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Abstract. We establish a class of sharp logarithmic estimates for Beurling-
Ahlfors transform B on the complex plane. For any K > 0 we determine

the optimal constant L = L(K) ∈ (0,∞] such that the following holds. If

F : C→ C is a radial function, then for any R > 0,

1

|B(0, R)|

∫
B(0,R)

|BF (z)|dz ≤
K

|B(0, R)|

∫
B(0,R)

Ψ(|F (z)|) dz + L(K),

where Ψ(t) = (t + 1) log(t + 1)− t and B(0, R) ⊂ C denotes the ball of center

0 and radius R. A related result in higher dimensions is also established. The
proof rests on probabilistic methods and exploits a certain sharp inequality for

martingales.

1. Introduction

The Beurling-Ahlfors transform is an operator acting on Lp(C), defined by the
singular integral

(1.1) BF (z) = − 1

π
p.v.

∫
C

F (w)

(z − w)2
dw,

where p.v. means the principal value and the integration is with respect to the
Lebesgue measure on the plane. Alternatively, it can be defined as a Fourier multi-

plier with the symbol m(ξ) = ξ/ξ, i.e., we have the identity B̂F (ξ) = ξ
ξ F̂ (ξ) for all

ξ ∈ C\{0}. This operator is of fundamental importance in the study of quasiconfor-
mal mappings and partial differential equations, see e.g. [2], [3], [17] and references
therein. There is a challenging question about the precise value of the Lp norms of
this operator, the answer to which would imply several deep results related to the
Gehring-Reich conjecture [12] on the area distortion of quasiconformal mapping in
the plane (which has been proved by Astala in [1]). Motivated by this problem,
T. Iwaniec [14] conjectured that

||B||Lp(C)→Lp(C) = p∗ − 1,

where p∗ = max{p, p/(p− 1)}, and the question of whether it is true or not is open
for thirty years now. In fact, the main difficulty lies in proving the upper bound
||B||Lp(C)→Lp(C) ≤ p∗ − 1; the corresponding lower bound was already obtained
by Lehto [16] in 1960s. So far, the best results in this direction is the inequality
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||B||Lp(C)→Lp(C) ≤ 1.575(p∗ − 1) of Bañuelos and Janakiraman, and the estimate
||B||Lp(C)→Lp(C) ≤ 1.4(p−1) if p ≥ 1000, due to Borichev, Janakiraman and Volberg
[8]. Both these bounds were established with the use of probabilistic methods; more
precisely, the proofs rest on certain martingale inequalities of Burkholder [9], [10]
(see also Wang [20]) and their appropriate extensions.

In the study of T. Iwaniec’ conjecture, it is natural to analyze the action of
the Beurling-Ahlfors transform on some special classes of functions. The paper [7]
of Baernstein and Montgomery-Smith contains some information in this direction
for the class of the so-called stretch functions (see Sections 6 and 7 there). An-
other result of this type, proved by Bañuelos and Janakiraman [5], is the estimate
||BF ||Lp(C) ≤ (p∗ − 1)||F ||Lp(C), valid for 1 < p ≤ 2 and F being real-valued and
radial, i.e., satisfying F (z) = F (|z|) for all z ∈ C. See also Bañuelos and Osȩkowski
[6] for a different, probabilistic proof of this fact. On the other hand, we would like
to point out that for p > 2 and radial F we have ||BF ||Lp(C) ≤ 2p

p−1 ||F ||Lp(C) (see

[6]) and the constant 2p/(p− 1) is better than p∗ − 1 = p− 1, at least for large p.
Consult also the papers [5], [13] and [15] for other related facts.

We continue this line of research in the following direction. For p = 1 and a
radial function F : C→ C, the inequality ||BF ||L1(C) ≤ C1||F ||L1(C) does not hold
in general with any finite constant C1: this can be verified directly by considering
the examples of Lehto [16]. Thus it is natural to ask about a substitute for the L1

estimate. One of the possible answers is to study appropriate weak-type bounds.
In [5], Bañuelos and Janakiraman proved the following.

Theorem 1.1. Suppose that F is a real-valued radial function. Then for any λ > 0
we have

λ|{z ∈ C : |BF (z)| ≥ λ}| ≤ 1

log 2
||F ||L1(C)

and the inequality is sharp.

