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Abstract. Let I be an interval contained in R. For a given function f : I → R,

u ∈ I and any 0 < α ≤ 1, set

f]α(u) = sup
1

|J |α

(
1

|J |

∫
J

∣∣∣∣f(x)−
1

|J |

∫
J
f(y)dy

∣∣∣∣2 dx

)1/2

,

where the supremum is taken over all subintervals J ⊆ I which contain u. The

paper contains the proofs of the estimates

`(α)||f]α||L∞(I) ≤ ||f ||Lipα(I) ≤ L(α)||f]α||L∞(I),

where

`(α) = 2
√

2α+ 1, L(α) =
(4α+ 4)(α+1)/(2α+1)

√
2α+ 1

2α

are the best possible. The proof rests on the evaluation of Bellman functions

associated with the above estimates.

1. Introduction

A real-valued locally integrable function f defined on Rn is said to be in BMO,

the space of functions of bounded mean oscillation, if

(1.1) ||f ||BMO1 = sup
Q

〈
|f − 〈f〉Q|

〉
Q
<∞.

Here the supremum is taken over all cubes Q in Rn with edges parallel to the

coordinate axes, and

〈f〉Q =
1

|Q|

∫
Q

f(x)dx
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denotes the average of f overQ. One can consider a slightly less restrictive setting in

which only the cubes Q within a given Q0 are considered; to stress the dependence

on Q0, one uses the notation BMO(Q0). The BMO class, introduced by John and

Nirenberg in [5], plays an important role in analysis and probability, since many

classical operators (maximal, singular integral, etc.) map L∞ into BMO. Another

remarkable result, due to Fefferman [3], asserts that BMO is a dual to the Hardy

space H1. It is well-known that the functions of bounded mean oscillation have very

strong integrability properties (see e.g. [5]). In particular, for each 1 < p <∞, the

p-oscillation

||f ||BMOp := sup
Q

〈
|f − 〈f〉Q|p

〉1/p
Q

is finite for any f ∈ BMO and forms an equivalent seminorm on BMO(Rn). It is

often more convenient to work with || · ||BMO2 than with || · ||BMO1 ; the L2-based

seminorm admits the identity

||f ||BMO2 = sup
Q

{
〈f2〉Q − 〈f〉2Q

}1/2
,

which allows certain algebraic manipulations.

In recent years, there has been a considerable interest in obtaining various sharp

estimates for the BMO class in the one-dimensional setting. Probably the first re-

sult in this direction is that of Slavin and Vasyunin [16], which identifies the optimal

constants in the so-called integral form of John-Nirenberg inequality. Specifically,

if I is a subinterval of R and ϕ : I → R satisfies ||ϕ||BMO2(I) < 1, then

〈eϕ〉I ≤
exp(−||ϕ||BMO2(I))

1− ||ϕ||BMO2(I)
e〈ϕ〉I .

Furthermore, this bound is sharp in the sense that for each ε < 1 there is a function

ϕ satisfying ||ϕ||BMO2(I) = ε and 〈eϕ〉I = e−εe〈ϕ〉I/(1−ε). In particular, this shows

that there is no exponential estimate of the above type when ||ϕ||BMO2(I) ≥ 1. For

related results in this direction, consult the papers [10] by the author, Ivanishvili

et. al. [4], Slavin and Vasyunin [17], Vasyunin [18], and Vasyunin and Volberg [21].
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In this paper we will be interested in a slightly different problem. Given α ∈

[0, n], 1 ≤ p < ∞ and an integrable function f defined on some cube Q0 ⊂ Rn,

define the associated α-sharp function

f ]α,p(u) = sup |Q|−α/n
〈
|f − 〈f〉Q|p

〉1/p
Q
,

where the supremum is taken over all cubes Q ⊆ Q0 containing u. We see that

f ∈ BMO(Q0) if and only if ||f ]0,p||L∞(Q0) <∞ for some (equivalently, all) 1 ≤ p <

∞. Hence, by the above discussion, those f for which the corresponding functions

f ]0,p are bounded, have very strong integrability properties. This gives rise to the

very natural question about the analogue of this statement for positive α. It is not

difficult to see that for such α’s, the boundedness of f ]α,1 implies the α-Lipschitz

property of f (up to a set of measure 0). Indeed, for any cubes Q and Q′ ⊂ Q

satisfying |Q′|/|Q| = 2−n, we have

|〈f〉Q′ − 〈f〉Q| ≤
1

|Q′|

∫
Q′
|f − 〈f〉Q| ≤

2n

|Q|

∫
Q

|f − 〈f〉Q| ≤ 2n|Q|α/n||f ]α||L∞(Q0),

which implies, by Lebesgue’s differentiation theorem,

|f(x)− 〈f〉Q| ≤
2n|Q|α/n

1− 2−nα
||f ]α||L∞(Q0)

for almost all x ∈ Q. Thus, modifying f on a set of measure 0, we obtain an

α-Lipschitz function and

||f ||Lipα(Q0) = sup
a,b∈Q0

|f(a)− f(b)|
|a− b|α

≤ Cn,α||f ]α||L∞(Q0),

where Cn,α depends only on the parameters indicated. In particular, this also

means that all functions f ]α,p, corresponding to different values of p, are equivalent.

The primary goal of this paper is to study sharp bounds for the Lipschitz con-

stants in terms of ||f ]α,2||L∞ in the one-dimensional setting. We have chosen to

work with f ]α,2 because of the convenient identity

(1.2) f ]α,2(u) = sup

{
|J |−α

(
〈f2〉J − 〈f〉2J

)1/2

: J 3 u
}
.
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In what follows, we will skip the lower index 2 and write f ]α instead of f ]α,2.

Here is the formulation of our main result.

Theorem 1.1. Let I be an interval contained in R and let f : I → R be a contin-

uous function. Then

(1.3) `(α)||f ]α||L∞(I) ≤ ||f ||Lipα(I) ≤ L(α)||f ]α||L∞(I),

where

`(α) = 2
√

2α+ 1 and L(α) =
(4α+ 4)(α+1)/(2α+1)

√
2α+ 1

2α

are the best possible.

Note that for α = 1, we have `(α) = L(α) = 2
√

3 and hence

||f ||Lip1(I) = 2
√

3||f ]1||L∞(I),

which is not difficult to prove directly.

Our approach will rest on a modification of the Bellman function method, a

powerful and general tool used widely in probability and harmonic analysis. This

approach has its origins in the theory of stochastic optimal control, and its fruitful

connection with other areas of mathematics was firstly observed by Burkholder,

during the study of certain sharp inequalities for martingale transforms [2] and

the unconditional constant of the Haar system [1]; for the continuation of this

probabilistic path, consult the monograph [9]. Another line of research, which

pushed the method towards applications in harmonic analysis, was initiated by

the seminal paper [7] by Nazarov and Treil (inspired by the preprint version of [8]).

