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Abstract. Let d be a given positive integer and let {Rj}dj=1 denote the col-

lection of Riesz transforms on Rd. For any K > 2/π we determine the optimal
constant L such that the following holds. For any locally integrable Borel

function f on Rd, any Borel subset A of Rd and any j = 1, 2, . . . , d we have∫
A
|Rjf(x)| dx ≤ K

∫
Rd

Ψ(|f(x)|) dx+ |A| · L.

Here Ψ(t) = (t+ 1) log(t+ 1)− t for t ≥ 0. The proof is based on probabilis-

tic techniques and the existence of certain special harmonic functions. As a

by-product, we obtain related sharp estimates for the so-called re-expansion
operator, an important object in some problems of mathematical physics.

1. Introduction

One of the most basic examples of Calderón-Zygmund singular integrals in Rd
is the collection of Riesz transforms [20]:

Rjf(x) =
Γ
(
d+1

2

)
π(d+1)/2

∫
Rd

xj − yj
|x− y|d+1

f(y)dy, j = 1, 2, . . . , d,

where the integrals are supposed to exist in the sense of Cauchy principal values.
In the particular case d = 1, the family consists of only one element, the Hilbert
transform H on R. Alternatively, Rj can be defined as the Fourier multiplier with
the symbol −iξj/|ξ|, ξ ∈ Rd \ {0}; that is, we have the following relation between
the Fourier transforms of f and Rjf :

(1.1) R̂jf(ξ) = −i ξj
|ξ|
f̂(ξ), for ξ ∈ Rd \ {0}.

It has been long of interest to study various norms of these operators. The classical
result of M. Riesz [19] states that H is a bounded operator on Lp(R) if and only
if 1 < p < ∞. Gokhberg and Krupnik [7] derived the precise value of the norm
||H||Lp(R)→Lp(R) for p = 2k, k = 1, 2, . . ., and Pichorides [18] determined the norms
for the remaining p: we have

(1.2) ||H||Lp(R)→Lp(R) = Cp :=

 tan
(
π
2p

)
if 1 < p ≤ 2,

cot
(
π
2p

)
if p ≥ 2.

Using the so-called method of rotations, Iwaniec and Martin [14] extended this
result to the d-dimensional setting: they proved that for 1 < p < ∞ and any
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function f ∈ Lp(Rd),
(1.3) ||Rjf ||Lp(Rd) ≤ Cp||f ||Lp(Rd), j = 1, 2, . . . , d,

and the constant Cp cannot be decreased. In other words, they showed that the
norms ||Rj ||Lp(Rd)→Lp(Rd) and ||H||Lp(R)→Lp(R) coincide. An alternative, probabilis-
tic proof of the estimate (1.3), based on a sharp estimate for orthogonal martingales,
was given by Bañuelos and Wang in [1].

Our motivation comes from the question about the limit case p = 1. Riesz
transforms are not bounded on L1, but there are several important substitutes for
(1.3). Kolmogorov [16] proved the weak-type (1, 1) estimate

|{x ∈ R : |Hf(x)| ≥ 1}| ≤ c1||f ||L1(R)

for some universal constant c1 < ∞. The optimal value of c1 was found by Davis
[5] to be equal to

1 + 1
32 + 1

52 + 1
72 + . . .

1− 1
32 + 1

52 − 1
72 + . . .

' 1.34 . . . .

This result was further extended by Janakiraman [15], who established the weak-
type (p, p) bound

|{x ∈ R : |Hf(x)| ≥ 1}| ≤

(
1

π

∫ ∞
−∞

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt

)−1/p

||f ||pLp(R), 1 ≤ p ≤ 2,

and proved that the constant is the best possible. The question about the sharp
version of this result in the range p > 2 seems to be open, to the best of the author’s
knowledge. Another open problem concerns the analogues of the above estimates
for Riesz transforms.

The purpose of this paper is to study a certain logarithmic inequality, which can
be regarded as another natural extension of (1.3) to the case p = 1. Throughout
the paper, the Young functions Φ, Ψ : R+ → R+ are given by

Φ(t) = et − 1− t and Ψ(t) = (t+ 1) log(t+ 1)− t.
For any K > 2/π, define

(1.4) L(K) =
K

π

∫
R

Φ
(∣∣ 2
πK log |t|

∣∣)
t2 + 1

dt.

The following statement is one of our main results.

Theorem 1.1. Let d be a positive integer and let K > 2/π. Then for any Borel
function f on Rd and any Borel subset A of Rd we have

(1.5)

∫
A

|Rjf(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+ |A| · L(K), j = 1, 2, . . . , d.

For each K the constant L(K) is the best possible.

It is easy to see that L(K) tends to infinity as K decreases to 2/π and hence
the logarithmic estimate does not hold with any finite L(K) when K ≤ 2/π. A
few remarks concerning the form of (1.5) are in order. First, we cannot replace the
function Ψ by the more familiar function x 7→ |x| log |x| or x 7→ |x| log+ |x|. Indeed,
if (1.5) held after such a modification, we would apply it to a function bounded by 1
and obtain that Rj sends bounded functions to bounded functions, a contradiction.
The next observation is that we are not allowed to replace the integral on the right
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of (1.5) by its local version
∫
A

Ψ(|f(x)|) dx. This can be seen, for example, by

taking A = [0, 1]d, f = 1[1,2]×[0,1]d−1 and using the fact that Rjf is unbounded on

[0, 1]d. These two observations explain why we have chosen the form (1.5) for the
investigation.