The paper [6] contains the extension of this result. Among other things, it
describes, for any 1 ≤ p ≤ 2, the optimal constant Cp such that for any radial
function F : C→ C we have the weak-type (p, p) estimate

λp|{z ∈ C : |BF (z)| ≥ λ}| ≤ Cpp ||F ||
p
Lp(C), λ > 0.

The purpose of this paper is to study a different, LlogL inequality, which can
also be regarded as a version of the Lp estimate for p = 1. In addition, we will
consider the more general setting of vector-valued functions. Suppose that H is a
separable Hilbert space over R (we may assume that H = `2R ' `2C), with norm | · |
and scalar product 〈·, ·〉. For any integrable function f = (f1, f2, . . .) : C → H, we
define Bf coordinatewise: that is, we set

Bf = (Bf1, Bf2, . . .) ∈ `2C,
or just observe that (1.1) makes sense for vector-valued functions. Throughout the
paper, B(0, R) stands for the open ball of center 0 and radius R; furthermore, we
introduce the function Ψ : [0,∞)→ [0,∞) by the formula Ψ(t) = (t+1) log(t+1)−t.
We are ready to formulate our main result.

Theorem 1.2. Suppose that F : C→ H is a radial function. Then for any K > 1
and R > 0 we have

(1.2)
1

|B(0, R)|

∫
B(0,R)

|BF (z)|dz ≤ K

|B(0, R)|

∫
B(0,R)

Ψ(|F (z)|)dz + L(K),
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where

L(K) =
K2eK

−1

K + 1
+

2

(K2 − 1)e
−K.

The constant L(K) is the best possible for each K, even if we restrict ourselves to
real-valued functions F . For K ≤ 1 the inequality above does not hold with any
finite L(K).

This should be compared to the inequality∫
A

|BF (z)|dz ≤ 2K

∫
C

Ψ(|F (z)|)dz +
|A|

K − 1
, K > 1,

which holds true for all functions F : C → C and all Borel subsets A of C (see
[18]). Note that in the latter estimate the function Ψ ◦ |F | is integrated over all C,
and the multiplicative constant in front of the integral is at least 2. Furthermore,
the term |A|/(K − 1) does not seem to be optimal here - we believe that the factor
(K − 1)−1 can be improved (but we have not managed to show this). On the other
hand, all the constants and restrictions in (1.2) are optimal and thus the inequality
does give the full information on the interplay between the L1-norm of BF and the
LlogL-norm of F .

A few words about the proof and the organization of the paper. We will deduce
(1.2) from an appropriate sharp inequality for martingales, which is of independent
interest. To establish this inequality, we will use an approach which can be regarded
as an extension of Burkholder’s method [10]: the proof will rest on the existence of
a certain special function. This object is introduced and studied in Section 2 below
and then, in Section 3, we exploit its properties to obtain the probabilistic version
of (1.2). The final part of the paper is devoted to the proof of our main result,
Theorem 1.2.

2. A special function

Throughout this section, we assume that K > 1 is a fixed number. Introduce

the auxiliary function γ : [0, eK
−1 − 1]→ R, given by

γ(x) =
x+ 1

K + 1
+

2(x+ 1)−K

K2 − 1
.

A straightforward calculation yields that

(γ(x)− x)′ = − K

K + 1
− 2K(x+ 1)−K−1

K2 − 1
< 0, x ∈ (0, eK

−1

− 1),

and thus the function x 7→ γ(x) − x is invertible. Let H denote the inverse: then
the domain of H is precisely the interval [x0, (K − 1)−1], where

x0 = γ
(
eK

−1

− 1
)
− eK

−1

+ 1 = −Ke
K−1

K + 1
+

2

(K2 − 1)e
+ 1 > 0

(the latter inequality is proved in Lemma 2.3 below). Of course, the range of H is

equal to [0, eK
−1 − 1]. Next, we check that γ satisfies the differential equation

γ′(x)− 1 +
Kγ(x)

x+ 1
= 0, x ∈ (0, eK

−1

− 1),

which implies that

(2.1) KH ′(x)(H(x) + x) = −H(x)− 1 for x ∈ (x0, (K − 1)−1).
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The central role in the paper is played by the function U : [0,∞)→ R, given by

U(x) =


L(K) if x ≤ x0,

K(x− 1) log(H(x) + 1) +KH(x) if x0 < x ≤ (K − 1)−1,

(K − 1)x− 1−K(x+ 1) log
(
K−1
K (x+ 1)

)
if x > (K − 1)−1.

Let us list some properties of U .