Since then, the technique has been exploited and extended in numerous settings; see

e.g. the works of Kovač [6], Pereyra [11], Petermichl [12], Petermichl and Wittwer

[13], Rey and Reznikov [14], Vasyunin and Volberg [19, 20], Wittwer [22], as well

as the papers on BMO cited above.
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Let us describe the organization of the paper. Theorem 1.1 will be proved in

the three sections below. In the next section, we provide a sharp upper bound

for supI f in terms of 〈f〉I , 〈f2〉I and ||f ]α||L∞(I); precisely, we will identify the

associated Bellman function

Bα(x, y, t) = sup

{
sup
I
f : 〈f〉I = x, 〈f2〉I = y, ||f ]α||

1/α
L∞(I)|I| = t

}
.

Section 3 is devoted to a dual version of this result. Namely, we will find there the

explicit expression for

Cα(x, y, t) = sup

{
inf
I
f : 〈f〉I = x, 〈f2〉I = y, ||f ]α||

1/α
L∞(I)|I| = t

}
.

In the final part of the paper, we combine these two objects and provide the proof

of Theorem 1.1.

2. Upper bound for supI f

We start this section with introducing certain special objects which will be used

throughout the paper. Let α be a fixed number belonging to the interval (0, 1]. The

symbol Dα will stand for the parabolic-type region {(x, y, t) ∈ R× [0,∞)× [0,∞) :

0 ≤ y − x2 ≤ t2α}. A crucial property of this set, which will be freely used

below, is the following: if f : I → R is a function satisfying ||f ]α||L∞(I) ≤ 1, then

(〈f〉J , 〈f2〉J , |J |) lies in Dα for any subinterval J of I. This fact is an immediate

consequence of (1.2).

Next, we will need a certain special function s on Dα. Let us establish the

following technical fact.

Lemma 2.1. For any (x, y, t) ∈ Dα with y > x2, there is a unique number s =

s(x, y, t) ≥ 0 satisfying

(2.1)
s+ 1 + (2α+ 1)s

(s+ 1)2α+2
=
y − x2

t2α
.

Furthermore, the obtained function s : Dα \ {(x, y, t) : y > x2} → [0,∞) is contin-

uous and of class C1 in the interior of Dα.
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Proof. Denote the left-hand side of (2.1) by F (s). The function F is strictly de-

creasing on [0,∞): indeed, we have

F ′(s) = − (2α+ 2)(2α+ 1)s

(s+ 1)2α+3
< 0

when s > 0. Thus, the existence and uniqueness of s(x, y, t) follows from the

observation that F (0) = 1 ≥ (y − x2)/t2α > 0 = lims→∞ F (s). The second part of

the lemma, concerning the regularity of s, is a consequence of standard theorems

on implicit functions. �

Figure 1. The graphical interpretation of the parameter s =
s(x, y, t). The point (x, y) splits the tangent line segment PQ in
the ratio 1 : s.

In what follows, we will often write s instead of s(x, y, t); this should not lead

to any confusion. Before we proceed, let us describe some geometrical meaning

behind the definition of the parameter s. This will be quite helpful in our further

considerations, as the Bellman functions Bα, Cα will depend somewhat on this

graphical interpretation. Namely, s = s(x, y, t) is the unique number with the

following property. There is a point P = P (x, y, t) lying on the parabola y = x2

and a point Q = Q(x, y, t) lying on the parabola y = x2 +
(

t
s+1

)2α

such that the
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line segment PQ is tangent to the latter parabola, (x, y) ∈ PQ and

dist(P, (x, y))

dist(Q, (x, y))
=

1

s
.

See Figure 1. One easily finds the coordinates of the points P and Q: we have

(2.2) P =

(
x−
√

2α+ 1 tα

(s+ 1)α+1
,

(
x−
√

2α+ 1 tα

(s+ 1)α+1

)2
)

and

(2.3) Q =

(
x+

√
2α+ 1stα

(s+ 1)α+1
,

(
x+

√
2α+ 1stα

(s+ 1)α+1

)2

+

(
t

s+ 1

)2α
)
.

A direct differentiation of (2.1) with respect to variables x, y and t yields

sx =
−2x(s+ 1)2α+2

(2α+ 2)
(
t2α − (y − x2)(s+ 1)2α+1

) =
2x(s+ 1)2α+3

(2α+ 2)(2α+ 1)st2α
,

sy =
(s+ 1)2α+2

(2α+ 2)
(
t2α − (y − x2)(s+ 1)2α+1

) = − (s+ 1)2α+3

(2α+ 2)(2α+ 1)st2α
,

st =
2α
(
(2α+ 2)s+ 1

)
(s+ 1)

(2α+ 2)(2α+ 1)st
.

(2.4)

We are ready to introduce the Bellman function, which will be used in the proof

of the upper bound for supI f . Define Bα : Dα → R by the formula

Bα(x, y, t) =


x if y = x2,

x+
√

2α+ 1

(
t

s+ 1

)α [
α+ 1

α
− 1

s+ 1

]
if y > x2.

By (2.4), we easily compute the formulae for partial derivatives of Bα:

Bαx(x, y, t) = 1−
√

2α+ 1(α+ 1)stα

(s+ 1)α+2
sx = 1− x(s+ 1)α+1

√
2α+ 1 tα

,

Bαy(x, y, t) = −
√

2α+ 1(α+ 1)stα

(s+ 1)α+2
sy =

(s+ 1)α+1

2
√

2α+ 1 tα
,

Bαt(x, y, t) =
(α+ 1)tα−1

√
2α+ 1(s+ 1)α

.

(2.5)
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The key property of Bα is described in the statement below. In a sense, it can be

regarded as a concavity-type condition (the “main inequality”, in the terminology

introduced in [7]).

Theorem 2.2. Suppose that (x, y, t), (x±, y±, t±) ∈ Dα satisfy

(2.6) x = ax+ + (1− a)x−, y = ay+ + (1− a)y−, t+ = at, t− = (1− a)t

for some a ∈ (0, 1). Then

(2.7) Bα(x, y, t) ≥ max{Bα(x−, y−, t−), Bα(x+, y+, t+)}.

Proof. Let us first exclude the trivial case (x+, y+) = (x, y). If this equation holds

true, then we also have (x−, y−) = (x, y) and the assertion follows at once from the

estimates t± ≤ t and Bαt ≥ 0 (see (2.5)).

So, we may assume that (x−, y−) and (x+, y+) are different from (x, y). By

symmetry, it is enough to establish the bound Bα(x, y, t) ≥ Bα(x+, y+, t+). We

start with a certain geometric, optimization-type argument. Namely, fix t and the

positions of (x, y) and (x+, y+); next, start moving the point (x−, y−) along the

line passing through (x, y) and (x+, y+). Clearly, any alteration of the position

of (x−, y−) changes the values of a, t+ and t− (which are still assumed to satisfy

(2.6)). Of course, if (x−, y−) moves away from (x, y), then the number a increases

and hence so do t+ and Bα(x+, y+, t+) (here we again use the bound Bαt ≥ 0).