A few words about the proof and the organization of the paper. Our approach
will exploit the probabilistic techniques of Bañuelos and Wang [1]: the key role in
the proof will be played by a certain appropriate martingale inequality. However,
it should be stressed here that the arguments from [1] do not lead directly to the
inequality (1.5), due to its local form. To overcome this difficulty, we shall first
establish a certain exponential estimate, which can be regarded as a dual version
of (1.5). The corresponding exponential inequality for martingales is established in
the next section, and in Section 3 we apply the duality arguments to prove (1.5).
Then, in Section 4, we deal with the optimality of the constant L(K). In the final
part of the paper we apply the results to the study of the so-called re-expansion
operator, an object arising in the problems of mathematical physics.

2. A martingale inequality

As mentioned in the Introduction, the results of this paper depend heavily on
an appropriate martingale inequality. Let us start with introducing the necessary
probabilistic background and notation. Assume that (Ω,F ,P) is a complete prob-
ability space, equipped with (Ft)t≥0, a nondecreasing family of sub-σ-fields of F ,
such that F0 contains all the events of probability 0. Let X, Y be two adapted
real-valued martingales with right-continuous trajectories that have limits from the
left. The symbol [X,Y ] will stand for the quadratic covariance process of X and Y ,
see e.g. Dellacherie and Meyer [6] for details. The martingales X, Y are said to be
orthogonal if the process [X,Y ] is constant with probability 1. Following Bañuelos
and Wang [1] and Wang [21], we say that Y is differentially subordinate to X, if
the process ([X,X]t − [Y, Y ]t)t≥0 is nonnegative and nondecreasing as a function
of t.

The differential subordination implies many interesting inequalities comparing
the sizes of X and Y . The literature on this subject is quite extensive, we refer
the interested reader to the survey [4] by Burkholder and the paper of Wang [21].
Here we only mention one result, due to Bañuelos and Wang [21], which will be
needed in our further considerations. We use the notation ||X||p = supt≥0 ||Xt||p
for 1 ≤ p ≤ ∞.

Theorem 2.1. Suppose that X, Y are orthogonal martingales such that Y is dif-
ferentially subordinate to X. Then for any 1 < p <∞,

||Y ||p ≤ Cp||X||p,
where Cp is given in (1.2). The constant is the best possible.

The main result of this section is the following.

Theorem 2.2. Suppose that X, Y are orthogonal martingales such that ||X||∞ ≤ 1,
Y is differentially subordinate to X and Y0 ≡ 0. Then for any K > 2/π we have

(2.1) sup
t≥0

EΦ (|Yt|/K) ≤ L(K)||X||1
K

.

The inequality is sharp.
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The proof of this statement will be based on the existence of a certain special
harmonic function. Let H = R × (0,∞) denote the upper half-space and let S =
(−1, 1)× R stand for the vertical strip in R2. Fix K > 2/π and define U : H → R
by the Poisson integral

(2.2) U(α, β) =
1

π

∫ ∞
−∞

βΦ
(∣∣ 2
πK log |t|

∣∣)
(α− t)2 + β2

dt− L(K)K−1.

Then U is a harmonic function on H and, for t 6= 0,

(2.3) lim
(α,β)→(t,0)

U(α, β) = Φ

(∣∣∣∣ 2

πK
log |t|

∣∣∣∣)− L(K)K−1.

Let φ : S → H be a conformal mapping given by φ(z) = i exp(−iπz/2) and
introduce the function U , defined on the closure S of S by the formula

U(x, y) =

{
Φ(|y|/K)− L(K)/K if |x| = 1,

U(φ(x, y)) if |x| < 1.

It is not difficult to check that for (x, y) ∈ S we have

(2.4) U(x, y) =
1

π

∫ ∞
−∞

cos
(
π
2x
)

Φ
(∣∣ 2
πK log |s|+ y

K

∣∣)
s2 − 2s sin

(
π
2x
)

+ 1
ds− L(K)K−1.

As the composition of a harmonic function and a conformal mapping, we see that
U is harmonic on S. In addition, in view of (2.3), U is continuous on its domain.
Furthermore, it is easy to see that U satisfies the symmetry condition

(2.5) U(x, y) = U(x,−y) = U(−x, y) for all (x, y) ∈ S.
Indeed, this is equivalent to

U(α, β) = U(−α, β) = U
(

α

α2 + β2
,

β

α2 + β2

)
for all (α, β) ∈ H,

which can be verified by the substitutions t := −t and t := 1/t in (2.2).
We shall need the following further properties of U .

Lemma 2.3. (i) We have Uxx ≤ 0 on S.
(ii) We have U(x, 0) ≤ 0 for x ∈ [−1, 1].
(iii) For any (x, y) ∈ S we have

(2.6) U(x, y) ≥ Φ(|y|/K)− L(K)K−1|x|.

Proof. (i) Since the function x 7→ Φ(|x|) is convex, (2.4) implies that for a fixed
x ∈ [−1, 1], the function U(x, ·) is also convex. It suffices to use the harmonicity of
U on S.