Lemma 2.1. (i) The function U is continuous on [0,∞) and of class C1 in the
interior of this interval.

(ii) The function U is concave and nonincreasing.

Proof. (i) This is straightforward and left to the reader.
(ii) We have U ′(0+) = 0, so it suffices to establish the concavity. The inequality

U ′′(x) ≤ 0 is evident for x ∈ (0, x0)∪ ((K − 1)−1,∞), while for x ∈ (x0, (K − 1)−1)
we derive that

(2.2) U ′(x) = K log(H(x) + 1) +
KH ′(x)(H(x) + x)

H(x) + 1
= K log(H(x) + 1)− 1,

in view of (2.1). Thus, for all such x,

U ′′(x) =
KH ′(x)

H(x) + 1
= − 1

H(x) + x
< 0

and the proof is complete. �

For x ∈ H, we define x′ = x/|x| provided x 6= 0, and x′ = 0 ∈ H otherwise. The
main property of U is described in the following statement.

Lemma 2.2. For any x, h ∈ H we have the estimate

(2.3) U(|x|) + U ′(|x|)〈x′, h〉 ≥ |h| −KΨ(|x+ h|).

To prove this property, we will need several technical lemmas.

Lemma 2.3. For any K > 1 we have

(2.4) e2/K ≤ 1 +
2

K − 1
,

(2.5)
KeK

−1

K + 1
≤ 2

(K2 − 1)e
+ 1.

and

(2.6)
eK

−1

K + 1
+

2

(K2 − 1)e
≤ 1

K − 1
.

Proof. The substitution x = 2/K ∈ (0, 2) transforms the first estimate into

ex ≤ 1 +
x

1− x/2
=

4

2− x
− 1.

It suffices to note that both sides become equal if we let x ↓ 0 and(
ex − 4

2− x

)′
=

(
1

e−x/2

)2

−
(

1

1− x/2

)2

≤ 0.

The bound (2.5) is proved similarly: we substitute x = K−1 ∈ (0, 1) and obtain
the equivalent form

(1− x)ex − 1 + (1− 2e−1)x2 ≤ 0.
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Both sides become equal in the limit x ↓ 0 and, in addition, the derivative of the
left-hand side is

−xex + 2(1− 2e−1)x ≤ −x+ 2(1− 2e−1)x = x(1− 4e−1) ≤ 0.

Finally, (2.6) is shown analogously, with the use of the substitution x = K−1. We
leave the details to the reader. �

Lemma 2.4. The function F (t) = Ψ(
√
t) is concave on [0,∞).

Proof. This is straightforward: for t > 0 we have

F ′′(t) =
1

4t3/2

[ √
t√

t+ 1
− log(

√
t+ 1)

]
≤ 0. �

Lemma 2.5. For any s ∈ [1, eK
−1

] we have

(2.7) s
[
s− 2 log s+ 2K−1

(
γ(s− 1)− s+ 2

)]
≥ e2/K .

Proof. Denote the left-hand side by F (s). We easily derive that for s ∈ (1, eK
−1

)
we have

F ′′(s) =
2

s

[
(K − 1)γ(s− 1)− 1

]
.

But this is nonpositive, equivalently, we have γ(s) ≤ (K − 1)−1 for all s. To see
this, observe that γ is a convex function (which obvious from the very definition)

and satisfies γ(0) = (K − 1)−1 and γ(eK
−1 − 1) ≤ (K − 1)−1, where the latter

is precisely (2.6). So, we have proved that F is a concave function, and thus it

suffices to verify (2.7) at the endpoints of the interval [1, eK
−1

]. For s = 1 the

bound reduces to (2.4), while for s = eK
−1

it is equivalent to (2.5). �

We are ready to establish the main property of U .

Proof of Lemma 2.2. The proof is quite elaborate, so for the sake of convenience
we have decided to split it into a few separate parts.

Step 1. The reduction to the real-valued case. By the continuity of both sides
of (2.3), we may and do assume that x 6= 0. Fix |x| and |h|. Observe that the
estimate can be rewritten in the form F (〈x, h〉), where

F (s) = U(x) +
U ′(x)

|x|
s− |h|+KΨ

(√
|x|2 + |h|2 + 2s

)
, s ∈ [−|x||h|, |x||h|].

By Lemma 2.4, the function F is concave, so it suffices to prove (2.3) for x, h
satisfying 〈x, h〉 ∈ {−|x||h|, |x||h|}, i.e. in the case when these vectors are linearly
dependent. That is to say, we may assume that H = R and, replacing x, h with
−x, −h if necessary, we may restrict ourselves to positive x.