Consequently, it suffices to show the inequality Bα(x, y, t) ≥ Bα(x+, y+, t+) under

the assumption that (x−, y−) lies in the farthest position from (x, y). On the other

hand, from the assumption (x−, y−, t−) ∈ Dα, we infer that y− ≥ x2
−. Thus, the

farthest position of (x−, y−) is precisely the intersection point of the halfline starting

from (x+, y+) and passing through (x, y), with the parabola y = x2. Summarizing,

we will be done if we show the inequality Bα(x, y, t) ≥ Bα(x+, y+, t+) under the

assumption x− = u, y− = u2 for some u ∈ R.

To achieve this goal, it is natural to join the points (x, y, t) and (x+, y+, t+)

with some curve and then show the monotonicity of Bα along this set. Precisely,
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consider the function

G(δ) = Gx,y,t,u(δ)

= Bα

(
x+ δ(x− u),min

{
y + δ(y − u2), (x+ δ(x− u))2 +

(
t

1 + δ

)2α
}
,

t

1 + δ

)
.

Observe that G(0) = Bα(x, y, t) and G(1/a− 1) = Bα(x+, y+, t+). The reason why

we use the above complicated formula instead of much simpler (and more natural)

function

δ 7→ Bα

(
x+ δ(x− u), y + δ(y − u2),

t

1 + δ

)
is that the point

(
x+ δ(x− u), y + δ(y − u2), t

1+δ

)
need not lie in Dα; the above

correction assures this inclusion.

So, we will be done if we show that G is nonincreasing on [0, 1/a− 1] or, equiv-

alently, G′(δ+) ≤ 0 for δ ∈ [0, 1/a− 1). Observe that we have the translation-type

property

Gx,y,t,u(δ + η) = Gx+δ(x−u),y+δ(y−u2),t/(1+δ),u

(
η

1 + δ

)
for any δ, η ≥ 0 with δ+ η ≤ 1/a− 1. Hence it is enough to prove that G′(0+) ≤ 0

for all “base” parameters x, y, t and u. Assume first that y − x2 < t2α. Then for

small values of δ we have G(δ) = Bα

(
x+ δ(x− u), y + δ(y − u2), t

1+δ

)
and hence

G′(0+) = (x− u)Bαx(x, y, t) + (y − u2)Bαy(x, y, t)− tBαt(x, y, t).

By (2.5), we have Bαy(x, y, t) > 0. Consequently, the right-hand side above, con-

sidered as a function of u, attains its global maximum at

umax = − Bαx(x, y, t)

2Bαy(x, y, t)
= x−

√
2α+ 1 tα

(s+ 1)α+1
.

It is easy to verify that for this particular choice of u, we have G′(0+) = 0, as

desired. Next, suppose that y−x2 = t2α. We consider two cases. If y−u2 ≤ 2x(x−

u)−2αt2α, then a direct differentiation gives y+δ(y−u2) ≤ (x+δ(x−u))2+
(

t
1+δ

)2α

for δ close to 0. Thus G(δ) = Bα

(
x+ δ(x− u), y + δ(y − u2), t

1+δ

)
for such δ and
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the whole reasoning from the preceding case is still valid. Hence it remains to

analyze the case y − x2 = t2α and y − u2 > 2x(x − u) − 2αt2α. Subtracting these

two algebraic facts, we get (x− u)2 < (2α+ 1)t2α, or

(2.8) |x− u| <
√

2α+ 1 tα.

Next, for such x, y, t and u, we have

G(δ) = Bα

(
x+ δ(x− u), (x+ δ(x− u))2 +

(
t

1 + δ

)2α

,
t

1 + δ

)

when δ > 0 is sufficiently small. Hence

G′(0+) = (x− u)Bαx(x, y, t) +
(
2x(x− u)− 2αt2α

)
Bαy(x, y, t)− tBαt(x, y, t)

= x− u−
√

2α+ 1 tα < 0,

by virtue of (2.8). The proof is complete. �

We are ready to establish the main result of this section.

Theorem 2.3. For any α and an arbitrary continuous function f : I → R with

||f ]α||L∞(I) <∞ we have the estimate

(2.9) sup
I
f ≤ Bα

(
〈f〉I , 〈f2〉I , ||f ]α||

1/α
L∞(I)|I|

)
.

This inequality is sharp: for any α ∈ (0, 1] and any x, y with x2 < y ≤ x2 + |I|2α,

there is a function f : I → R satisfying 〈f〉I = x, 〈f2〉I = y and ||f ]α||L∞(I) = 1,

for which both sides above are equal.

Before we turn to the proof, let us make some important observations. First, by

passing from f to −f , we get the following.

Corollary 2.4. For any α and an arbitrary continuous function f : I → R with

||f ]α||L∞(I) <∞ we have the estimate

(2.10) inf
I
f ≥ −Bα

(
−〈f〉I , 〈f2〉I , ||f ]α||

1/α
L∞(I)|I|

)
.
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This inequality is sharp: for any α ∈ (0, 1] and any x, y with x2 < y ≤ x2 + |I|2α,

there is a function f : I → R satisfying 〈f〉I = x, 〈f2〉I = y and ||f ]α||L∞(I) = 1,

for which both sides above are equal.

By (2.5), we have Bαy ≥ 0; furthermore, we have 〈f2〉I ≤ 〈f〉2I + ||f ]α||2L∞(I)|I|
2α.

Combining these two observations gives

Bα(〈f〉I , 〈f2〉I , ||f ]α||
1/α
L∞(I)|I|) ≤ Bα(〈f〉I , 〈f〉2I + ||f ]α||2L∞(I)|I|

2α, ||f ]α||
1/α
L∞(I)|I|)

= 〈f〉I +

√
2α+ 1

α
||f ]α||L∞(I)|I|α.

Combining this with the above theorem and its corollary, we get the following result.

Corollary 2.5. For any α and an arbitrary function f : I → R with ||f ]α||L∞(I) <

∞ we have the sharp estimates

sup
I
f ≤ 〈f〉I +

√
2α+ 1

α
||f ]α||L∞(I)|I|α, inf

I
f ≥ 〈f〉I −

√
2α+ 1

α
||f ]α||L∞(I)|I|α.

Proof of (2.9). By homogeneity, we may and do assume that ||f ]α||L∞(I) ≤ 1. For

any nonnegative integer n, let In denote the n-th dyadic generation of I. That

is, put I0 = {I}, I1 = {I`, Ir} (here and below, I` and Ir denote the left and

the right half of an interval I), I2 = {I``, I`r, Ir`, Irr}, and so on. Let fn be the

conditional expectation of f with respect to In: fn is constant on each element of

In and fn|J ≡ 〈f〉J for each J ∈ In. Let gn denote the conditional expectation of

f2 with respect to In.