(ii) From (i) and (2.5), we infer that U(x, 0) ≤ U(0, 0) = 0.
(iii) By (i) and (2.5), it suffices to establish the majorization for x ∈ {0, 1}. If

x = 1, then both sides of (2.6) are equal. To deal with the case x = 0, observe that
for any k = 2, 3, . . ., s 6= 0 and y ∈ R we have∣∣∣∣ 2π log |s|+ y

∣∣∣∣k +

∣∣∣∣ 2π log |s| − y
∣∣∣∣k ≥ 2

∣∣∣∣ 2π log |s|
∣∣∣∣k + 2|y|k.

Dividing throughout by k! ·Kk and summing all the obtained estimates yields

Φ

(∣∣∣∣ 2

πK
log |s|+ y

K

∣∣∣∣)+ Φ

(∣∣∣∣ 2

πK
log |s| − y

K

∣∣∣∣) ≥ 2Φ

(∣∣∣∣ 2

πK
log |s|

∣∣∣∣)+ 2Φ

(
|y|
K

)
.
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Multiply both sides by (π(s2 + 1))−1 and integrate over R with respect to the
variable s to obtain[

U(0, y) +
L(K)

K

]
+

[
U(0,−y) +

L(K)

K

]
≥ 2

[
U(0, 0) +

L(K)

K

]
+ 2Φ

( y
K

)
.

Combining this with (2.5) and the equality U(0, 0) = 0, we get the desired ma-
jorization on the y-axis. �

We shall require the following technical fact, which follows immediately from
Corollary 1 of Bañuelos and Wang [2].

Lemma 2.4. Suppose that X, Y are real-valued orthogonal martingales such that
Y is differentially subordinate to X. Then Y has continuous paths and is orthogonal
and differentially subordinate to Xc, the continuous part of X.

We are ready to establish the exponential estimate.

Proof of (2.1). Fox t ≥ 0. Since U is of class C2, we may apply Itô’s formula to
obtain

(2.7) U(Xt, Yt) = U(X0, Y0) + I1 + I2/2 + I3,

where

I1 =

∫ t

0+

Ux(Xs−, Ys) dXs +

∫ t

0+

Uy(Xs−, Ys) dYs,

I2 =

∫ t

0+

Uxx(Xs−, Ys) d[Xc, Xc]s

+ 2

∫ t

0+

Uxy(Xs−, Ys) d[Xc, Y ]s +

∫ t

0+

Uyy(Xs−, Ys) d[Y, Y ]s,

I3 =
∑

0<s≤t

[
U(Xs, Ys)− U(Xs−, Ys)− Ux(Xs−, Ys)∆Xs

]
.

Here ∆Xs = Xs−Xs− denotes the jump of X at time s. Observe that U(X0, Y0) =
U(X0, 0) ≤ 0, because of the assumption Y0 ≡ 0 and the part (ii) of Lemma
2.3. Next, we have EI1 = 0, by the properties of stochastic integrals. Using the
orthogonality of Xc and Y , we see that the middle term in I2 vanishes. Combining
this with Lemma 2.3 (i) and the differential subordination of Y to Xc, we obtain

I2 ≤
∫ t

0+

Uxx(Xs−, Ys)d[Y, Y ]s +

∫ t

0+

Uyy(Xs−, Ys)d[Y, Y ]s = 0,

because U is harmonic. Finally, I3 is also nonpositive, because of Lemma 2.3 (i).
Plugging all these facts into (2.7) and integrating both sides gives EU(Xt, Yt) ≤ 0
and hence, by (2.6),

EΦ(|Yt|/K) ≤ L(K)K−1E|Xt| ≤ L(K)K−1||X||1.

It remains to take supremum over t ≥ 0 to complete the proof. �

Sharpness. This will follow once we have established the optimality of L(K) in
(1.5); see Remark 4.1 below. �
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3. Inequalities for Riesz transforms in Rd

There is a well-known representation of Riesz transforms in terms of the so-called
background radiation process, introduced by Gundy and Varopoulos in [10]. Let
us briefly describe this connection. Throughout this section, d is a fixed positive
integer. Suppose that X is a Brownian motion in Rd and let Y be an independent
Brownian motion in R (both processes start from the appropriate origins). For any
y > 0, introduce the stopping time τ(y) = inf{t ≥ 0 : Yt ∈ {−y}}. If f belongs to
S(Rd), the class of rapidly decreasing functions on Rd, let Uf : Rd × [0,∞) → R
stand for the Poisson extension of f to the upper half-space. That is,

Uf (x, y) := Ef
(
x+Xτ(y)

)
.

For any (d+ 1)× (d+ 1) matrix A we define the martingale transform A∗f by

A∗f(x, y) =

∫ τ(y)

0+

A∇Uf (x+Xs, y + Ys) · d(Xs, Ys).

Note that A ∗ f(x, y) is a random variable for each x, y. Now, for any f ∈ C∞0 , any
y > 0 and any matrix A as above, define T yAf : Rd → R through the bilinear form

(3.1)

∫
Rd
T yAf(x)g(x) dx =

∫
Rd

E
[
A∗f(x, y)g(x+Xτ(y))

]
dx,

where g runs over C∞0 (Rd). Less formally, T yf is given as the following conditional

expectation with respect to the measure P̃ = P⊗dx (dx denotes Lebesgue’s measure
on Rd): for any z ∈ Rd,

T yAf(z) = Ẽ
[
A∗f(x, y)|x+Xτ(y) = z

]
.