Step 2. The case x ≤ x0. For such x, the inequality (2.3) reads

L(K) +KΨ(|x+ h|)− |h| ≥ 0.

We have Ψ ≥ 0 and

L(K) = x0 +K(eK
−1

− 1)− 1 ≥ x0,

so it suffices to show the inequality for |h| > x0. Then

L(K) +KΨ(|x+ h|)− |h| ≥ L(K) +KΨ(|h| − x0)− |h|
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and it remains to observe that as a function of |h| ∈ (x0,∞), the expression on the

right is convex and vanishes, along with its derivative, at |h| = γ(eK
−1 − 1).

Step 3. The case x0 < x ≤ (K − 1)−1. By virtue of (2.2), the inequality (2.3)
becomes

K(x−1) log(H(x) + 1) +KH(x) + [K log(H(x) + 1)− 1]h−|h|+KΨ(|x+h|) ≥ 0.

Fix x and denote the left-hand side by F (h). We easily check that F is a convex
function on (−∞, 0] and satisfies F (−γ(H(x))) = F ′(−γ(H(x))) = 0; thus the
above inequality holds true for nonpositive h. On the other hand, F is also convex
on [0,∞) and

F ′(0+) = K log
[
(H(x) + 1)(x+ 1)

]
− 2.

If this one-sided derivative is nonnegative, then automatically F (h) ≥ 0 and we are
done. On the other hand, if F ′(0+) < 0, then a straightforward analysis of the
derivative shows that F attains its minimum at h0 such that

(2.8) log
[
(H(x) + 1)(x+ h0 + 1)

]
= 2/K.

This minimum equals

K(x+ h0 + 1) log
[
(H(x) + 1)(x+ h0 + 1)

]
− 2K log(H(x) + 1) +KH(x)− 2h0 −K(x+ h0)

= 2(x+ 1)− 2K log(H(x) + 1) +KH(x)−K(x+ h0),

which is nonnegative. Indeed, if we write the inequality

2(x+ 1)− 2K log(H(x) + 1) +KH(x) ≥ K(x+ h0),

divide throughout by K, add 1 to both sides and multiply by H(x) + 1, we obtain
the equivalent form

(H(x) + 1)
[
H(x) + 1− 2 log(H(x) + 1) + 2K−1(x+ 1)

]
≥ e2/K ,

by virtue of (2.8). It remains to substitute s = H(x) + 1 ∈ [1, eK
−1

] and make use
of (2.7). Consequently, we have shown that F is a nonnegative function on R.

Step 4. The case x > (K − 1)−1. Here the reasoning is similar to that from the
previous step. For h ≤ 0, the inequality (2.3) can be rewritten in the form

U(x)−K log

(
K − 1

K
(x+ 1)

)
h+KΨ(|x+ h|) ≥ 0.

Fix the number x. The left-hand side, as a function of h, is convex and vanishes,
along with its derivative, for h = −(x + 1)/K; this proves the estimate for all
nonpositive h. If h ≥ 0, the inequality reads

F (h) := U(x)−
[
K log

(
K − 1

K
(x+ 1)

)
+ 2

]
h+KΨ(x+ h) ≥ 0.

The function F is convex on [0,∞) and satisfies F ′(0+) = K log K
K−1 − 2. If this

derivative is nonnegative, then F is positive on [0,∞) and we are done. On the
other hand, if K log K

K−1 < 2 (equivalently, K
K−1 < e2/K), then it is easy to check

that F attains its minimum at h0 satisfying

(2.9)
x+ h0 + 1

x+ 1
=
K − 1

K
e2/K .
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Furthermore, the minimum equals x + 1 − Kh0 ≥ 0. To see the latter bound,
we rewrite it in the form h0 ≤ (x + 1)/K, add x + 1 to both sides and divide
throughout by x+ 1. By (2.9), the estimate becomes K−1