The key point in the proof is to show that the sequence
(

supI Bα(fn, gn, |I|/2n)
)
n

is nonincreasing. To see this, pick an arbitrary n and an interval J ∈ In. We have

fn|J =
1

|J |

∫
J

f =
1

|J |

(∫
J`
f +

∫
Jr
f

)
=

1

2

(
1

|J`|

∫
J`
f +

1

|Jr|

∫
Jr
f

)
=

1

2
fn+1|J` +

1

2
fn+1|Jr

and, similarly,

gn|J =
1

2
gn+1|J` +

1

2
gn+1|Jr .
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Furthermore, since f ]α ≤ 1, we see that

gn|J − (fn|J)2 =
1

|J |

∫
J

(f − 〈f〉J)2 ≤ |J |2α = (|I|/2n)2α,

and similarly for gn|J` − (fn|J`)2, gn|Jr − (fn|Jr )2. Consequently, by Theorem 2.2,

we get

Bα(fn|J , gn|J , |I|/2n)

≥ max
{
Bα(fn+1|J` , gn+1|J` , |I|/2n+1), Bα(fn+1|Jr , gn+1|Jr , |I|/2n+1)

}
.

Taking the supremum over all J , we obtain

sup
I
Bα(fn, gn, |I|/2n) ≥ sup

I
Bα(fn+1, gn+1, |I|/2n+1)

and hence for each n and each x ∈ I,

Bα(fn(x), gn(x), |I|/2n) ≤ Bα(f0, g0, |I|) = Bα(〈f〉I , 〈f2〉I , |I|).

However, we have Bα(x, y, t) ≥ x, which is evident from the very definition of Bα.

Plugging this estimate above gives fn(x) ≤ Bα(〈f〉I , 〈f2〉I , |I|). It remains to use

the pointwise convergence fn → f as n→∞ (which follows by the continuity of f)

to obtain (2.9). �

In the proof of the sharpness of (2.9), we will require the following auxiliary fact.

Lemma 2.6. For any α ∈ (0, 1] and any 1 ≤ c ≤ r, consider the function ϕ(c) :

[0, r]→ R, given by

ϕ(c)(p) =

(
1 +

1

α

)√
2α+ 1 min{p, c}α.

Then ||ϕ]α||L∞([0,r]) = 1.

Proof. Let [a, b] be an arbitrary subinterval of [0, r]. First we will prove that

〈(ϕ(c))2〉[a,b] − 〈ϕ(c)〉2[a,b]
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does not decrease as c increases from 1 to r. This monotonicity is clear if b ≤ 1, since

then the above expression does not depend on c. This monotonicity is also clear

when c runs over the interval [b, r]. Thus we need to examine the local behavior of

the above difference when c ∈ [a, b]. For such c, we have

〈(ϕ(c))2〉[a,b] − 〈ϕ(c)〉2[a,b]

=
c2α+1 − a2α+1

(2α+ 1)(b− a)
+
c2α(b− c)
b− a

−
(
cα+1 − aα+1

(α+ 1)(b− a)
+
cα(b− c)
b− a

)2

.

Denote the right-hand side by F (c). A little calculation yields

F ′(c) =
2αcα−1(b− c)
(b− a)2(α+ 1)

[
(α+ 1)cα(c− a)− (cα+1 − aα+1)

]
≥ 0,

where the latter bound follows from the mean-value property. This gives the afore-

mentioned monotonicity and implies that

〈(ϕ(c))2〉[a,b] − 〈ϕ(c)〉2[a,b] ≤ 〈(ϕ
(r))2〉[a,b] − 〈ϕ(r)〉2[a,b].

Now we will prove that the right hand side does not exceed (b− a)2α. We compute

that

〈ϕ(r)〉[a,b] =

(
1 +

1

α

)√
2α+ 1

bα+1 − aα+1

(α+ 1)(b− a)

and

〈(ϕ(r))2〉[a,b] =

(
1 +

1

α

)2

(2α+ 1)
b2α+1 − a2α+1

(2α+ 1)(b− a)
,

so we may write

1

(b− a)2α

(
〈(ϕ(r))2〉[a,b] − 〈ϕ(r)〉2[a,b]

)
=

(
1 +

1

α

)2

(2α+ 1)

[
b2α+1 − a2α+1

(b− a)2α+1(2α+ 1)
−
(

bα+1 − aα+1

(b− a)α+1(α+ 1)

)2
]

=

(
1 +

1

α

)2

(2α+ 1)

[
w2α+1 − (w − 1)2α+1

2α+ 1
−
(
wα+1 − (w − 1)α+1

α+ 1

)2
]
,

where w = b/(b− a) ≥ 1. If a = 0, then w = 1 and the above expression is equal to

1; in general, this is the largest possible value which can be attained. To see this,
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denote the expression in the square brackets by f(w) and note that

f ′(w) = w2α − (w − 1)2α − 2

(
wα+1 − (w − 1)α+1

α+ 1

)
(wα − (w − 1)α)

= 2(wα − (w − 1)α)

[
wα + (w − 1)α

2
−
∫ w

w−1

vαdv

]
≤ 0,

since v 7→ vα is concave. This completes the proof of the bound ||(ϕ(c))]α||L∞([0,r]) ≤

1. Actually, we have equality here: it suffices to compute the averages over the

interval [0, 1]. �

Sharpness of (2.9). Fix x, y with y > x2 and put t = |I|. Let s = s(x, y, t) be

the number given in (2.1). First we will construct a slightly different function

than it was mentioned in the statement of Theorem 2.3. Namely, we will find

f : [0, 1 + s]→ R satisfying

(2.11) 〈f〉[0,1+s] = x, 〈f2〉[0,1+s] = y, ||f ]α||L∞([0,1+s]) = (t/(s+ 1))
α

and such that

(2.12) sup
I
f = Bα

(
〈f〉I , 〈f2〉I , ||f ]α||

1/α
L∞([0,1+s])

∣∣[0, 1 + s]
∣∣) = Bα(x, y, t).

To get the function of Theorem 2.3, let T be the affine mapping which sends I onto

[0, 1 + s]; then the function p 7→ f(T (p)) is the desired object. This follows from

the observation that composing f with an affine mapping preserves the averages

and multiplies the α-sharp function by the constant (T ′)α.