See Gundy and Varopoulos [10] for the rigorous statement of this equality. The in-
terplay between the operators T yA and Riesz transforms is explained in the following
theorem, consult [10] or Gundy and Silverstein [9].

Theorem 3.1. Let Aj = [aj`m], j = 1, 2, . . . , d be the (d + 1) × (d + 1) matrices
given by

aj`m =

 1 if ` = d+ 1, m = j,
−1 if ` = j, m = d+ 1,
0 otherwise.

Then T yAjf → Rjf almost everywhere as y →∞.

We shall require the following auxiliary fact.

Lemma 3.2. Let f ∈ C∞0 (Rd) and A = Aj for some j. Then (3.1) holds for all
g ∈ Lq(Rd), 1 < q <∞.

Proof. Fix x ∈ R and y > 0. Consider the pair ξ = (ξt)t≥0, ζ = (ζt)t≥0 of
martingales given by

ξt = Uf (x+Xτ(y)∧t, y + Yτ(y)∧t)

= Uf (x, y) +

∫ τ(y)∧t

0+

∇Uf (x+Xs, y + Ys) · d(Xs, Ys)

and

ζt =

∫ τ(y)∧t

0+

Aj∇Uf (x+Xs, y + Ys) · d(Xs, Ys),
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for t ≥ 0. Then the martingale ζ is differentially subordinate to ξ, since

[ξ, ξ]t − [ζ, ζ]t = |Uf (x, y)|2 +
∑

k/∈{j,d+1}

∫ τ(y)∧t

0+

∣∣∣∣∂Uf∂xk
(x+Xs, y + Ys)

∣∣∣∣2 ds

is nonnegative and nondecreasing as a function of t. Furthermore, ξ and ζ are
orthogonal, which is a direct consequence of the equality 〈Ajx, x〉 = 0, valid for all
x ∈ Rd. Indeed,

[ξ, ζ]t =

∫ τ(y)∧t

0+

〈Aj∇Uf (x+Xs, y + Ys),∇Uf (x+Xs, y + Ys)〉ds = 0.

Therefore, by Theorem 2.1,

||ζτ(y)||pp = ||ζ||pp ≤ Cpp ||ξ||pp = Cpp ||ξτ(y)||pp, 1 < p <∞.

Integrating both sides with respect to x ∈ Rd gives∫
Rd

E|A∗f(x, y)|pdx ≤ Cpp
∫
Rd

E|f(x+Xτ(y))|pdx = Cpp ||f ||
p
Lp(Rd)

,

by virtue of Fubini’s theorem. In addition, for any g ∈ C∞0 (Rd),∫
Rd

E|g(x+Xτ(y))|qdx = ||g||q
Lq(Rd)

.

Combining these estimates with (3.1) and Hölder’s inequality yields∣∣∣∣∫
Rd
T yAf(x)g(x) dx

∣∣∣∣ =

∣∣∣∣∫
Rd

E
[
A∗f(x, y)g(x+Xτ(y))

]
dx

∣∣∣∣(3.2)

≤ Cp||f ||Lp(Rd)||g||Lq(Rd),

which is the claim, since C∞0 (Rd) is dense in Lq(Rd). �

We turn to the dual version of Theorem 1.1.

Theorem 3.3. For any Borel function f on Rd bounded in absolute value by 1 we
have the sharp estimate

(3.3)

∫
Rd

Φ (|Rjf(x)|/K) dx ≤
L(K)||f ||L1(Rd)

K
, j = 1, 2, . . . , d.

Proof. Fix j ∈ {1, 2, . . . , d}, x ∈ R and y > 0. By a standard density argument,
it suffices to establish the estimate (3.3) for f ∈ C∞0 (Rd). Consider the martin-
gales ξ and ζ introduced in the proof of the previous lemma. These processes are
orthogonal, ζ is differentially subordinate to ξ and ζ0 ≡ 0, so by (2.1), we have

EΦ(|ζτ(y)|/K) = sup
t≥0

EΦ(|ζt|/K) ≤ L(K)K−1||ξ||1.

Integrating this estimate with respect to x ∈ Rd and using Fubini’s theorem yields∫
Rd

EΦ (|A∗f(x, y)|/K) dx ≤ L(K)K−1||f ||L1(Rd).
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Pick q ∈ (1,∞) and g ∈ Lq(Rd). Since Ψ is the Legendre transform of Φ (i.e., Ψ′

and Φ′ are the inverses of each other), we obtain, by Young’s inequality,

∣∣∣∣∫
Rd

E
[
A∗f(x, y)

K
g(x+Xτ(y))

]
dx

∣∣∣∣
≤
∫
Rd

EΦ (|A∗f(x, y)/K|) dx+

∫
Rd

EΨ
(
|g(x+Xτ(y))|) dx

≤ L(K)K−1||f ||L1(Rd) +

∫
Rd

Ψ(|g(x)|) dx.

Combining this with (3.1) gives

∫
Rd

[T yAjf(x)

K
g(x)−Ψ(|g(x)|)

]
dx ≤ L(K)||f ||L1(Rd)/K.