K e2/K ≤ K+1
K , which has

been established in (2.4).
This completes the proof of (2.3). �

3. A martingale inequality

As we have already announced in the first section, the heart of the matter lies
in proving an appropriate martingale inequality. Let us start with introducing the
necessary stochastic background. Suppose that (Ω,F ,P) is a probability space, fil-
tered by (Ft)t≥0, a nondecreasing family of sub-σ-fields of F , such that F0 contains
all the events of probability 0. Let X = (Xt)t≥0 be an adapted continuous-time
martingale, taking values in the Hilbert space H. As usual, we assume that the tra-
jectories of X are right-continuous and have limits from the left. We shall also use
the notation ∆Xt = Xt −Xt− for the jump of X at time t ≥ 0 (we set X0− = X0,
so that ∆X0 = 0). The symbol [X,X] will stand for the quadratic covariance pro-
cess of X: that is, we put [X,X]t =

∑∞
j=1[Xj , Xj ]t, where Xj denotes the j-th

coordinate of X. Here for real valued martingale M , [M,M ] is the usual square
bracket of M , see e.g. Dellacherie and Meyer [11] for details.

The main result of this section is the following statement, which can be regarded
as a probabilistic counterpart of Theorem 1.2.

Theorem 3.1. Suppose that X is a bounded Hilbert-space-valued martingale and
τ is a bounded stopping time. Then for any K > 1 we have

(3.1) E|∆Xτ | ≤ KEΨ(|Xτ |) + L(K).

The constant L(K) is the best for each K. If K ≤ 1, then the above inequality does
not hold with any finite L(K).

Proof. Fix K > 1. By Lebesgue’s monotone convergence theorem, it suffices to
show the estimate for finite-dimensional Hilbert-spaces: so, let us assume that
H = Rd for some d ≥ 1. It follows from the second part of Lemma 2.1 that the
function x 7→ U(|x|), x ∈ Rd, is concave; indeed, for any x, y ∈ Rd we have, by the
triangle inequality,

U(|λx+ (1− λ)y|) ≥ U(λ|x|+ (1− λ)|y|) ≥ λU(|x|) + (1− λ)U(|y|).

Next, let g : Rd → [0,∞) be a C∞ function, supported on the unit ball of Rd and
satisfying

∫
Rd g = 1. For any δ > 0, define Uδ : Rd → R by the convolution

Uδ(x) =

∫
R
U(|x+ δr|)g(r)dr.

The function U δ is of class C∞ and inherits the concavity from the function x 7→
U(|x|). Furthermore, since U(s) ≤ U(0) = L(K) for all s > 0 (see Lemma 2.1 (ii)),
we see that Uδ(x) ≤ L(K) for all x ∈ Rd. An application of Itô’s formula yields

(3.2) Uδ(Xτ ) = I0 + I1 + I2/2 + I3,
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where

I0 = U δ(X0),

I1 =

∫ τ

0+

∇Uδ(Xs−) · dXs,

I2 =

d∑
i,j=1

∫ τ

0+

∂2

∂xi∂xj
Uδ(Xs−) d[Xi, Xj ]cs,

I3 =
∑

0<s≤τ

[
Uδ(Xs)− Uδ(Xs−)− 〈∇U δ(Xs−),∆Xs〉

]
.

Let us analyze the terms I0 − I3 separately. As we have observed above, Uδ does
not exceed L(K), so I0 ≤ L(K). Next, the process (∇U δ(Xs−))s>0 is bounded

(since so is X), which implies that
( ∫ t

0+
∇U δ(Xs−) ·dXs

)
t≥0

is a mean-zero square-

integrable martingale. Consequently, we have EI1 = 0. The term I2 is nonpositive,
which follows directly from the concavity of Uδ. Finally, again by the concavity of
U δ, we see that each summand appearing in I3 is nonpositive; therefore we may
write I3 ≤ U δ(Xτ ) − U δ(Xτ−) − 〈∇Uδ(Xτ−),∆Xτ 〉. Plugging all these facts into
(3.2) and taking expectation of both sides gives

E
[
U δ(Xτ−) + 〈∇U δ(Xτ−),∆Xτ 〉

]
≤ L(K).

Now we let δ → 0 and use Lebesgue’s dominated convergence theorem to obtain

E
[
U(|Xτ−|) + U ′(|Xτ−|)〈X ′τ−,∆Xτ 〉

]
≤ L(K).

In consequence, by Lemma 2.2, we obtain

E|∆Xτ | −KEΨ(|Xτ |) ≤ L(K),

which is the claim. The sharpness of this estimate will be clear from the optimality
of L(K) in (1.2): see the next section and a remark at the end of it. �

4. Proof of Theorem 1.2

4.1. Proof of (1.2). We start from describing the action of the Beurling-Ahlfors
operator on the class of radial functions. For any square-integrable f : [0,∞)→ R,
let F be the associated radial function, given by F (z) = f(|z|2), z ∈ C. Then, as
proved in [5], we have

(4.1) BF (z) =
z̄2

|z|2
Λf(|z|2),

where the operator Λ is defined by

(4.2) Λf(u) =
1

u

∫ u

0

f(v)dv − f(u).