The function satisfying (2.11) and (2.12) is given by

f(p) = x+

√
2α+ 1 stα

(s+ 1)α+1
+

√
2α+ 1

α

(
t

s+ 1

)α
−
(

1 +
1

α

)√
2α+ 1

(
t

s+ 1

)α
pα
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if p ∈ [0, 1], and f(p) = x−
√

2α+ 1 tα(s+ 1)−α−1 when p ∈ (1, 1 + s]. Let us first

verify that the appropriate averages are correct. We have

〈f〉[0,1+s] = x+
1

s+ 1

[√
2α+ 1 stα

(s+ 1)α+1
+

√
2α+ 1

α

(
t

s+ 1

)α
−
(

1 +
1

α

)√
2α+ 1

(
t

s+ 1

)α
· 1

α+ 1
−
√

2α+ 1 tα

(s+ 1)α+1
· s
]

= x

and

〈f2〉[0,1+s] =
1

s+ 1

[(
x+

√
2α+ 1 stα

(s+ 1)α+1
+

√
2α+ 1

α

(
t

s+ 1

)α)2

− 2

(
x+

√
2α+ 1 stα

(s+ 1)α+1
+

√
2α+ 1

α

(
t

s+ 1

)α)
×

×
(

1 +
1

α

)√
2α+ 1

(
t

s+ 1

)α
· 1

α+ 1

+

(
1 +

1

α

)2

(2α+ 1)

(
t

s+ 1

)2α

· 1

2α+ 1

+

(
x−
√

2α+ 1 tα

(s+ 1)α+1

)2

s

]
= x2+

t2α

(s+ 1)2α+2

[
s+ 1 + (2α+ 1)s

]
= y,

where the latter equality follows from the definition (2.1) of the parameter s. Next,

observe that supp∈[0,1+s] f(p) = f(0) = Bα(x, y, t), so it remains to show that

||f ]α||L∞([0,1+s]) ≤ (t/(s + 1))α. This is equivalent to saying that for any [a, b] ⊆

[0, 1 + s],

(2.13) 〈f2〉[a,b] − 〈f〉2[a,b] ≤
(

t

s+ 1

)2α

(b− a)2α.
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The left-hand side does not change if we alter the sign of f and/or add a constant

to f . Thus, if instead of working with f , we consider the function

p 7→ −f(p) + x+

√
2α+ 1 stα

(s+ 1)α+1
+

√
2α+ 1

α

(
t

s+ 1

)α
=

(
1 +

1

α

)√
2α+ 1

(
t

s+ 1

)α
min{p, 1}α =

(
t

s+ 1

)α
ϕ(1)(p),

then the left-hand side of (2.13) remains the same. But, as we have verified in the

previous lemma, we have ||(ϕ(c))]α||L∞([0,1+s]) = 1; this implies ||f ]α||L∞([0,1+s]) ≤

(t/(s+ 1))α and the proof is complete. �

3. Lower bound for supI f

Now we will study a dual statement to Theorem 2.3. The Bellman function

Cα : Dα → R, corresponding to this new problem, is defined by the formula

Cα(x, y, t) =


x if y = x2,

x−
√

2α+ 1 tα

(s+ 1)α+1
if y > x2.

Here s = s(x, y, t) is the special parameter defined in (2.1). The function Cα

has a very nice geometrical interpretation (see Figure 1): Cα(x, y, t) is just the

x-coordinate of the point P = P (x, y, t).

Directly from (2.4) and the above definition, we compute that

Cαx(x, y, t) = 1 +
x(s+ 1)α+2

√
2α+ 1 stα

,

Cαy(x, y, t) = −
√

2α+ 1 (s+ 1)α+1

2(2α+ 1)stα
< 0,

Cαt(x, y, t) =
αtα−1

√
2α+ 1 s(s+ 1)α

> 0.

(3.1)

We will require the following auxiliary technical fact.

Lemma 3.1. Let c < 1 be fixed. Then for any triple (x, y, t) ∈ R× [0,∞)× [0,∞)

such that x2 ≤ y ≤ x2 + c2t2α, we have s(x, y, t) ≥ s0, where s0 > 0 depends only

on c.
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Proof. This follows at once from the proof of Lemma 2.1. By the above assumptions

on (x, y, t), we see that s must satisfy

s+ 1 + (2α+ 1)s

(s+ 1)2α+2
≤ 1

c2
.

This is equivalent to s ≥ s0, where s0 is the unique strictly positive solution to

s0 + 1 + (2α+ 1)s0

(s0 + 1)2α+2
=

1

c2
.

This is precisely the claim. �

We turn our attention to the analogue of Theorem 2.2.

Theorem 3.2. For any fixed c < 1, there is a constant κ ∈ (0, 1/2), depending

only on c, such that the following holds. If f : I → R satisfies ||f ]α||L∞(I) ≤ c, then

there is a splitting I = I− ∪ I+ for which κ < |I+|/|I| < 1− κ and

Cα(〈f〉I , 〈f2〉I , |I|) ≥ Cα(〈f〉I+ , 〈f2〉I+ , |I+|).

Proof. Let s0 = s0(c) be the number guaranteed by the preceding lemma. We will

show that κ = s0/(s0 +1) works fine. Pick an arbitrary f : I → R and let x = 〈f〉I ,

y = 〈f2〉I and t = |I|. If y = x2, then f is constant on I and hence one can take

the splitting of I into halves. So, from now on, we assume that y > x2. Suppose

that I = [a, b]; for any r ∈ (a, b), let I−(r) = [a, r] and I+(r) = (r, b]. We will also

use the notation x±(r) = 〈f〉I±(r), y±(r) = 〈f2〉I±(r) and t±(r) = |I±(r)|. Clearly,

x±, y± and t± are continuous functions of the splitting parameter r. Recall the

points P = P (x, y, t), Q = Q(x, y, t) given by (2.2) and (2.3) (see also Figure 1).

We know that (x, y) belongs to the line segment PQ. Next, it is not difficult to

check (and follows from the geoemtrical interpretation of the parameter s) that if

R = (Rx, Ry) is another point from the segment PQ, then

P

(
Rx, Ry, t

x− Px
Rx − Px

)
= P, Q

(
Rx, Ry, t

x− Px
Rx − Px

)
= Q.
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In particular, this implies

(3.2) Cα

(
Rx, Ry, t

x− Px
Rx − Px

)
= Px = Cα(x, y, t).

Now, we consider two cases. Let us first suppose that there is r satisfying δ <

|I+(r)|/|I| < 1− δ, such that the point (x+, y+) lies on the line PQ. Then (x−, y−)

also belongs to this line, since (x, y) and (x±, y±) are colinear. Furthermore, (x, y)

is the average of (x±, y±), so one of the points (x−, y−), (x+, y+) lies between P

and (x, y). By symmetry, we may assume that (x+, y+) has this property. Then

x+ ≤ x and t+ ≤ t ≤ t(x−Px)/(x+−Px), so (3.2) and the inequality Cαt ≥ 0 give

Cα(x+, y+, t+) ≤ Cα
(
x+, y+, t

x− Px
x+ − Px

)
= Cα(x, y, t)

and hence the splitting I = I− ∪ I+ has the desired property. Thus, it remains to

consider the case in which for any r such that κ < |I+(r)|/|I| < 1 − κ, the points

(x−(r), y−(r)) lie on the same side of the line of PQ (and hence all (x+(r), y+(r))

lie on the opposite side). By symmetry, we may assume that all (x+(r), y+(r))

lie above the line PQ; then all (x−(r), y−(r)) lie below and hence in particular

x−(r) ≥ Cα(x, y, t). Pick r such that |I+(r)|/|I| = 1 − κ: this gives the required

splitting, as we will show now. Since Cαy ≤ 0, we have

Cα(x+, y+, t+) ≤ Cα(x+, y
′, t+),

where y′ is the unique positive number such that (x+, y
′) lies on the line PQ.

