) If K ≤
√

2/π, then the inequality (1.5) does not hold in general with any

finite constant L(K).

Proof. (i) From the preceding considerations, we have that L(K) = U(0, 0). Plug-

ging x = t = 0 into (3.2) and using the formula (3.3) for γ′′, we obtain that

U(0, 0) = U(0, t0)− K

2

√
2π√
t0

∫ t0

0

E exp

(
(|Bs|+ 1)2

2t0

)
Φ

(
−|x+Bs|+ 1√

t0

)
ds.
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Computing the expectation and integrating by parts, we obtain

(3.4) U(0, 0) =
√
t0 + J1 + J2 + J3,

where

J1 = −2K

∫ ∞
0

exp

(
2x+ 1

2t0

)
Φ

(
−x+ 1√

t0

)
dx,

J2 =
2K
√

2π√
t0

∫ ∞
0

(x+ 1) exp

(
(x+ 1)2

2t0

)
Φ

(
−x+ 1√

t0

)
Φ

(
− x√

t0

)
dx,

J3 = −2K
√

2π√
t0

∫ ∞
0

exp

(
(x+ 1)2

2t0

)
Φ

(
−x+ 1√

t0

)
Φ

(
− x√

t0

)
dx.

Integrating by parts again, we get that

J2 = −
√
t0 − J1 + 2K

∫ ∞
0

Φ

(
− x√

t0

)
dx = −

√
t0 − J1 +

2K
√
t0√

2π
.

Plugging this into (3.4), and substituting x := x
√
t0 in the integral in J3, we obtain

U(0, 0) =
2K
√
t0√

2π
− 2K

√
2π

∫ ∞
0

exp

(
1

2

(
x+

1√
t0

)2
)

Φ

(
−x− 1√

t0

)
Φ(−x)dx.

This is precisely the claim.

(ii) If the inequality (1.5) were true with some K ≤
√

2/π and L′ < ∞, then

it would automatically hold for an arbitrary K >
√

2/π and this particular L′.

However, when K ↓
√

2/π, then the parameter t0 coming from (2.10) converges to

infinity and L(K) explodes. Thus we have L(K) > L′ for K sufficiently close to√
2/π, a contradiction. The proof is complete. �
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