Of course, the above two formulas make sense if f takes values in H, simply by
applying (4.1), (4.2) coordinatewise. Next, let f : [0,∞) → H be a bounded
function. Fix R > 0, put M = R2 and consider the probability space

(Ω,F ,P) = ([0,M ],B([0,M ]), | · |/M),

where B([0,M ]) denotes the family of all Borel subsets of [0,M ] and | · | stands
for the Lebesgue’s measure. For any t ∈ [0,M ], let Ft be the smallest complete
σ-field which contains the interval [0,M − t] and all Borel subsets of [M − t,M ];
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for t > M , we put Ft = F . Obviously, (Ft)t≥0 is a filtration, f can be regarded as
an integrable random variable and thus the process

X = (Xt)t≥0 = (E(f |Ft))t≥0

is a bounded martingale. It is easy to see that for almost all ω ∈ Ω,

Xt(ω) =

{
f(ω) if t ≥M − ω,

1
M−t

∫M−t
0

f(s)ds if t < M − ω.

Furthermore, the random variable τ(ω) = M − ω is an adapted, bounded stopping
time: indeed, for any t ≥ 0 we have {τ ≤ t} = [(M − t)∨ 0,M ] ∈ Ft. Therefore, by
virtue of Theorem 3.1, for any fixed K > 1 we have

1

M

∫ M

0

|Λf(x)|dx = E|∆Xτ | ≤ KEΨ(|Xτ |) + L(K)

=
K

M

∫ M

0

Ψ(|f(x)|)dx+ L(K).

Now apply (4.1) and recall that M = R2 to get∫
B(0,R)

|BF (z)|dz =

∫
B(0,R)

|Λf(|z|2)|dz

=

∫ R

0

|Λf(r2)|2πr dr

= π

∫ R2

0

|Λf(r)|dr

≤ πK
∫ R2

0

Ψ(|f(r)|)dr + πR2L(K)

= K

∫
B(0,R)

Ψ(|F (z)|)dz + L(K) · |B(0, R)|.

(4.3)

This yields the logarithmic estimate for bounded functions. The general case follows
immediately by a standard approximation.

4.2. Sharpness. We exhibit an appropriate example. For a fixed K > 1, let
f : [0, 1]→ R be given by

f(t) =

{
(et)−1/K − 1 if t ∈ (0, e−1],

1− (et)1/K if t ∈ (e−1, 1].

A direct computation shows that

Λf(t) =

{
(et)−1/K(K − 1)−1 if t ∈ (0, e−1],

2
(K2−1)et + (et)1/K(K + 1)−1 if t ∈ (e−1, 1].

Now lengthy, but straightforward calculations lead to∫ 1

0

|Λf(t)|dt =
4K2

(K2 − 1)2e
+

2

(K2 − 1)e
+

Ke1/K

(K + 1)2
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and

K

∫ 1

0

Ψ(|f(t)|) dt =
2K2(K2 + 1)

(K2 − 1)2e
+

K

(K + 1)2
e1/K

−K
(

2K

(K2 − 1)e
− 1 +

K

K + 1
e1/K

)
.

Combining these two equalities, we obtain∫ 1

0

|Λf(t)|dt−K
∫ 1

0

Ψ(|f(t)|) dt = L(K).

Therefore, if we let F : C → R be given by F (z) = f(|z|2)1{|z|≤1}, then the
calculation presented in (4.3) yields

1

|B(0, 1)|

∫
B(0,1)

|BF (z)|dz =
K

|B(0, 1)|

∫
B(0,1)

Ψ(|F (z)|) dz + L(K).

This implies that L(K) is optimal for any K > 1. Finally, the inequality (1.2) does
not hold with any L(K) < ∞ when K ≤ 1. This is the direct consequence of the
fact that L(K) explodes as K decreases to 1.

Remark 4.1. Of course, the reasoning above implies that the constant L(K) in
(3.1) is also sharp (and that the inequality does not hold for K ≤ 1 with any finite
L(K)). Indeed, if (3.1) were valid with a better constant, this would yield the
corresponding improvement of (1.2) which, as we have just shown, is impossible.
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