Observe that

x+ =
x− κx−

1− κ
≤ x− κCα(x, y, t)

1− κ
= x+

κ

1− κ

√
2α+ 1 tα

(s+ 1)α+1
≤ x+

√
2α+ 1 stα

(s+ 1)α+1
= Qx,

since s ≥ κ/(1 − κ) (here we use the previous lemma). Consequently, (x+, y
′) lies

between P and Q; if it lies between (x, y) and P , we get Cα(x+, y
′, t+) ≤ Cα(x, y, t)

by the same argument as above. If it lies between (x, y) and Q, then

Cα(x+, y
′, t+) = Cα

(
x+, y

′, t
x− x−
x+ − x−

)
≤ Cα

(
x+, y

′, t
x− Px
x+ − Px

)
= Cα(x, y, t),
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again by the inequality Cαt ≥ 0 and (3.2). This proves the claim. �

Equipped with the above theorem, we are ready to establish the following fact,

which is the main result of this section.

Theorem 3.3. For any continuous function f : I → R satisfying ||f ]α||L∞(I) <∞,

we have the inequality

(3.3) inf
I
f ≤ Cα(〈f〉I , 〈f2〉I , ||f ]α||

1/α
L∞(I)|I|).

This bound is sharp: for any x, y with x2 < y ≤ x2 + |I|2α, there is f : I → R

satisfying 〈f〉I = x, 〈f2〉I = y and ||f ]α||L∞(I) = 1, for which both sides above are

equal.

Remark 3.4. As in the previous section, the passage from f to −f yields the

corresponding lower bound for supI f .

Proof of (3.3). By homogeneity, we may assume that ||f ]α||L∞(I) ≤ 1. Fix c < 1

and let f̃ = cf . By an inductive use of the preceding theorem, we construct

an increasing family (In)n≥0 of partitions of I with respect to f̃ . Namely, put

I0 = {I}; next, having successfully defined In, we pick an arbitrary J ∈ In and

apply the above theorem to the function f̃ |J ; this gives us the splitting J = J−∪J+,

and we set In+1 = {J± : J ∈ In}. Note that the diameter of In+1 converges to

0: we have supn{|J | : J ∈ In} ≤ (1 − κ)n|I|, where κ = κ(c) is the number

coming from the preceding theorem. Now, define fn, gn to be the conditional

expectations of f̃ and f̃2 with respect to In; furthermore, for any x ∈ I and any

integer n, let In(x) be the unique element of In which contains x. Then, essentially

in the same manner as in the proof of Theorem 2.3, we show that the sequence

(inf {Cα(fn(x), gn(x), |In(x)|) : x ∈ I})n≥0, is nonincreasing. Consequently, we get

inf
x∈I

Cα(fn(x), gn(x), |In(x)|) ≤ Cα(〈f̃〉I , 〈f̃2〉I , |I|).
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But Cα(x, y, t) ≥ x −
√

2α+ 1 tα for all (x, y, t) and, as we have just noted,

diam In ≤ (1− κ)n. Combining these observations with the above bound gives

inf
I
f̃ −
√

2α+ 1(1− κ)nα ≤ inf
I
fn −

√
2α+ 1(1− κ)nα ≤ Cα(〈f̃〉I , 〈f̃2〉I , |I|).

It remains to let n → ∞ to get infI f̃ ≤ Cα(〈f̃〉I , 〈f̃2〉I , |I|). Finally, letting c ↑ 1

yields the claim. �

Sharpness. Fix x, y with y > x2 and put t = |I|. Let s = s(x, y, t) be the number

given in (2.1). As previously, we will construct a slightly different function than it

was announced in Theorem 3.3. Namely, it is more convenient to find f : [0, 1+s]→

R such that

〈f〉[0,1+s] = x, 〈f2〉[0,1+s] = y, ||f ]α||L∞(I) ≤ (t/(s+ 1))
α

and such that

inf
I
f ≤ Cα

(
〈f〉I , 〈f2〉I , ||f ]α||

1/α
L∞(I)

∣∣[0, 1 + s]
∣∣) = Cα(x, y, t).

To get the function of Theorem 3.3, we compose f with an appropriate affine map-

ping. Actually, we exploit the same functions as in Theorem 2.3: we immediately

check that the function f constructed there satisfies

inf
I
f = f(1) = Cα(x, y, t). �

4. Two-sided bounds

In this part of the paper we combine the results obtained in the preceding two

sections to establish the sharp comparison of Lipschitz constants and the size of

the function f ]α. We start with the right inequality of (1.3).

Theorem 4.1. Let f : I → R be a continuous function satisfying ||f ]α||L∞(I) <∞.

Then

(4.1) ||f ||Lipα(I) ≤
(4α+ 4)(α+1)/(2α+1)

√
2α+ 1

2α
||f ]α||L∞(I)
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and the constant on the right is the best possible.

At the first glance, the above bound seems to be just a trivial combination of the

estimates of Corollary 2.5. Indeed, for any a, b ∈ I, a < b, these estimates imply

|f(a)− f(b)| ≤ sup
[a,b]

f − inf
[a,b]

f ≤ 2
√

2α+ 1

α
||f ]α||L∞([a,b])|a− b|α

≤ 2
√

2α+ 1

α
||f ]α||L∞(I)|a− b|α.

This gives ||f ||Lipα(I) ≤ 2
√

2α+1
α ||f ]α||L∞(I), which is slightly worse than (4.1). To

obtain the best constant, we will have to proceed a bit more carefully.

Proof of (4.1). By homogeneity, we may assume that ||f ]α||L∞(I) ≤ 1. We need to

show that for all a, b ∈ I with a < b, we have

|f(a)− f(b)| ≤ (2α+ 2)(α+1)/(2α+1)
√

2α+ 1

α2α
|a− b|α.

Actually, by restricting to [a, b] if necessary, we may assume from the very beginning

that a and b are the endpoints of I. It is convenient to split the reasoning into two

steps.

Step 1. Some reductions. It suffices to show the assertion for f satisfying the

antisymmetric condition

(4.2) f(x) = −f(a+ b− x) for all x ∈ I.

To see this, consider the function f̃ on I, given by f̃(x) = (f(x)− f(a+ b− x))/2.

This function satisfies (4.2), we have |f̃(a)− f̃(b)| = |f(a)− f(b)| and

f̃ ]α(x) = sup
J3x

1

|J |α
〈
|f̃ − 〈f̃〉J |2

〉1/2
J

≤ sup
J3x

1

|J |α
(〈
|f − 〈f〉J |2

〉1/2
J

+
〈
|f(a+ b− ·)− 〈f(a+ b− ·)〉J |2

〉1/2
J

)
= sup
J3x

1

|J |α
(〈
|f − 〈f〉J |2

〉1/2
J

+
〈
|f − 〈f〉a+b−J |2

〉1/2
a+b−J

)
≤ ||f ]α||L∞(I),
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where we have used the standard notation a+ b− J = {a+ b− j : j ∈ J}. Hence

||f̃ ]α||L∞(I) ≤ ||f ]α||L∞(I), and having established (4.1) for functions f satisfying

(4.2), we deduce this result in the general setting as well. The next reduction is

that we may assume that

(4.3) f is nonpositive on I` and nonnegative on Ir,

where, as previously, I`, Ir denote the left and the right half of I. To see this, take

an arbitrary f satisfying (4.2) and put

f̃(x) =


−|f(x)| if x ∈ I`,

|f(x)| if x ∈ Ir.