Now fix M > 0 and put

g(x) =
T yAjf(x)

|T yAjf(x)|

[
exp

(
min

{ |T yAjf(x)|
K

,M

})
− 1

]

(if T yAjf(x) = 0, set g(x) = 0). It is easy to see that |g| ≤ c|T yAjf | for some positive

c = c(M,K) and hence g ∈ Lq(Rd), since the same is true for T yAjf (use (3.2) and

the fact that f ∈ C∞0 (Rd) ⊂ Lq(Rd)). We get

∫
Rd

Φ

(∣∣∣∣T yAjf(x)

K

∣∣∣∣) 1{|T y
Aj
f(x)|≤MK}dx

+

∫
Rd

[ |T yAjf(x)|(eM − 1)

K
−Ψ(eM − 1)

]
1{|T y

Aj
f(x)|>MK}dx ≤ L(K)K−1||f ||L1(Rd).

The expressions under both above integrals are nonnegative, so letting M → ∞
yields, by Fatou’s lemma,

∫
Rd

Φ

(∣∣∣∣T yAjf(x)

K

∣∣∣∣)dx ≤ L(K)K−1||f ||L1(Rd).

It suffices to let y →∞ and apply the assertion of Theorem 3.1 and Fatou’s lemma
again. The sharpness of the estimate will follow from the optimality of the constant
L(K) in (1.5). See Remark 4.1 below. �
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Proof of (1.5). Fix f satisfying
∫
Rd Ψ(|f |) < ∞ and put g = 1ARjf/|Rjf | (g = 0

if the denominator is zero). By Parseval’s identity and (1.1), we get∫
A

|Rjf(x)|dx =

∫
Rd
Rjf(x)g(x) dx

=

∫
Rd
R̂jf(x) ĝ(x) dx

=

∫
Rd
f̂(x) R̂jg(x) dx(3.4)

=

∫
Rd
f(x)Rjg(x) dx

≤ K
∫
Rd

Ψ(|f(x)|) dx+K

∫
Rd

Φ(|Rjg(x)|/K) dx

≤ K
∫
Rd

Ψ(|f(x)|) dx+ L(K)||g||L1(Rd).

Here in the fifth line we have exploited Young’s inequality and in the latter passage
we have used (3.3) and the fact that g takes values in [−1, 1]. It suffices to note
that ||g||L1(Rd) ≤ |A| to complete the proof. �

4. Sharpness

The purpose of this section is to show that for each K > 2/π and d ≥ 1, the
constant L(K) is the best possible in (1.5). This will be accomplished by providing
appropriate examples of f and A. For the sake of convenience, we consider the
cases d = 1 and d > 1 separately.

4.1. Sharpness, the case d = 1. Let D denote the open unit disc of C and let
G : D ∩H → H be defined by G(z) = −(1− z)2/(4z) (recall that H stands for the
upper half-plane). It is not difficult to verify that G is conformal and hence so is its
inverse L. Let us extend L to the continuous function on H = {z ∈ C : Imz ≥ 0}.
Consider another conformal map F : D → S (recall that S is the strip {z ∈ C :
|Rez| < 1}), given by

F (z) =
2i

π
log

[
iz − 1

z − i

]
− 1.

The following properties of L and F will be needed below. First, observe that L
maps [0, 1] onto {eiθ : 0 ≤ θ ≤ π}. Specifically, for x ∈ [0, 1] we have

(4.1) L(x) = eiθ, where θ ∈ [0, π] is uniquely determined by x = sin2(θ/2).

Moreover, L maps R \ [0, 1] onto (−1, 1); precisely, we have

(4.2) L(x) =

{
1− 2x− 2

√
x2 − x if x < 0,

1− 2x+ 2
√
x2 − x if x > 1.

Concerning F , we have that

(4.3) F maps the unit circle onto the boundary of S

and

(4.4) F maps [−1, 1] onto itself.

For any positive integer n, let Vn : H → S be given by Vn(z) = F (L2n(z)), and
define ϕn : R → R by the formula ϕn(x) =ReVn(x). Since Vn is conformal and
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limz→∞ Vn(z) = 0, we have Hϕn =ImVn. Using (4.1), we compute that for any
K > 2/π we have∫

R
Φ (|Hϕn(x)| /K) dx ≥

∫ 1

0

Φ
(∣∣ImF (L2n(x))

∣∣ /K)dx

=
1

2

∫ π

0

Φ
(∣∣ImF (e2inθ)

∣∣ /K) sin θdθ

=
1

2

∫ 2nπ

0

Φ
(∣∣ImF (eiθ)

∣∣ /K) sin

(
θ

2n

)
dθ

2n

=
1

2

∫ 2π

0

Φ
(∣∣ImF (eiθ)

∣∣ /K) n−1∑
k=0

sin

(
kπ

n
+

θ

2n

)
dθ

2n

=
1

2

∫ 2π

0

Φ
(∣∣ImF (eiθ)

∣∣ /K) cos
(
θ−π
n

)
2n sin

(
π
2n

) dθ

n→∞−−−−→ 1

2π

∫ 2π

0

Φ
(∣∣ImF (eiθ)

∣∣ /K)dθ

=
1

2π

∫ 2π

0

Φ

(∣∣∣∣ 2π log

(
sin θ

1− cos θ

∣∣∣∣) /K)dθ

=
1

π

∫
R

Φ
(∣∣ 2
Kπ log t

∣∣)
t2 + 1

dt

=
L(K)

K
.

We turn to the optimality of L(K) in (1.5). Fix ε > 0, n ≥ 1 and define the function
fn : R→ R by

fn(x) =
(

exp (|Hϕn(x)|/K)− 1
)

sgn (Hϕn(x)).

Using the above calculation, we derive that∫
R
Hfn(x)ϕn(x)dx =

∫
R
fn(x)Hϕn(x) dx

=

∫
R

(
exp (|Hϕn(x)|/K)− 1

)
|Hϕn(x)|dx

= K

∫
R

Ψ (|fn(x)|) dx+K

∫
R

Φ (|Hϕn(x)|) dx

≥ K
∫
R

Ψ (|fn(x)|) dx+ L(K)− ε,

provided n is sufficiently large. Next, observe that |ReF | ≤ 1, so |ϕn| ≤ 1 and thus
for a fixed δ > 0 we have∫ 1+δ

−δ
|Hfn(x)|dx ≥

∫ 1+δ

−δ
Hfn(x)ϕn(x)dx

=

∫
R
Hfn(x)ϕn(x)dx−

∫
R\[−δ,1+δ]

Hfn(x)ϕn(x)dx

≥ K
∫
R

Ψ (|fn(x)|) dx+ L(K)− ε−
∫
R\[−δ,1+δ]

Hfn(x)ϕn(x)dx.
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Now we shall prove that the last integral is smaller than ε for sufficiently large n.
To do this, pick η ∈ (1, πK/2) and note that the function fn belongs to Lη(R); in
addition, its norm can be bounded from above by a constant depending only on η
and K (and not on n). This can be seen by combining (3.3) with the elementary
bound (et − 1)η ≤ 2Φ(tη) + (e3 − 1)η, valid for t ≥ 0. Therefore, if η′ = η/(η − 1)
denotes the harmonic conjugate to η, then∫

R\[−δ,1+δ]

Hfn(x)ϕn(x)dx ≤ ||Hf ||Lη(R)

(∫
R\[−δ,1+δ]

|ϕn(x)|η
′
dx

)1/η′

.

By (1.2), the first factor on the right can be bounded from above by the constant
depending only on η and K. Furthermore, combining (4.2), (4.4) and the equality
F (0) = 0, we easily check that if n→∞, then the last integral converges to 0: ϕn
decays sufficiently fast outside [−δ, 1 + δ]. Putting all the above things together,
we have shown that if we take A = [−δ, 1 + δ] and pick n large enough, then∫

A

|Hfn(x)|dx > K

∫
R

Ψ (|fn(x)|) dx+
L(K)− 2ε

1 + 2δ
· |A|.

Since ε and δ were arbitrary, the constant L(K) is indeed the best possible in (1.5).

4.2. Sharpness, the case d > 1. Of course, it suffices to focus on Riesz transform
R1 only. Suppose that for a fixed K > 2/π we have

(4.5)

∫
A

|R1f(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+ L · |A|

for all Borel subsets A of Rd and all Borel functions f : Rd → R. For t > 0, define
the dilation operator δt as follows: for any function g : R × Rd−1 → R, we let
δtg(ξ, ζ) = g(ξ, tζ); for any A ⊂ R×Rd−1, let δtA = {(ξ, tζ) : (ξ, ζ) ∈ A}. By (4.5),
the operator Tt := δ−1

t ◦R1 ◦ δt satisfies∫
A

|Ttf(x)|dx = td−1

∫
δ−1
t A

|R1 ◦ δtf(x)|dx(4.6)

≤ td−1

[
K

∫
Rd

Ψ(|δtf(x)|)dx+ L · |δ−1
t A|

]
= K

∫
Rd

Ψ(|f(x)|)dx+ L · |A|.

Now fix f ∈ L2(Rd) satisfying
∫
R Ψ(|f |) < ∞. It is not difficult to check that the

Fourier transform F satisfies the identity F = td−1δt ◦F ◦δt and hence the operator
Tt has the property that

T̂tf(ξ, ζ) = −i ξ

(ξ2 + t2|ζ|2)1/2
f̂(ξ, ζ), (ξ, ζ) ∈ R× Rd−1.

By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂tf(ξ, ζ) = T̂0f(ξ, ζ)

in L2(Rd), where T̂0f(ξ, ζ) = −i sgn (ξ)f̂ . Combining this with Plancherel’s theo-
rem, we conclude that there is a sequence (tn)n≥1 decreasing to 0 such that Ttnf
converges to T0f almost everywhere. Using Fatou’s lemma and (4.6), we obtain

(4.7)

∫
A

|T0f(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+ L · |A|.
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Note that Tt are bounded on Lp(Rd) for 1 < p < ∞ (in fact, ||Tt||p = ||R1||p), so
is T0 and thus the above estimate holds true for all f ∈ Lp(Rd). Next, fix ε > 0
and η ∈ (1, πK/2). By the reasoning from the previous subsection, there is a Borel
subset B of R and h ∈ Lη(R) such that

(4.8)

∫
B

|Hh(x)|dx > K

∫
R

Ψ(|h(x)|) dx+ (L(K)− ε)|B|.

Define f : R × Rd−1 → R by f(ξ, ζ) = h(ξ)1[0,1]d−1(ζ). We have f ∈ Lη(Rd) and
T0f(ξ, ζ) = Hh(ξ)1[0,1]d−1(ζ), which is due to the identity

T̂0f(ξ, ζ) = −isgn (ξ) ĥ(ξ) ̂1[0,1]d−1(ζ).