Then f̃ has the appropriate sign on I` and Ir; furthermore, we have |f̃(a)− f̃(b)| =

|f(a)|+ |f(b)| ≥ |f(a)− f(b)|. Finally, note that for any x ∈ I,

f̃ ]α(x) = sup
J3x

1

|J |α
(
〈f̃2〉J − 〈f̃〉2J

)1/2

≤ sup
J3x

1

|J |α
(
〈f2〉J − 〈f〉2J

)1/2
.

To justify the last passage, we use the identity f̃2 = f2 and the fact that f and f̃

satisfy the symmetry condition (4.2): setting J̃ = J \ (a+ b− J), we may write

|〈f〉J | =
1

|J |

∣∣∣∣∫
J

f

∣∣∣∣ =
1

|J |

∣∣∣∣∫
J̃

f

∣∣∣∣ ≤ 1

|J |

∣∣∣∣∫
J

f̃

∣∣∣∣ =
1

|J |

∣∣∣∣∫
J̃

f̃

∣∣∣∣ = |〈f̃〉J |.

So ||f̃ ]α||L∞(I) ≤ ||f ]α||L∞(I) and it is enough to show (4.1) under (4.2) and (4.3).

Step 2. Calculations. Pick an arbitrary function satisfying ||f ]α||L∞(I) ≤ 1 and

the conditions (4.2), (4.3). Consider the splitting I = I` ∪ Ir and set x = 〈f〉Ir ,

y = 〈f2〉Ir , t = |Ir|. Then Theorem 2.3 implies supIr f ≤ Bα(x, y, t). Furthermore,

by (4.2), we have 〈f〉I` = −x, 〈f2〉I` = y and hence, again by Theorem 2.3,

infI` f ≥ −Bα(x, y, t). These arguments show the estimate

|f(a)− f(b)| ≤ sup
Ir

f − inf
I`
f ≤ 2Bα(x, y, t).
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Next, we have that f is nonnegative on Ir and hence Theorem 3.3 yields 0 ≤

infIr f ≤ Cα(x, y, t). Consequently,

|f(a)− f(b)| ≤ 2 supBα(x, y, t),

where the supremum is taken over all x, y such that Cα(x, y, t) ≥ 0. To handle this

supremum on the right, fix y and take a look at the set {x ≥ 0 : Cα(x, y, t) ≥ 0}.

We have Cα(0, y, t) ≤ 0, Cα(
√
y, y, t) =

√
y ≥ 0 and Cαx(x, y, t) ≥ 0 for x ≥ 0

(see (3.1)). Thus the set {x ≥ 0 : Cα(x, y, t) ≥ 0} is a certain interval of the form

[x0(y),
√
y], where Cα(x0(y), y, t) = 0. In addition, observe that the inequality

Cα ≥ 0 is equivalent to Bαx ≤ 0. This shows that

sup{2Bα(x, y, t) : Cα(x, y, t) ≥ 0} = sup{2Bα(x, y, t) : Cα(x, y, t) = 0}.

However, Cα(x, y, t) = 0 is equivalent to

(4.4) x =
√

2α+ 1 tα/(s+ 1)α+1,

and then, by (2.1), y = (2α+ 2)t2α(s+ 1)−2α−1. However,

y = 〈f2〉I = 〈f2〉I − 〈f〉2I ≤ |I|2α = (2t)2α,

which yields s+1 ≥
(

2α+2
22α

)1/(2α+1)
= 1

2 (4α+4)1/(2α+1). On the other hand, under

(4.4) we have

Bα(x, y, t) =
(α+ 1)

√
2α+ 1

α

(
t

s+ 1

)α
and hence the lower bound for s+ 1 just obtained above gives

2 supBα(x, y, t) ≤ 2(α+ 1)
√

2α+ 1

α

(2t)α

(2s+ 2)α

=
(4α+ 4)(α+1)/(2α+1)

√
2α+ 1

2α
|b− a|α,

which is the desired estimate. �
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Sharpness. The reasoning consists of several separate parts. We have decided to

split the proof accordingly.

Step 1. The extremal function and some initial calculations. Let s = 1
2 (4α +

4)1/(2α+1)−1 and t = s+1. Furthermore, let x be given by (4.4) and put y = (2t)2α.

Then (2.1) is satisfied. Introduce the function f : [0, 1 + s]→ R by

f(p) =

(
1 +

1

α

)√
2α+ 1

(
t

s+ 1

)α
max {1− pα, 0}

=

(
1 +

1

α

)√
2α+ 1 max {1− pα, 0} .

We have already considered this function in the proof of the sharpness of (2.9). In

particular, we have checked that ||f ]α||L∞([0,1+s]) = (t/(s+ 1))α = 1. Let us extend

this function to the interval [0, 2 + 2s] by setting f(p) = −f(2 + 2s− p). Then

||f ||Lip([0,2+2s]) ≥
|f(0)− f(2s+ 2)|

(2s+ 2)α
=

2f(0)

(2s+ 2)α
= L(α).

Thus, we will be done if we show that ||f ]α||L∞([0,2s+2]) ≤ 1.

Step 2. We must show that for any 0 ≤ a < b ≤ 2s + 2, we have 〈f2〉[a,b] −

〈f〉2[a,b] ≤ (b− a)2α. This is equivalent to saying that

F (a, b) =

∫ b

a

f2 − 1

b− a

(∫ b

a

f

)2

− (b− a)2α+1 ≤ 0.

If [a, b] ⊆ [0, 1 + s] or [a, b] ⊆ [1 + s, 2 + 2s], then this bound follows from the fact

that ||f ]α||L∞([0,1+s]) = 1, which we established in the proof of Theorem 2.3. Thus,

(4.5) F (a, 1 + s) ≤ 0 for all a < 1 + s,

and we need to check what happens for a ≤ 1 + s ≤ b. Note that

∂F

∂b
(a, b) = f2(b) +

1

(b− a)2

(∫ b

a

f

)2

−
2f(b)

∫ b
a
f

b− a
− (2α+ 1)(b− a)2α

=

[ ∫ b
a
f

b− a
− f(b)

]2

−
[√

2α+ 1(b− a)α
]2
.
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The function f is nonincreasing, so the expression in the first square bracket is

nonnegative and hence ∂F/∂b has the same sign as

G(a, b) :=

∫ b
a
f

b− a
− f(b)−

√
2α+ 1(b− a)α.

Step 3. We will now show that G(a, 1 + s) ≤ 0. We have

G(a, 1 + s) =

∫ 1+s

a
f

1 + s− a
−
√

2α+ 1(1 + s− a)α =

∫ 1

a
f

1 + s− a
−
√

2α+ 1(1 + s− a)α.