Plug this into (4.7) with the choice A = B × [0, 1]d−1 to obtain∫
B

|Hh(ξ)|dξ ≤ K
∫
R

Ψ(|h(ξ)|)dξ + L · |B|.

This implies L > L(K) by virtue of (4.8) and the fact that ε > 0 was arbitrary.
The proof is complete.

Remark 4.1. The optimality of the constant L(K) immediately implies the sharp-
ness of (2.1) and (3.3) for each K > 2/π. Indeed, if any of these estimates could be
sharpened, this would yield an improvement of L(K) in (1.5): see the last passage
in (3.4).

5. Logarithmic estimates for the re-expansion operator

Let Fc and Fs be the cosine and sine Fourier transforms on R+, respectively.
That is, for x > 0 and any Borel function f on R+,

Fcf(x) =

√
2

π

∫
R+

f(t) cos tx dt, Fsf(x) =

√
2

π

∫
R+

f(t) sin tx dt.

Both Fc and Fs are unitary and self-adjoint operators on L2(R+). We define the re-
expansion operator Π on R+ by the identity Π = FsFc. This operator is interesting
from the analytical point of view, as the object of spectral analysis and also appears
naturally in the scattering theory. To be more specific, let T , T0 be two self-adjoint
operators on a Hilbert space. The wave operators W± = W±(T, T0) are defined by

W±(T, T0) = lim
t→±∞

eitT e−itT0

(the limit is understood in the sense of strong operator convergence). One expands
a given function with respect to the eigenfunctions of T0 and then takes the inverse

transform using the eigenfunctions of T . If we put T , T0 to be the operator − d2

dx2

on L2(R+) with the boundary conditions f(0) = 0 and f ′(0) = 0, respectively,
then W±(T0, T ) = ±Π (see Birman [3]). The re-expansion operator appears also in
the polar decomposition of −i ddx on L2(R+) with the domain defined by f(0) = 0
(again, see [3]) and arises in other problems of mathematical physics (see [8], [12]
and [13]).

The next observation is that Π can be represented as singular integral operator:

Πf(x) =
1

π
p.v.

∫
R+

2xf(t)

x2 − t2
dt, x > 0.
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This formula relates Π to HR
+, the Hilbert transform on R+, and L, the Laplace

transform, which are given by

HR+f(x) =
1

π
p.v.

∫
R+

f(t)

x− t
dt, Lf(x) =

√
2

π

∫
R+

f(t)e−txdt, x > 0.

The connection is given by the identity

(5.1) Π = HR+ +H1,

where

H1f(x) =
1

2
L2f(x) =

1

π

∫
R+

f(t)

x+ t
dt, x > 0.

The question about various norms of Π has gathered some interest in the literature.
Hollenbeck, Kalton and Verbitsky [11] proved that the re-expansion operator has
the same p-th norm as the Hilbert transform: ||Π||Lp(R+)→Lp(R+) = ||H||Lp(R)→Lp(R)

for 1 ≤ p ≤ ∞. Then it was shown by the author in [17] that the weak p-th norms
of Π and H coincide for 1 ≤ p ≤ 2: ||Π||Lp(R+)→Lp,∞(R+) = ||H||Lp(R)→Lp,∞(R).
We shall establish the following further result in this direction, using the special
function U invented in Section 2.

Theorem 5.1. Let K > 2/π be a fixed constant.
(i) If ||f ||L∞(R+) ≤ 1, then

(5.2)

∫
R+

Φ(|Πf(x)|/K) dx ≤ L(K)K−1||f ||L1(R+).

The constant L(K)K−1 is the best possible.
(ii) For any Borel subset A of R+ and any Borel function f : R+ → R we have

(5.3)

∫
A

|Πf(x)|dx ≤ K
∫
R+

Ψ(|f(x)|)dx+ L(K) · |A|.

The constant L(K) is the best possible.

Since L(K) explodes as K approaches 2/π, we conclude that the above estimates
do not hold with any finite constant L(K) when K ≤ 2/π.

Proof of (5.2). By standard density arguments, it suffices to show the estimate for
f ∈ C∞0 (R+). Consider the complex Fourier transform F on the upper half-plane
H, defined by

Ff(x, y) = Ff(z) =

√
2

π

∫
R+

f(t)eiztdt.

Of course, Ff is an analytic on H and can be extended to a continuous function
of H by Ff(x) = f(x)1{x≥0}, x ∈ R. Since Fc is unitary and self-adjoint, the
substitution g = Fcf transforms (5.2) into

(5.4)

∫
R+

Φ(|Fsg(x)|/K) dx ≤ L(K)K−1||Fcg||L1(R+).

The smoothness of f guarantees the bounds

(5.5) |Fg(z)| ≤ c

1 + |z|
, |(Fg)′(z)| ≤ c

1 + |z|2
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for all z ∈ H and some absolute constant c depending only on g. Consider the
functions u, v on H given by

u(x, y) = ug(x, y) = ReFg(x, y) =

√
2

π

∫
R+

g(t) cos tx e−ytdt,

v(x, y) = vg(x, y) = ImFg(x, y) =

√
2

π

∫
R+

g(t) sin tx e−ytdt.

These functions are harmonic and satisfy Cauchy-Riemann equations on H. Fur-
thermore, for all x, y > 0 we have

u(x, 0) = Fcg(x), v(x, 0) = Fsg(x),

(5.6) u(0, y) = Lg(y), v(0, y) = 0,

ux(0, y) = 0, vx(0, y) = −(Lg)′(y).