The bound G(a, 1 + s) ≤ 0 is evident if a ∈ [1, 1 + s]. To show it for a ≤ 1, we

denote H(a) = (1 + s− a)G(a, 1 + s) =
∫ 1

a
f −
√

2α+ 1(1 + s− a)α+1 and compute

H ′(a) = −f(a) +
√

2α+ 1(α+ 1)(1 + s− a)α,

H ′′(a) =
√

2α+ 1(α+ 1)(aα−1 − α(1 + s− a)α−1),

H ′′′(a) =
√

2α+ 1(α+ 1)(α− 1)(aα−2 + α(1 + s− a)α−2).

So, H ′′′ < 0; furthermore, H ′′ is positive as a approaches 0. Consequently, H is

either convex on [0, 1], or convex on [0, a0] and concave on [a0, 1] for some a0 ∈ (0, 1);

since H ′(1) > 0, H(1) < 0 and H(0) =
∫ 1

0
f −
√

2α+ 1(1 + s)α+1 =
√

2α+ 1(1 −

(1 + 2s)α+1) < 0, we obtain the desired bound G(a, 1 + s) ≤ 0.

Step 4. We go back to the analysis of the sign of G. Clearly, G(a, ·) is decreasing

on b ∈ [1 + s, 1 + 2s] (the integral
∫ b
a
f and f(b) are constant on this interval) and

hence it is negative there. For b ≥ 1 + 2s, let

K(b) =
G(a, b)

b− a
=

∫ b

a

f − f(b)(b− a)−
√

2α+ 1(b− a)α+1

and note that

K ′(b) = −f ′(b)(b− a)−
√

2α+ 1(α+ 1)(b− a)α

=
√

2α+ 1(α+ 1)(b− a)
(
(2s+ 2− b)α−1 − (b− a)α−1

)
.
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Thus, we have two options. If a/2 ≤ s, then b ≥ s+ 1 + a/2, or 2s+ 2− b ≤ b− a,

for all b; this implies K ′(b) > 0. If a/2 > s, then K ′(b) ≤ 0 for b < s + 1 + a/2

and K ′(b) > 0 for remaining b. As we have shown above, K(b) ≤ 0 for b ∈

[1 + s, 1 + 2s]. Consequently, we have two possibilities: either K is nonpositive

for all b ∈ [1 + s, 2 + 2s], or there is b0(a) ∈ [1 + s, 2 + 2s] such that K(b) ≤ 0

for b ≤ b0(a) and K(b) ≥ b0(a). Since ∂F/∂b shares the same sign with G and

K, we see that the function F (a, ·) is either decreasing on [1 + s, 2 + 2s], or is

nonincreasing on [1 + s, b0(a)] and nondecreasing on [b0(a), 2 + 2s]. Combining

this behavior with (4.5), we conclude that if F (a, b) > 0 for some a < 1 + s < b,

then also F (a, 2 + 2s) > 0. However, we have F (a, 2 + 2s) = F (0, 2 + 2s − a),

since f(p) = −f(2 + 2s − p). So, repeating the above argumentation, we see that

F (0, 2 + 2s− a) > 0 implies F (0, 2 + 2s) > 0. But this is a contradiction: we easily

check that

F (0, 2 + 2s) =

∫ 2s+2

0

f2 − (2s+ 2)2α+1 = 2

∫ 1

0

f2 − (2s+ 2)2α+1 = 0.

This proves that ||f ]α||L∞([0,2s+2]) ≤ 1 and completes the proof. �

Finally, let us focus on the left inequality of (1.3). In comparison to the preceding

estimate, here the reasoning will be much less technical.

Theorem 4.2. Let f : I → R be a continuous function satisfying ||f ]α||L∞(I) <∞.

Then

(4.6) ||f ||Lipα(I) ≥ 2
√

2α+ 1 ||f ]α||L∞(I)

and the constant 2
√

2α+ 1 is the best possible.

Proof. By homogeneity, we may assume that ||f ]α||L∞(I) = 1. For any ε > 0, there

is a subinterval [a, b] ⊂ I such that

〈f2〉[a,b] − 〈f〉2[a,b] >
(
1− ε

)
|b− a|2α.
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By Theorem 3.3 and the remark following it, we have

inf
[a,b]

f ≤ Cα(〈f〉[a,b], 〈f2〉[a,b], b− a)

and

sup
[a,b]

f ≥ −Cα(−〈f〉[a,b], 〈f2〉[a,b], b− a).

These two estimates imply

||f ||Lipα(I) ≥
sup[a,b] f − inf [a,b] f

|b− a|α

≥
−Cα(−〈f〉[a,b], 〈f2〉[a,b], b− a)− Cα(〈f〉[a,b], 〈f2〉[a,b], b− a)

|b− a|α
.

Setting s± = s(±〈f〉[a,b], 〈f2〉[a,b], b− a), we see that the latter expression equals

√
2α+ 1

(s− + 1)α+1
+

√
2α+ 1

(s+ + 1)α+1
,

which can be made as close to 2
√

2α+ 1 as we wish, by taking ε sufficiently small:

here we use the fact that s = s(x, y, t) depends on x, y and t only through (y −

x2)/t2α; hence s± is actually a function of ε only.

To see that the constant 2
√

2α+ 1 is optimal, take f : [−1, 1]→ R with f(p) =

2α
√

2α+ 1|p|α sgn p. Then f ∈ Lipα(I) and hence ||f ]α||L∞(I) <∞. Actually, since

〈f〉[−1,1] = 0 and 〈f2〉[−1,1] = 22α, we have the lower bound ||f ]α||L∞(I) ≥ 1. On

the other hand, we see that

||f ||Lipα([−1,1]) = 2α
√

2α+ 1 sup
p,q∈[−1,1]

||p|α sgn p− |q|α sgn q|
|p− q|α

.

A straightforward analysis shows that the above supremum is attained for p = −q,

and equals 21−α. Consequently, we see that ||f ||Lipα([−1,1]) = 2
√

2α+ 1 and hence

we must have equality in (4.6) (as a by-product, we also obtain that ||f ]α||L∞([−1,1]) =

1). Thus `(α) is indeed the best possible. �



28 ADAM OSȨKOWSKI

References

[1] D. L. Burkholder, A nonlinear partial differential equation and the unconditional constant

of the Haar system in Lp, Bull. Amer. Math. Soc. 7 (1982), pp. 591–595.

[2] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms,

Ann. Probab. 12 (1984), pp. 647–702.

[3] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77

(1971), pp. 587–588.

[4] P. Ivanishvili, N. N. Osipov, D. M. Stolyarov, V. Vasyunin, P. B. Zatitskiy, On Bellman

function for extremal problems in BMO, C. R. Math. Acad. Sci. Paris 350 (2012), no. 11-12,

pp. 561–564.

[5] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure and Appl.

Math. 14 (1961), pp. 415–426.
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