Recall the function U from Section 2 and define G(x, y) = U(u(x, y), v(x, y)) for
(x, y) ∈ H. The definition makes sense, since |u(x, y)| ≤ 1 for all (x, y) ∈ H (here
we use the assumption ||f ||L∞(R+) ≤ 1). Clearly, G is continuous; furthermore, it is
harmonic on H, since u and v satisfy Cauchy-Riemann equations. Thus, applying
Green’s formula for the region DR = {(x, y) ∈ R2 : x > 0, y > 0, x2 + y2 < R2},
R > 1, we obtain

0 =

∫∫
DR

y∆G(x, y)dxdy =

∮
∂DR

G(x, y)− yGy(x, y)dx+ yGx(x, y)dy.

Let R→∞. Then (5.5) implies that the line integral over the arc

{(x, y) : x > 0, y > 0, x2 + y2 = R2}

converges to zero and we get

0 =

∫
R+

G(x, 0)dx−
∫
R+

yGx(0, y)dy,

or, equivalently, using (5.6),∫
R+

U
(
Fcg(x),Fsg(x)

)
dx = −

∫
R+

yUy
(
Lg(y), 0

)
(Lg)′(y)dy.

However, Uy(x, 0) = 0 for all x ∈ (−1, 1), due to (2.5); it remains to apply (2.6) to
complete the proof of (5.4). �

Remark 5.2. By the similar reasoning, one can establish an analogous bound for
the adjoint operator Π∗ = FcFs:

(5.7)

∫
R+

Φ(|Π∗f(x)|/K) ≤ L(K)K−1||f ||L1(R+).

Indeed, one uses g = Fsf and G(x, y) = U(v(x, y),−u(x, y)) instead of g and G
appearing above. The remaining arguments are essentially the same.
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Proof of (5.3). Fix a Borel function f : R+ → R, a Borel subset A of R+ and put
g = 1AΠf/|Πf | (g = 0 when the denominator is zero). Note that g takes values in
[−1, 1] and ||g||L1(R+) ≤ |A|. Therefore, using Young’s inequality and (5.7), we get∫

A

|Πf(x)|dx =

∫
R+

Πf(x)g(x)dx

=

∫
R+

f(x)Π∗g(x)dx

≤ K
∫
R+

Ψ(|f(x)|)dx+K

∫
R+

Φ(|Π∗g(x)|/K)dx

≤ K
∫
R+

Ψ(|f(x)|)dx+ L(K) · ||g||L1(R+)

≤ K
∫
R+

Ψ(|f(x)|)dx+ L(K) · |A|.

This finishes the proof. �

Sharpness of (5.2) and (5.3). Of course, it suffices to focus on the logarithmic es-
timate (5.3). We shall exploit (5.1). We have proved in the previous section that
for any K > 2/π and ε > 0 there is a bounded Borel subset A of R and a Borel
function f : R→ R satisfying∫

A

|Hf(x)|dx > K

∫
R

Ψ(|f(x)|)dx+ (L(K)− ε) · |A|.

For a fixed s > − inf A and x ∈ R, define f (s)(x) = f(x− s)1{x≥0}. If x > 0, then

HR+f (s)(x) =
1

π
p.v.

∫
R+

f(t− s)
x− t

dt = Hf(x− s)− 1

π

∫ −s
−∞

f(t)

x− s− t
dt.

However, ∫
s+A

∣∣∣∣∫ −s
−∞

f(t)

x− s− t
dt

∣∣∣∣dx ≤ |A|∫ −s
−∞

|f(t)|
inf A− t

dt→ 0

as s→∞. Furthermore,∫
s+A

|H1f
(s)(x)|dx =

∫
s+A

∣∣∣∣∫ ∞
0

f(t)

x+ s+ t
dt

∣∣∣∣ dx ≤ |A|∫ ∞
0

|f(t)|
s+ t

dt→ 0

and ∫
R+

Ψ(|f (s)(x)|)dx =

∫ ∞
−s

Ψ(|f(x)|)dx→
∫
R

Ψ(|f(x)|)dx

as s→∞. Consequently, for sufficiently large s,∫
s+A

|Πf (s)(x)|dx ≥
∫
A

|Hf(x)|dx− 2ε|A|

≥ K
∫
R

Ψ(|f(x)|)dx+ (L(K)− 3ε) · |s+A|

≥ K
∫
R+

Ψ(|f (s)(x)|)dx+ (L(K)− 4ε) · |s+A|.

This proves the desired optimality of the constant L(K). �
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[17] A. Osȩkowski, On the best constants in the weak type inequalities for re-expansion operator
and Hilbert transform, Trans. Amer. Math. Soc., in press.

[18] S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund
and Kolmogorov, Studia Math. 44 (1972), 165–179.

[19] M. Riesz, Sur les fonctions conjugées, Math. Z. 27 (1927), 218–244.
[20] E. M. Stein, Singular integrals and Differentiability Properties of Functions, Princeton Uni-

versity Press, Princeton, 1970.

[21] G. Wang, Differential subordination and strong differential subordination for continuous time

martingales and related sharp inequalities, Ann. Probab. 23 (1995), 522–551.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Ba-
nacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl


